
An Ensemble of Classifiers for coping with Recurring
Contexts in Data Streams

Ioannis Katakis, Grigorios Tsoumakas and Ioannis Vlahavas1

Abstract. This paper proposes a general framework for classify-
ing data streams by exploiting incremental clustering in order to
dynamically build and update an ensemble of incremental classi-
fiers. To achieve this, a transformation function that maps
batches of examples into a new conceptual feature space is pro-
posed. The clustering algorithm is then applied in order to group
different concepts and identify recurring contexts. The ensemble
is produced by maintaining an classifier for every concept dis-
covered in the stream2.

1 INTRODUCTION
Recent advances in sensor, storage, processing and communica-
tion technologies have enabled the automated recording of data,
leading to fast and continuous flows of information, referred to
as data streams. The dynamic nature of data streams requires
continuous or at least periodic updates of the current knowledge
in order to ensure that it always includes the information content
of the latest batch of data. This is important in applications
where the concept of a target class and/or the data distribution
changes over time. This phenomenon is commonly known as
concept drift. A very special type of concept drift is that of re-
curring contexts [5]. In this case, concepts that appeared in the
past may recur in the future. Although the phenomenon of reap-
pearing concepts is very common in real world problems
(weather changes, buyer habits etc) only few methods take it
into consideration [3-5]. In this paper we propose an ensemble
of classifiers that utilizes a new representation model for data
streams suitable for problems with recurring contexts.

2 TRANSFORMATION FUNCTION
First, the data stream is separated into a number of small batches
of examples. Each batch is transformed into a conceptual vector
that is constructed out of a number of conceptual feature sets.
Each feature set corresponds to a feature from the initial feature
space. Let’s assume that unlabeled (U) and labeled (L) exam-
ples are represented as vectors

()1 2, ,...,U nx x x x= and ()1 2, ,..., ,L n jx x x x c=

where ix is the value of the feature if , and jc C∈ with C be-
ing the set of available classes. Let BU and BL be a batch of unla-
beled and labeled instances of size b,

{ }() (1) (1), , ...,U U k U k U k bB x x x+ + −= , { }() (1) (1), , ...,L L k L k L k bB x x x+ + −=

1 Department of Informatics, Aristotle University of Thessaloniki, 54124

Greece, email:{katak, greg, vlahavas}@csd.auth.gr
2 The full version of this paper as well as the datasets used for evaluation

can be found at: http://mlkd.csd.auth.gr/concept_drift.html

Every batch of examples (BL) is transformed into a conceptual
vector ()1 2, , ..., nZ z z z= , where zi are the conceptual feature
sets. For every batch BL and feature fi of the original feature
space the conceptual feature sets are calculated as follows:

{ }
{ }

,

, ,

: 1.. , , if is nominal

, : 1.. , if is numeric

v
i j i i

i

i j i j i

P j m v V f
z

j m fμ σ

⎧ = ∈⎪= ⎨
=⎪⎩

where , (|)v
i j i jP P f v c= = and [1,], [1,],i n j m∈ ∈ iv V∈ , and

iV is the set of values of the nominal attribute if ,
v

i jP is consid-
ered to be equal to , /v j jn n , where ,v jn is the number of sam-
ples of class jc having the value v at attribute i in batch BL and
nj is the number of samples belonging to jc in batch BL. For nu-
meric attributes we use the mean ,()

ji cμ and standard devia-
tion ,()

ji cσ of attribute if for samples of class jc in batch BL.
The notion behind this representation is that every element of
the conceptual vectors expresses in what degree a feature char-
acterizes a certain class.

Consequently, conceptual distance between two batches
()LB μ and ()L vB can be defined as the Euclidean distance of the

corresponding Conceptual Vectors:

{ }
() () () ()

1/2

1() 1() () ()

(,)

(,) ... (,)

L L v

n n v

ConDis(B ,B)= Euclidean Z Z

dis z z dis z z

μ ν μ

μ ν μ

=

= + +

Where, () ()2 21 1
() () () () () ()(,) ... l l

i i i v i i vdis z zμ ν μ ι μζ ζ ζ ζ= − + + −
and ()

j
i μζ is the j-th element of the i-th conceptual feature-set of

the vector μ, whereas l is the length of the feature set.
This mapping procedure tries to ensure that the more similar

two batches will be conceptually, the closer in distance their
corresponding conceptual vectors will be. The definition of this
distance will be also beneficial for the clustering algorithm of
the framework we present in the following section.

3 THE CCP FRAMEWORK
The main components of the CCP (Conceptual Clustering and
Prediction) framework (Fig. 1) are: a) a mapping function (M),
that transforms data into conceptual vectors, b) an incremental
clustering algorithm (R), that groups conceptual vectors into
clusters and c) an incremental classifier (h) for every concept
discovered. The pseudocode of the framework can be seen in
Fig. 2. What is maintained as time (t) passes is a set of clusters

1 2{ , , ..., }t qG g g g= and a set of corresponding classifiers
Ht={hi,,h2,…,hq}. Classifier hi is trained from batches that belong
conceptually to cluster gi. Initially, Go=∅, Ho=∅ .

By classifying the current batch according to the classifier
built from the cluster of the previous batch we make a kind of a
locality assumption. We assume that successive batches (of
small size) most of the time will belong to the same concept.

Fig. 1. Clustering conceptual vectors into concepts

CCP Framework
begin
for i=1 to infinity do
 Zi-1=M.getconceptualVectorOf(BL(i-1))
 g΄ = R.getClusterOf(Zi-1)
 R.update(Zi-1)
 hg΄.update(BL(i-1))
 hg΄.classify(BU(i))
end

Fig. 2. The main operation of CCP framework

4 EVALUATION
Datasets The first two datasets (usenet1, usenet2) are based on
the 20 newsgroups collection [1]. They simulate a stream of
messages from different newsgroups that are sequentially pre-
sented to a user, who then labels them as interesting or junk,
according to his/her personal interests. Table 1 shows which
messages are considered interesting (+) or junk (-) in each time
period. The third dataset is based on the Spam Assassin collec-
tion and contains both spam and legitimate messages.

Table 1. Dataset Usenet1 and Usenet2

 0-300 301-600 600-900 900-1200 1200-1500
Usenet 1

 medicine + - + - +
 space - + - + -
 baseball - + - + -

Usenet 2
 medicine + - - - +
 space - + - + -
 baseball - - + - -

Methods Evaluation involves the following methods:
Simple Incremental Classifier (SIC): It maintains only one clas-
sifier, which incrementally updates its knowledge.
Time Window (TW): It classifies incoming instances based on
the knowledge of the latest N examples.
Weighted Examples (WE): It consists of an incremental classifier
that supports weighted learning. Bigger weights are assigned to
more recent examples in order to focus on new concepts.

An incremental naïve bayes classifier is used as base classi-
fier for the above methods.

Our implementation of the CCP framework includes the
mapping function discussed in section 2, the Leader-Follower
algorithm described in [2] as the clustering component and an
incremental Naive Bayes classifier. Preliminary experiments
showed that a batch size around 50 instances is appropriate.
Larger batches invalidate the locality assumption, whereas

smaller batches do not suffice for calculating the summary prob-
abilistic statistics. Τhe experiments include a benchmark version
of our framework (dubbed Oracle), where perfect clustering
assignments are manually provided to the system. This allows
the study of the maximum performance that can be achieved
using the CCP framework.
Results Table 2 shows the results of the experiments in the three
datasets. We notice that even a basic implementation of CCP
achieves better performance than all other methods.
Fig. 3 shows the average accuracy over fifty instances for the
CCP and WE method for the Usenet1 dataset. Note the sudden
dives of WE’s accuracy in drift time-points. In all cases, CCP
manages to recover much faster from the drift. Most notably, at
the last two drift point, CCP recognizes the recurrent theme and
remains accurate. Finally, the performance of Oracle, strongly
underlines the fact that there is room for improvement by using
more advanced incremental clustering algorithms.

Table 2. Accuracy of the four methods in the three datasets

 Usenet1 Usenet2 spam

Simple Incremental 0.59 0.73 0.75

TimeWindow (w=100) 0.56 0.60 0.60

TimeWindow (w=150) 0.59 0.62 0.64

TimeWindow (w=300) 0.58 0.70 0.62

CCP (Oracle) 0.81 0.80 -

CCP (Leader-Follower) 0.75 0.77 0.93

Weighted Examples 0.67 0.75 0.91

Fig. 3. Average accuracy over 50 instances for WE and CCP.

5 ACKNOWLEDGMENTS
This work was partially supported by a PENED program (EPAN
M.8.3.1, No.03ΕΔ73), jointly funded by the European Union and the
Greek Government (General Secretariat of Research and Technology).

REFERENCES
[1] Asuncion, A. and Newman, D.J., UCI Machine Learning Repository.
2007, University of California, School of Information and Computer
Science [www.ics.uci.edu/~mlearn/MLRepository.html]: Irvine, CA.
[2] Duda, R.O., Hart, P.E., and Stork, D.G., Pattern Classification. 2000:
Wiley-Interscience.
[3] Forman, G. Tackling Concept Drift by Temporal Inductive Transfer.
in 29th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval. 2006. Washington, USA: p. 252-259.
[4] Harries, M.B., Sammut, C., and Horn, K., Extracting Hidden Con-
text. Machine Learning, 1998. 32(2): p. 101-126.
[5] Widmer, G. and Kubat, M., Learning in the Presense of Concept
Drift and Hidden Contexts. Machine Learning, 1996. 23(1): p. 69-101.

