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Abstract. Concept drift constitutes a challenging problem for the ma-
chine learning and data mining community that frequently appears in
real world stream classification problems. It is usually defined as the un-
foreseeable concept change of the target variable in a prediction task.
In this paper, we focus on the problem of recurring contexts, a special
sub-type of concept drift, that has not yet met the proper attention
from the research community. In the case of recurring contexts, concepts
may re-appear in future and thus older classification models might be
beneficial for future classifications. We propose a general framework for
classifying data streams by exploiting stream clustering in order to dy-
namically build and update an ensemble of incremental classifiers. To
achieve this, a transformation function that maps batches of examples
into a new conceptual representation model is proposed. The clustering
algorithm is then applied in order to group batches of examples into
concepts and identify recurring contexts. The ensemble is produced by
creating and maintaining an incremental classifier for every concept dis-
covered in the data stream. An experimental study is performed using
a) two new real-world concept drifting datasets from the email domain,
b) an instantiation of the proposed framework and c) five methods for
dealing with drifting concepts. Results indicate the effectiveness of the
proposed representation and the suitability of the concept-specific clas-
sifiers for problems with recurring contexts.

A preliminary version of this paper appears in the proceedings of the 18th European
Conference on Artificial Intelligence, Patras, Greece, 2008.

1 Introduction

Recent advances in sensor, storage, processing and communication technologies
have enabled the automated recording of data, leading to fast and continuous
flows of information, referred to as data streams [1]. Examples of data streams
are the web logs and web page click streams recorded by web servers, transactions
like credit card usage, data from network monitoring and sensor networks, video
streams such as images from surveillance cameras, news articles in an RSS reader,
etc.



The dynamic nature of data streams requires continuous or at least periodic
updates of the current knowledge in order to ensure that it always includes the
information content of the latest batch of data. This is particularly important
in stream classification problems where the concept of a target class and/or the
data distribution changes over time. This phenomenon is commonly known as
concept drift [2].

A very special type of concept drift is that of recurring contexts [3] where
concepts that appeared in the past may recur in the future. Although the
phenomenon of reappearing concepts is very common in real world problems
(weather changes, buyer habits, etc) only few stream classification methodolo-
gies take it into consideration [3-5].

In this paper we propose an ensemble of classifiers that utilizes a new con-
ceptual representation model for data streams suitable for problems involving
concept drift. More specifically, we map batches of data into what we call con-
ceptual vectors. These vectors contain conceptual information that describes the
established concepts in a particular batch of data. Taking advantage of the pro-
posed representation, we apply clustering to the stream of conceptual vectors.
This way, we organize and summarize batches of instances into clusters which
represent different concepts. The final objective is to train an incremental classi-
fier on every cluster of conceptual vectors. When a new batch of instances arrives,
we identify the concept (cluster) in which this batch belongs to and apply the
corresponding classifier in order predict the true labels of its instances.

An instantiation of this framework was evaluated on two email datasets and
compared against five methodologies for dealing with drifting concepts. Results
indicate the effectiveness of the proposed representation and the suitability of the
concept-specific classifiers that outperform the rest of the methods in problems
with recurring contexts. The main contributions of this work are the following:

— A new conceptual representation model suitable for problems with concept
drift and recurring contexts.

— The proposal of a general framework for dealing with recurring contexts.

— An experimental study involving an instantiation of the aforementioned
framework and five methodologies for dealing with drifting concepts.

— Two new datasets from the email domain that simulate concept drift that
we make available online. In addition, the first dataset includes recurring
contexts.

The rest of the paper is organized as follows. In Section 2 we present back-
ground information on mining data streams whereas in Section 3 we summarize
related work on concept drift detection and adaptation. Section 4 proposes a
batch transformation procedure that will be used as a basic component of the
framework proposed in Section 5. In Section 6 we present the datasets created
and used in the experimental evaluation that is presented in section 7. Section
8 concludes the paper by presenting our plans for future work.



2 Mining Data Streams

All data mining problems comprise an interesting challenge in a streaming en-
vironment [6-8] mainly because of the one-pass requirement and strict memory
limitations. In this section we discuss some of the main issues in mining streams
and particularly in classification and clustering.

2.1 Stream Classification and Concept Drift

The stream classification problem is modeled as follows: Unlabeled instances
arrive one at a time and need to be rapidly classified into one out of a predefined
set of labels. The stream is considered infinite and therefore mining algorithms
cannot store many instances into main memory and consequently can process
them only once. After classification, the true label of the sample is considered to
be available [9-13] and therefore a) the system’s performance can be calculated
and b) the system’s model can be updated. It is not uncommon to assume
that the data (examples) arrive at batch mode [14, 15]. For successful automatic
classification of concept drifting data streams we are not only seeking for fast
and accurate incremental algorithms, but for complete methodologies that can
detect and quickly adapt to time varying concepts.

There are two main kinds of concept drift: a) instant (abrupt or sudden) and
b) gradual. In the case of abrupt concept drift concepts alter instantly. Consider
a machine learning enhanced email filtering system. The task is to filter out
email messages that are considered uninteresting (junk) for the user. The user
informs the system about his/her interests by marking messages as “interesting”
or “junk”. For example, a user subscribed to a computer-related mailing list
might stop instantly to be interested in messages containing notebook reviews
just after the purchase of a notebook. The classifier must rapidly adapt to this
change and accurately classify future messages. An example of gradual concept
drift can be observed in the spam filtering problem. Spam messages change
(usually become harder to identify) at a certain rate. Again, the classifier must
be able to follow this variation and maintain a stable performance.

An interesting situation that can occur in both instant and gradual concept
drift is the repetition of certain concepts at different time periods. In the email
filtering system for example, the user could re-gain interest in topics that he/she
was interested in the past. Furthermore, in our second example, there are some
certain groups of spam messages that re-appear in certain time periods (e.g.
spam messages about gifts on mother’s day or Christmas). This subtype of con-
cept drift has been noted as recurrent themes|[5] or recurring contexts[3]. In this
case the system should recognize the re-appearing concepts and re-activate older
classification models.

Tsymbal [2] summarizes the characteristics of an ideal concept drift handling
system in the following three requirements:

— Quick adaptation to concept drift.
— Robustness to noise and ability to distinguish it from concept drift.
— Ability to recognize and react to reoccurring themes.



2.2 Stream Clustering

The task in the stream clustering problem is to immediately assign an item
to a cluster as it arrives. The problem is far more interesting than the case of
static data since there is no prior knowledge of the data distribution and thus,
new clusters should be created and old ones might be merged dynamically. Well
known representatives of streaming clusterers are SWClustering [16], STREAM
[17], HPStream [18] and BIRCH [19]. An informative review on stream clustering
can be found in [7].

3 Related Work

A common observation is that methodologies proposed for tackling concept drift
can be organized into three main groups, namely instance selection, instance
weighting and ensemble methods [2]. Furthermore, we consider an additional
group composed of quickly adapting incremental algorithms. In this section we
present these groups commenting on a) main assumptions made, b) advantages
and disadvantages and c) requirements that a classifier should fulfill in order to
operate in the framework of each group.

3.1 Instance Selection

In instance selection, proposed systems try to select the most appropriate set of
past cases in order to make future classifications. Typical representatives of this
group are moving-window (also known as time-window)! based methods, where
the classifier is always trained from a fixed or adaptive size moving window of ex-
amples [20]. In most cases, this window is constructed out of the last w examples
of the stream. The assumption made in these approaches is that older examples
are practically worthless for classification of new data and therefore, adapting
to concept drift is tantamount to successfully forgetting old instances [3,21]. In
order to operate in a moving window framework, a classifier should implement
two additional functions that incorporate/abstract an instance into/from the
model respectively. The main advantage of moving windows is the fact that the
classifier always models the last batch of information and therefore might be ac-
curate for future classifications even in concept drifting environments. Although
the problem of determining the window size has been solved by using adaptive
time windows [20], these approaches do not consider recurring contexts.

Other approaches that are considered in this group are methods that main-
tain a considerable amount of examples in memory in order to select dynami-
cally a training set for the current classifier [21-23]. Although the intuition of
exploiting the history of the stream is correct (especially in the case of recur-
ring contexts) the memory limitations of data stream applications make these
approaches impractical.

! Very frequently in data stream classification the stream is modeled as a sequence of
examples without taking into consideration the actual time-stamp of each example
(arrival time). Therefore we consider the term “moving window” more appropriate.



3.2 Instance Weighting

In instance weighting, the main assumption made is that old knowledge becomes
less important as time goes by. All instances are taken into consideration for
building classification models, but new instances have larger effect. To achieve
this goal, a weighting scheme is defined [21]. In order to operate within this
framework a classifier must be updateable and support weighted learning. The
naive Bayes classifier for example fulfills these requirements. In case of concept
drift, weighted learning will aid the model to adapt quickly, but in case of re-
curring contexts the system will fail to soundly exploit information from old
data.

3.3 Ensemble Methods

In ensemble methods, the main strategy is to maintain a dynamic set of classi-
fiers. When a decrease in performance is observed, new models are added into
the ensemble whereas old and bad performing models are removed. For classifica-
tion, decisions of models in the ensemble are combined, usually with a weighted
voting scheme [24,14,15,9,25,13]. The advantage of weighted ensembles over
single classifiers in the data stream classification problem has been proved em-
pirically and theoretically [14,10]. However, few ensemble methods have been
designed to take into consideration the problem of recurring contexts [3-5].

Specifically, in problems where concepts re-occur, models of the ensemble
should be maintained in memory even if they do not perform well in the latest
batch of data. Moreover, every classifier should be specialized in a unique con-
cept, meaning that it should be trained from data belonging to this concept and
used for classifying similar data.

In [4] a methodology that identifies concepts by grouping classifiers of similar
performance on specific time intervals is described. Weights are then assigned to
classifiers according to performance on the latest batch of data. Predictions are
made by using weighted averaging. Although this strategy fits very well with the
recurring contexts problem it has an offline step for the discovery of concepts
that is not suitable for data streams. In particular, this framework will probably
be inaccurate with concepts that did not appear in the training set.

An interesting idea is presented by Forman [5], where a great number of
“daily” classifiers is maintained in memory. Their predictions for incoming data
are incorporated as additional features into the most recent classifier which will
learn how to take advantage of them in order to make future classifications.
Unfortunately, the framework is not designed for data streams and in addition
classifiers are built on small sample sets as they are not organized into concepts.

Our approach also resides in the category of ensemble methods, by maintain-
ing a classifier for every concept that appeared in the stream and activating the
most appropriate one when needed. Concepts are identified by exploiting stream
clustering. A recent work that also exploits clustering but for discriminating drift
from novelty is presented in [26].



3.4 Quickly Adapting Incremental Algorithms

Methods like CVEDT [27] (Concept-adapting Very Fast Decision Tree Learner)
adapt rapidly to the newest batch of data in order to cope with the drift. In
particular CVFDT stays current while making the most of old data by growing
an alternative subtree whenever an old one becomes questionable, and replacing
the old with the new when the new becomes more accurate. Unfortunately,
methods of this category have not been designed to track recurring contexts.

4 Data Representation Model

In this section we first discuss representation issues in data streams and then
propose a mapping procedure that transforms data into a new conceptual rep-
resentation model suitable for problems involving concept drift and recurring
contexts.

4.1 Representation Issues in Concept Drifting Data Streams

The main difficulty in concept drifting data is that geometrically close items
in the feature space will belong to different classes at different time periods.
We use a simple example in order to demonstrate this problem and explain
the intuition behind our transformation procedure. Figure la displays a static
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Fig. 1. Static (a) and stream (b) classification problem without concept drift. Stream
classification problem with concept drift before (c) and after (d) drift time point (¢q).
Numbers at items denote order of arrival

(without concept-drift) two dimensional classification problem. Items of class
“square” (low z and low y) and items of class “triangle” can be easily separated
with a linear classifier. Figure 1b depicts a stream classification problem with
no concept drift. Numbers at items denote order of arrival. Classes still share
common characteristics as time passes and therefore can be (even incrementally)
separated in the current feature space. Figures 1c and 1d represent a stream
classification problem with concept drift in two successive time periods. In the



first period (figure 1c) before drift time point (¢4) items with low x and y values
characterize the class square. However, after drift time point (i.e. after item 7
arrives - figure 1d) the concepts of class square and triangle change (in our case,
reverse) making difficult for a classifier trained from previous data to classify
incoming instances.

4.2 Conceptual Representation Model

In order to overcome the aforementioned obstacles and to identify (recurring)
concepts in the data stream we apply a transformation function (M) that maps
batches of examples into what we call conceptual vectors. These vectors contain
conceptual information that describes the concepts that are established in a
particular batch of data. The goal, as we will discuss later, is to exploit this
conceptual representation in order to identify concepts and apply an individual
classifier in each one.

First, the data stream is separated into a number of small batches of ex-
amples. Each batch is transformed into a conceptual vector that consists of a
number of conceptual feature sets. Each feature set consists of a number of el-
ements (see below) and corresponds to a feature from the initial feature space.
Let’s assume that unlabeled (U) and labeled (L) examples are represented as
vectors:

wU:(xlv‘er"‘vl'n) (1)

xr = (21,T2,...,%n, Cj) (2)

where x; is the value of the feature f;, and ¢; € C with C being the set
of available classes (labels). The number of attributes is n and the number of
classes is m. Let By and Bj, be a batch of unlabeled and labeled instances of
size b,

Bu = {Zuk)> Tu(kt1) - s BUR+b-1) (3)

B ={@L(k), TL(kt1)s - - s TL(krb—1) (4)

where () and xp ;) are the first instances of each batch. Every batch
of examples (By) is transformed into a conceptual vector Z = (z1, 22, ..., 2n),
where z; are the conceptual feature sets. Considering the examples contained in
the batch By, and for every feature f; of the original feature space the conceptual
feature sets are calculated as follows:

b= { {P;,’j cj=1l.m,v e Vi} , if f;is nominal (5)

{tij, 065 j=1.m}, if f;isnumeric

where PP, = P(f; = vlc;), i € [1,n],j € [1,m], v € Vi, where V; is the set
of values of the nominal attribute f;. Following the paradigm of the naive Bayes



classifier, P;jj is considered to be equal to n, ;/n;, where n, ; is the number of
training samples of class ¢; having the value v at attribute ¢ in batch By, and n;
is the number of training samples belonging to ¢; in batch By. For continuous
(numeric) attributes we use the mean (u; ;) and standard deviation (o ;) of
attribute f; for training samples of class c; in batch By. After each instance
arrives, if the true class is known, we incrementally calculate the above statistics
in order to be able to construct the conceptual vector immediately after the
batch is finished.

The expected average dimensionality of the new representation will be ap-
proximately avm + e2m, where a and e are the number of nominal and numeric
attributes respectively and v is the average number of values for nominal at-
tributes. For the text classification problem we study in this paper with the
widely used Boolean bag-of-words representation (a = n, e = 0) the space com-
plexity is O(nm).

The notion behind this representation is that every element of the conceptual
vectors expresses in what degree a feature characterizes a certain class. For
example, in email classification, if we notice that in two different batches of
examples P(cpulinteresting) and P(monitor|interesting), are similarly high, we
could assume that these batches might belong to the same or similar conceptual
theme (i.e. where computer-related emails are considered interesting). The same
principle applies to numeric attributes. Batches of instances that have similar
mean values for many attributes, should be close conceptually.

Consequently, conceptual distance between two batches By, and By, can
be defined as the Euclidean distance of the corresponding conceptual vectors:

ConDis(BL(w)7 BL(M)) = Buclidean(Z ), Z(.)) =
_ _ ) ©)
= {dzs(zl(w), Zl(w)) + ...+ dls(zn(w)’ Z"(w))}
where,

. 1 1 2 l l 2

and Cf( ¥) is the j-th element of the i-th conceptual feature-set of the vector v,
whereas [ is the length of the feature set.

This mapping procedure tries to ensure that the more similar two batches
will be conceptually, the closer in distance their corresponding conceptual vectors
will be. The definition of this distance will be also beneficial for the clustering
algorithm of the framework we present in the following section. Note that the
proposed representation could be replaced by another function that would map
a batch of instances into a space where similar batches conceptually would be
close in distance. Figure 2 depicts the stream classification problem with con-
cept drift in a representation space like the one discussed in this section. Note
that items in this case represent batches of examples. Numbers on items denote
sequence of arrival. Figure 2a represents sudden concept drift whereas figure
2b represents gradual concept drift. In both cases there are recurring contexts.
More specifically, in figure 2a the first batches (1,2,3) belong in the same concept
(concept 1). After batch 3, concept drift occurs. However, concept 1 re-appears
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Fig. 2. Batches of information represented in a conceptual representation model. (a)
Sudden concept drift with recurring contexts (b) Gradual concept drift with recurring
context. Numbers at items denote order of arrival.

with batches 7 and 8. Intuitively, in this case, the ideal solution would be to
train an individual classifier for each concept trained from the corresponding
batches. In figure 2 the concept shifts gradually. However, batch 8 appears to
be very close conceptually with batch 5. In this case, old classifiers should be
maintained in case an older concept re-appears.

In order to evaluate the suitability of the proposed representation, we exam-
ine later the cluster assignments of the conceptual vectors constructed from the
email streams used in this paper.

5 The CCP Framework

We propose a data stream classification framework CCP (Conceptual Clustering
& Prediction) that dynamically creates an ensemble of classifiers by exploiting
stream clustering in order to group the stream’s conceptual vectors (see figure
3). The main aim of clustering is the on-line identification of concepts and the
maintenance of cluster-specific classifiers in the ensemble.

The main components of the framework are:

— A mapping function (M), that transforms batch By,;) into conceptual vector
Z;.

— An incremental clustering algorithm (R), that groups conceptual vectors into
clusters.

— An incremental classifier (h), for every concept (cluster) discovered in the
stream.

What is maintained as time (¢) passes is a set of clusters Gy = {g1, g2, .-, 9q}
and an ensemble of corresponding classifiers H, = {h, he, ..., hy}. Classifier h; is
trained from batches that belong conceptually to cluster g;. Initially, G, = () and
H, = (). The maintenance of clusters depends on the clustering algorithm used.
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Fig. 3. The CCP Framework

In the Leader-Follower algorithm exploited in this work only the centroids of
clusters need to be maintained. The main operations of the CCP framework are
Dynamic Training and Online Classification of incoming instances. We briefly
describe them below.

— Dynamic Training. After the arrival of a batch By ;, CCP constructs
its conceptual vector Z(;). Incremental clusterer (R) either assigns Z; to a
cluster g; € G or creates a new cluster if necessary. In the second case, a
new incremental classifier is created and trained on these data. Otherwise,
the corresponding incremental classifier h; is updated with the examples of
Brg)-

— Online Classification. Instances of batch By ;1) are classified by classifier
hs that corresponds to the cluster of the previous conceptual vector Z(j)z

Note that the above two operations execute in parallel when true labels
of examples are available. By classifying the current batch according to the
classifier built from the cluster of the previous batch we make a kind of a “locality
assumption”. We assume that successive batches (of small size) most of the
time will belong to the same concept. This is an assumption often made in
such problems (see STAGGER Concepts [9] or Moving Hyperplanes [27]) mainly
because the only way to detect drift is by observing mistakes of the model in a
small time window, and then adapt in order to achieve better performance in the
next batch of data. Continuous changes of concepts at almost every instance is a
special case, that is difficult to discriminate from noise. It is not usually observed
in real life problems and therefore we do not deal with it in this paper. Concerning
the batch size, we should note that it is a problem dependent parameter but, in

2 Inevitably, the first batch of instances will be randomly classified by the first un-
trained classifier which can be updated when labels are known.
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Input: A stream of unlabeled examples xy ;) . After batch is finished, true
labels are considered known. b is the batch size.
Output: Continuous classifications p; of every zy ;)
1 begin
2 H«—0,G 0
3 s— 1,51,
4 H — H|J{hs};
5 for i=1 to infinity do
6 pi — hs.classify(xy ;));
7 if ¢ mod b = 0 then /* batch finished */
8 Brg) —{xri-v), - TL@) 13
9 Zj — M(BL(j)) ;
10 s < R.cluster(Z;);
11 if dgseG then
12 hs.update(Br;));
13 R.update(Z;);
14 else
15 9s — Zj;
16 G — GU{gs};
17 H — H\|J{hs};
18 hs.update(Br;));
19 J—g+1
20 end
Fig. 4. The main operation of the CCP framework

general, it should be small enough in order not to invalidate the aforementioned
locality assumption and sufficient in order to calculate the conceptual vectors.

The pseudocode of the framework is presented in Figure 4. Note that the true
labels of the instances are not immediately (just after classification) required for
CCP. As can be seen from line 12 and 18 updates are performed only after
a batch is finished. Moreover, the framework could work without continuous
knowledge of the true labels. In particular, CCP could execute lines 7 to 19 only
when a number of true labels (e.g. equal to the batch size) is available.

As basic implementation components, any incremental clustering algorithm
could be exploited like the ones mentioned in section 2.2 or the basic Leader-
Follower clusterer [28]. This clusterer (see details in section 7) either assigns
a cluster to an item or creates a new one if necessary. Therefore there is no
requirement for keeping old items in order to merge or split clusters. For the
classification component, any incremental classifier could be used.

It is important to notice that there is no need to maintain past batches or
conceptual vectors in memory. What is maintained is the cluster information (i.e.
the centroids’ of each cluster) and the appropriate classifiers for every cluster.
Concerning the time complexity of the proposed framework compared to a simple
incremental classifier the additional computational cost is a) the transformation
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of a batch into a conceptual vector and b) the clustering of conceptual vectors
in order to find the right classifier for classification and update.

6 Datasets

In order to evaluate the proposed methodology we constructed two high di-
mensional datasets from the email filtering domain. The first one represents
the problem of sudden concept drift and recurring contexts and the second one
represents gradual concept drift. Both datasets are available in Weka (ARFF)
format in Boolean bag-of-words vector representation at the following URL:
http://mlkd.csd.auth.gr/concept_drift.html (Datasets 3).

6.1 Emailing List Dataset

The emailing list (elist) dataset simulates a stream of email messages from dif-
ferent topics that are sequentially presented to a user who then labels them as
interesting or junk according to his/her personal interests. The filtering task is
to incrementally take advantage of this user feedback in order to train a model
that will automatically classify messages into interesting/junk as they arrive. To
construct this email stream we have collected messages from usenet posts that
exist in the 20 Newsgroup collection [29].

The topics that were used are: science/medicine, science/space, and recre-
ation/sports/baseball. The dataset is a stream of 1500 examples and 913 at-
tributes which are words that appeared at least 10 times in the corpus (boolean
bag-of-words representation). We split the stream into five time periods of 300
examples. In the first period, we consider that the user is only interested in mes-
sages of the topic medicine. At the end of each period, the user’s interest in a
topic alters in order to simulate the occurrence of concept drift. Table 1 shows
which messages are considered interesting (4) or junk (-) in each period.

Table 1. Emailing List Dataset (elist)

0-300 300-600 600-900 900-1200 1200-1500
medicine| + - + - +
space - + - —+ -
baseball - + - + -

6.2 Spam Filtering Dataset

For this dataset we used email messages from the Spam Assassin Collection?.
This corpus comes in four parts: spam, spam2, ham (legitimate), and easy ham,

3 The Apache SpamAssasin Project - http://spamassassin.apache.org/
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which is a collection of more easily recognized legitimate messages. The spam
ratio of the Spam Assassin collection is approximately 20%. In order to convert
this collection into a longitudinal data set we extracted the date and time that
the mail was sent. Then we converted the time into GMT time. Date was also
changed where needed. We stamped each email with its date and time by renam-
ing it in the format yyyy MM dd hh mm ss (yyyy: year, MM: month, dd:day, hh:
hours, mm: minutes, ss: seconds). If an email was more than once in the corpus
(sometimes a user may get the same email more than once) we kept all copies.
All attachments were removed. The boolean bag-of-words approach was used
for representing emails. This dataset consists of 9324 instances, 500 attributes
(words derived after applying feature selection with the 22 measure). As we have
observed at a previous study [30] the characteristics of spam messages in this
dataset gradually change as time passes (gradual concept drift).

7 Evaluation

In this section, we first comment on the suitability of the proposed conceptual
representation for the problem of identifying recurring contexts. We then per-
form comparative evaluation of an instantiation of the proposed framework with
five stream classification methods in the two datasets described in the previous
section.

7.1 Evaluating the Conceptual Representation Model

In order to evaluate the representation model proposed in section 4.2, we have
obtained the conceptual vectors from both datasets and applied two off-line
clustering algorithms in order to study cluster assignments. We used a batch
size of 50 instances for both datasets which led to 30 conceptual vectors for the
elist dataset and 186 for the spam filtering dataset.

By studying the elist dataset (see Table 1), we observe that there exist two
different (recurring) contexts. In the first one (Concept0) only medicine articles
are considered interesting. In the second one (Conceptl) only space and baseball
articles are considered interesting. ConceptO occurs in periods [0, 300], [600 —
900], [1200 — 1500] whereas Conceptl in [300 — 600] and [900 — 1200]. What one
would expect from the clusterer is to group vectors that belong to periods of
Concept0 into the same cluster and vectors that belong to periods of Conceptl
into another cluster.

We applied the kmeans and the Expectation-Maximization (EM) [31] clus-
tering algorithm on the conceptual vectors of the elist dataset.

Cluster assignments are visualized in Figure 5. For kmeans with k = 2 we
observe that vectors 0 to 5 (representing period [0 — 300]), 12 — 17 ([600 — 900])
and 24-29 ([1200—1500]) are assigned to the same cluster (Cluster0). The rest of
the vectors are assigned to Clusterl. Hence, under these settings, we observe that
the proposed representation creates items (that correspond to batches) that can
be grouped into the right concepts. For k = 5 (Figure 5b), kmeans is forced to
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assign some vectors into other clusters but still we have two dominating clusters
(Clusterl and Cluster3) that represent the correct recurring contexts. Finally
EM (Figure 5¢) provides similar assignments failing only on two vectors.
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Fig. 5. Cluster assignments - elist dataset

For the spam dataset (Figure 6), there is no prior knowledge about some
recurring contexts. However, all three clustering algorithms create three domi-
nating clusters. Smaller clusters may be representing batches of outlier or noisy
messages. As we discuss in the following sections, this batch organization is

beneficial for the classifiers.
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Fig. 6. Cluster assignments - spam data

7.2 Evaluating the Proposed Framework

In this section, we experimentally evaluate the proposed framework. We begin by
introducing the methods that are involved in the experiments. Next, we discuss
on the implementation details of all methods and finally present and discuss the

experimental outcome.
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Methods The instantiation of the proposed framework is compared against the
following stream learning methods.

— Simple Incremental Classifier (SIC): In this scheme, a single incremental
learning algorithm first classifies an instance and then updates its model.

— Batch Learner (BL): A classifier that is re-trained every b instances from
the last b instances. In this case there is no requirement for the learner to
be incremental, a fact that broadens the choice of classifier.

— Mowving Window (MW): A machine learning algorithm that it always models
the last w instances. The algorithm must implement an “update” function
in order to aggregate a new example and a “forget” function, in order to
retract from its model the first example of the window.

— Weighted Examples (WE): This method consists of an incremental base clas-
sifier that supports weighted learning. Bigger weights are assigned to more
recent examples in order to force the classifier to focus on new concepts and
gradually forget the old ones. The learner should be incremental and support
weighted learning.

— Dynamic Weighted Majority (DWM): This is our implementation of the algo-
rithm presented in [13]. DWM maintains a set of learners each one associated
with a weight w;. The decision of the ensemble is obtained by weighted ma-
jority voting. Every time a learner makes a mistake, its weight is reduced by
a factor (. If the weight falls below a threshold 6 then the learner is removed
from the ensemble. Every time the ensemble makes a mistake, a new learner
is introduced with a weight equal to 1. After classification of an instance
the true label is considered known and all learners are updated. Parameter
p expresses the frequency that the algorithm removes or adds learners and
updates weights.

Experimental Setup All methodologies and algorithms are implemented on
top of the Weka [32] API. All methods, with the exception of BL use an up-
dateable version of the naive Bayes classifier [33] as base learner. Naive Bayes
was chosen mainly because it is inherently incremental (class priors and feature
probability distributions can be calculated incrementally) and has been widely
used in text classification tasks in general [34,35] and in email classification in
particular [36, 37], which is the application under study in this paper. Since BL
can operate without an incremental algorithm we additionally exploited Support
Vector Machines (SVM) [38] which are considered more accurate classifiers in
text classification [39,40] and also used in email classification [41]. The SVM
was set up with default Weka parameter settings (SMO implementation, linear
kernel, C' = 1). Note that linear SVMs have proven to perform at least as well as
non-linear SVMs in text classification problems [42,43]. BL was executed with
three different batch sizes (50, 100, 200) for both classifiers. Similarly, the MW
framework was run using three different window sizes (50, 100, 200). Concerning
the WE method, we conducted preliminary experiments and found out that an
appropriate way to update weights is w(n) = w(n — 1) +n? for the elist dataset
and w(n) = w(n — 1) + 1 for the spam dataset, where w(n) is the weight of



16

the n-th example. Finally, for DWM we used the settings proposed in [13] (i.e.
8=05,60=0.01p=1).

Concerning the batch size of CCP, preliminary experiments showed that a
batch size around 50 instances is appropriate. Larger batches invalidate the
locality assumption, whereas smaller batches do not suffice for calculating the
summary probabilistic statistics.

Our instantiation of the CCP framework includes the mapping function dis-
cussed in section 4.2, a modified version of the Leader-Follower algorithm de-
scribed in [28] as the clustering component and an incremental Naive Bayes
classifier. Note that the Leader-Follower is only a baseline clusterer. More so-
phisticated solutions can be retrieved from the literature (see section 2.2).

In brief, the Leader-Follower clusterer is an online version of the well known
k-means algorithm and works as follows. The first instance is assigned to the
first cluster. From then, every time a new instance arrives, the algorithm cal-
culates the distances between the instance and every cluster (i.e. each cluster’s
centroid). If this distance exceeds a threshold 6 then a new cluster is created
having this instance as its first member. If the distance is smaller than 6, then
the instance is assigned to the closest cluster and its center is updated. There is
a stability parameter h that determines in what degree the cluster’s center will
move towards the new instance.

In our implementation of the Leader-Follower, we have made two modifica-
tions to the algorithm presented in [28]. The pseudocode can be seen in figure 7.
Firstly, in order to eliminate the stability parameter h used in [28] to calculate
new centroids, we set equal weights for all instances by using the number (m;)
of items assigned to each cluster (line 7). This modification not only simplifies
the algorithm (in terms of parameters need to be tuned) but also assures that
stable clusters will not be much affected by new distant members.

The second modification is associated with the memory constraints of the
data stream classification problem. The user may enter a maximum allowed
number (¢pq.) of clusters (i.e. concepts and corresponding classifiers). When the
limit is reached, the new item (conceptual vector) is incorporated into the nearest
cluster. The purpose of ¢4z is to limit the number of classifiers maintained in
memory.

Parameter 0 will define how sensitive the framework will be to concept drift.
This is an unavoidable parameter that exists in various forms in many drift de-
tection mechanisms [2]. The weighted scheme of WE, the batch size of BL, the
window size of MW, and the § and 6 parameters of DWM can be considered as
such parameters. Obviously as 6 decreases, number of clusters (i.e. classifiers)
will increase. However, in our case, ¢p,q, Will prevent memory overflows indepen-
dently of 6. After preliminary experimentation we set 8§ = 4 for the elist dataset
and 6 = 2.5 for the spam dataset and ¢,,,, = 10 for both problems. In the next
section we examine how variation of 8 affects the number of classifiers and the
system’s performance.

The experiments include a benchmark version of our framework (dubbed
Oracle), where the system knows beforehand the cluster (context) that the next



17

Input: x;: An infinite stream of points, 6: sensitivity, ¢maq,: maximum
number of clusters, m;: number of items assigned to cluster c;.

Output: Cluster assignment J for every ;.

1 begin

2 c1 —x1, M — 1, n 1

3 for i < 2 to infinity do

4 J — argmin;(distance(zxq, cj)) ;

5 if distance(zi,cy)) < 0 or n > Cpae then

6 my <—myg+1;

7 cy — ((my —1)/my)es + (1/my)wi;

8

9

else
n<—mn+1;
10 create new cluster ¢, «— x;;
11 My, — 1;
12 end

Fig. 7. The Leader-Follower Clustering Algorithm implemented in CCP

batch belongs to. This is to approximate the upper bound of our framework’s
performance (i.e. with perfect clustering and minimum batch size).

Every method, given an unlabeled instance makes a prediction about the class
of the instance and the method’s predictive accuracy is updated. Subsequently,
the true label is considered known and every method can use this extra example
to update its knowledge. Note however that CCP only takes advantage of the
updates after a batch is finished.

For each method we calculated classification accuracy, precision, recall and
run time. Because the datasets used in this paper correspond to filtering prob-
lems, we consider the class spam (for the spam dataset) and junk (for the elist
dataset) as the positive classes for the calculation of precision and recall.

All experiments were executed on an Intel Pentium 4 CPU at 2.0 GHz with
2.0 GB of RAM.

Results and Discussion Table 2 presents the predictive accuracy, precision,
recall and runtime of all methods in the elist dataset. We observe that even
a basic instantiation of the CCP framework outperforms all methods. As it is
shown later, CCP correctly clusters batches of examples and builds concept-
specific classifiers that are evoked when necessary and updated with proper
examples. The second best performance is achieved by the Moving Window
framework. The main advantage of MW is that it always models the latest
window of instances and therefore, although lacking a drift detection mechanism,
is able to adapt to concept drift quickly. Batch Learner is not performing as well
as Moving Windows due to the classifier only updating every b instances. Support
Vector Machines certainly comprise an improvement but still do not match the
performance of MW with a simple naive Bayes Classifier. Weighted Examples
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considers all instances for building the model but it also lacks of a detection
mechanism and therefore adapts ineffectively to drift. However, the improvement
over the simple incremental naive Bayes is substantial, underlining the utility
of the weighted learning scheme. Regarding the optimal batch/window size of
BL/MW we notice that in this dataset, small sizes of b/w are more appropriate.
In fact the best performance of BL was achieved when b = 50 (accuracy 0.704)
and w = 65 (0.751). DWM is not designed to cope with recurring contexts and
therefore performs poorly on this dataset. Finally and most importantly, the
performance of Oracle verifies the suitability of the context-specific classifiers
for problems with concept drift and recurring contexts and encourage further
investigation towards this direction. Concerning run time, as expected, simpler
methods like SIC or WE require less time for classifying the stream. However no
method proved to be significantly faster.

Table 2. Accuracy, Precision, Recall and Run Time of all methods in the elist dataset

Method Base Classifier| Accuracy Precision Recall Time
Simple Incremental NB 0.545 0.612 0.435 1.994
Batch Learner (b=50) NB 0.704 0.725 0.718 1.885
Batch Learner (b=50) SVM 0.714 0.737 0.721 2.088
Batch Learner (b=100) NB 0.607 0.642 0.607 1.822
Batch Learner (b=100) SVM 0.642 0.674 0.648 1.880
Batch Learner (b=200) NB 0.425 0.463 0.426 1.793
Batch Learner (b=200) SVM 0.465 0.505 0.438 2.093
Moving Window (w=50) NB 0.725 0.742 0.741  2.609
Moving Window (w=100) NB 0.747 0.779 0.732  2.557
Moving Window (w=200) NB 0.662 0.694 0.653 2.601
Weighted Examples NB 0.669 0.685 0.702 1.970
Dynamic Weighted Majority NB 0.438 0.470 0.425 5.265
CCP (Leader-Follower) NB 0.775 0.797 0.776 3.034
CCP (Oracle) NB 0.875 0.883 0.869 3.070

In the spam filtering dataset (Table 3) there is no artificially inserted concept
drift. However, the difference in performance between weighted examples and
simple incremental classifier as well a previous study of ours [30] suggests the
existence of gradual concept drift. In this dataset, we would expect CCP to
perform badly because it uses many classifiers with smaller training sets. However
it seems that the online organization of batches was beneficial to the classification
performance as the clusterer grouped similar batches and built cluster-specific
classifiers. In addition, clustering conceptual vectors will probably isolate noisy
batches of examples that would negatively affect a simple incremental classifier.
Concerning the optimal batch/window size of BL/MW we notice that in this
dataset, larger sizes of b/w are more appropriate. In fact the best performance
of BL was achieved when b = 145 (0.900) and of MW at w = 150 (0.922). The
best overall performance in this dataset is achieved by CCP followed by WE,
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Table 3. Accuracy, Precision, Recall and Run Time of all methods in the spam dataset

Method Base Classifier| Accuracy Precision Recall Time
Simple Incremental NB 0.912 0.809 0.856  4.896
Batch Learner (b=50) NB 0.880 0.851 0.646 4.531
Batch Learner (b=50) SVM 0.881 0.820 0.685 8.083
Batch Learner (b=100) NB 0.887 0.845 0.685 4.495
Batch Learner (b=100) SVM 0.899 0.848 0.738 8.124
Batch Learner (b=200) NB 0.889 0.818 0.728  4.463
Batch Learner (b=200) SVM 0.914 0.865 0.790 9.137
Moving Window (w=50) NB 0.915 0.911 0.742  5.102
Moving Window (w=100) NB 0.919 0.902 0.770 5.221
Moving Window (w=200) NB 0.921 0.881 0.801 5.344
Weighted Examples NB 0.921 0.836 0.864 4.786
Dynamic Weighted Majority NB 0.918 0.848 0.831 4.753
CCP (Leader-Follower) NB 0.923 0.857 0.839 8.750

MW and DWM. Considering time, as in the previous dataset, simpler methods
like SIC and WE require less time to classify the stream.

Figure 8 presents the average accuracy of CCP, MW and WE over 50 in-
stances for the elist dataset. Notice the sudden drops of all methods at drift
time points (after 300, 600, 900 and 1200 instances). However, CCP manages to
recover faster in all cases exploiting and updating older models.

Figure 9, presents the cluster assignments of the Leader-Follower algorithm
that led to the results shown at Table 2. In the elist dataset we observe that the
clusterer made the correct assignments with the exception of the first instance
(see in comparison with figure 5a). In the spam data, the clusterer correctly
identified the two larger clusters (see in comparison with figure 6a).

Finally, figure 10 depicts the variation of number of classifiers (figure 10a)
and predictive accuracy (figure 10b) with respect to the sensitivity parameter
f. In this case we set ¢qe = 100 in order not to limit the maximum number
of clusters. As expected (see discussion in the previous section), the number
of classifiers decreases as the sensitivity parameter increases. Naturally, better
performance is achieved when the number of classifiers created is close to number
of concepts in the stream (figure 10b).

8 Conclusions and Future Work

We proposed a framework that dynamically creates and maintains an ensem-
ble of classifiers for streaming data that are characterized by concept drift and
especially by recurring contexts. After the transformation of data into a new
conceptual representation model, incremental clustering was exploited in order
to discover concepts in the stream and maintain a classifier for each one of these
concepts. In order to evaluate the framework we developed an instantiation and
constructed two real world email streams with concept drift. For the sake of
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Fig. 8. Average accuracy over 50 instances for WE, MW and CCP. Drift time points
at: 300, 600, 900 and 1200 instances.
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Fig. 9. On-line cluster assignments of the stream of conceptual vectors by the leader-
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comparison, we included in our experiments five methods for dealing with vary-
ing concepts in data streams. Experimental results show that the instantiation
of the CCP framework successfully identifies concepts in the stream outperform-
ing the rest of the methods. This experimental outcome with the addition of the
performance of a benchmark version of our framework (dubbed Oracle) supports
the intuition of concept specific classifiers.

In the future, we intend to investigate other approaches for identifying and
organizing concepts in the stream. Instead of clustering batches of examples, an
alternative approach would be to cluster the classifiers. Clustering classifiers has
been already discussed in the literature [44] but has not yet been applied to the
stream classification problem. Finally, it is in our immediate plans to incorporate
an instantiation of CCP into our adaptive news aggregator, named Personews
[45], which currently uses a dynamic learning algorithm without the ability to
identify concepts and recurring themes.
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