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Abstract. The development of the Semantic Web proceeds in steps,
building each layer on top of the other. Currently, the focus of research
efforts is concentrated on logic and proofs, both of which are essential,
since they will allow systems to infer new knowledge by applying princi-
ples on the existing data and explain their actions. Research is shifting
towards the study of non-monotonic systems that are capable of handling
conflicts among rules and reasoning with partial information. As for the
proof layer of the Semantic Web, it can play a vital role in increasing the
reliability of Semantic Web systems, since it will be possible to provide
explanations and/or justifications of the derived answers. This paper
reports on the implementation of a system for visualizing proof explana-
tions on the Semantic Web. The proposed system applies defeasible logic,
a member of the non-monotonic logics family, as the underlying infer-
ence system. The proof representation schema is based on a graph-based
methodology for visualizing defeasible logic rule bases.

1 Introduction

The development of the Semantic Web proceeds in steps, building each layer on
top of the other. At this point, the highest layer of the Semantic Web is the
ontology layer, while research starts focusing on the development of the next
layers, the logic and proof layers. The implementation of these two layers is very
critical, since they will allow the systems to infer new knowledge by applying
principles on the existing data, explaining their actions, sources and beliefs.

Recent trends of research focus mainly on the integration of rules and ontolo-
gies, which is achieved with Description Logic Programs (DLPs) [I], [2], [3] or
with rule languages like TRIPLE [4] and SWRL [5]. Another interesting research
effort involves the standardization of rules for the Semantic Web, which includes
the RuleML Markup Initiative [6] and the Rule Interchange Format (RIF) W3C
Working Group.

Recently research has been shifted towards the study of non-monotonic sys-
tems capable of handling conflicts among rules and reasoning with partial infor-
mation. Some recently developed non-monotonic rule systems for the Semantic
Web are:
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1. DR-Prolog [7] is a system that implements the entire framework of Defeasible
Logic, and is thus able to reason with: monotonic and nonmonotonic rules,
preferences among rules, RDF data and RDFS ontologies. It is syntactically
compatible with RuleML, and is implemented by transforming information
into Prolog.

2. DR-DEVICE [§] is also a defeasible reasoning system for the Semantic Web.
It is implemented in CLIPS, and integrates well with RuleML and RDF.

3. SweetJess [0] implements defeasible reasoning through the use of situated
courteous logic programs. It is implemented in Jess, and allows for proce-
dural attachments, a feature not supported by any of the aforementioned
implementations.

4. dlvhex [I0] is based on dl-programs, which realize a transparent integration
of rules and ontologies using answer-set semantics.

As for the proof layer of the Semantic Web, it has not yet received enough
attention, although it can play a vital role in the eventual acceptance of the
Semantic Web on behalf of the end-users. More specifically, for a Semantic Web
system to be reliable, explanations and/or justifications of the derived answers
must be provided. Since the answer is the result of a reasoning process, the
justification can be given as a derivation of the conclusion with the sources of
information for the various steps. On the other hand, given a reasoning system is
able to provide solid proof explanations, it is important to choose an effective and
fully expressive representation of the proof to facilitate agent communication.

In this work we describe a system for visualizing proof explanations on the
Semantic Web. The proposed system is based on the implementation presented
in [T1], [12], which uses defeasible logic [I3], a member of the non-monotonic log-
ics family, as the underlying inference system. The proof representation schema
adopted by our approach is based on [I4], a graph-based methodology for visu-
alizing defeasible logic rule bases.

The rest of the paper is organized as follows: Section 2] presents the basic no-
tions of defeasible logics, focusing on its proof theory. The next section discusses
the approach followed for generating and representing visualizations of proofs in
defeasible logic, accompanied by an example that better illustrates our method-
ology. The paper ends with a final section that features concluding remarks and
poses directions for future research and improvements.

2 Defeasible Logics

2.1 Basics

Defeasible logics is a simple rule-based approach to reasoning with incomplete
and inconsistent information. It is suitable to model situations where there exist
rules and exceptions by allowing conflicting rules. A superiority relation is used
to resolve contradictions among rules and preserve consistency. Formally, a de-
feasible theory is a triple (F, R, >) where F is a set of literals, R is a finite set
of rules and > is a superiority relation on R. There are three kinds of rules:
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— Strict rules denoted A — p represent rules in the deductive sense. That
is, if the premises of the rule are indisputable, the supported literal holds
indisputably as well.

— Defeasible rules denoted A = p represent rules that can be defeated by
contradicting evidence. That is, when the premises of the rule hold, the
conclusion of the rule holds as well unless there exist stronger conflicting
evidence.

— Defeaters denoted A ~~ p and are used to defeat some defeasible rules by
supporting conflicting evidence.

A superiority relation is an acyclic relation > on R that imposes a partial
ordering among elements in R. Given two rules r; and ro, if 71 > 79, we say that
r1 is superior to ro and ro is inferior to ry.

2.2 Proof Theory
A conclusion in D is a tagged literal and may have one of the following form:

— +Agq, meaning q is definitely provable in D.
— +0dq, meaning q is defeasibly provable in D.
— —Aq, meaning ¢ has proved to be not definitely provable in D.
— —0dq, meaning q has proved to be not defeasibly provable in D.

In order to prove that a literal is definitely provable, we need to establish a proof
for ¢ in the classical sense, that is, a proof consisting of facts and strict rules
only, and no other matters need to be taken into consideration.

Whenever a literal is definitely provable, it is also defeasibly provable. In that
case the defeasible proof for ¢ coincides with the definite proof. Otherwise, in
order to prove g defeasibly in D we must find a strict or defeasible rule supporting
q that can be applied. In addition, we must also make sure that the specified
proof is not overridden by contradicting evidence. Therefore, we must first make
sure that the negation of ¢ is not definitely provable in D. Sequentially, we must
consider every rule that is not known to be inapplicable and has head ~ ¢. For
each such rule s we require that there is a counterattacking rule ¢ with head ¢
with the following properties:

— t must be applicable at this point.
— t must be stronger than s.

To prove that ¢ is not definitely provable in D, ¢ must not be fact, and every
strict rule supporting ¢ must be known to be inapplicable.

If a literal ¢ is proved to be not definitely provable, it is also proved to be not
defeasibly provable. Otherwise , in order to prove that a literal is not defeasibly
provable we first make sure it is not definitely provable. In addition, one of the
following conditions must hold:

— None of the rules with head q can be applied
— ~ ¢ is definitely provable
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— There is an applicable rule r with head ~ ¢ such that no possibly applicable
rule s with head ¢ is superior to 7.

A system attempting to provide a graphical representation of a proof explanation
based on defeasible reasoning must incorporate all of the aforementioned cases.
The challenge of visualizing such a proof explanation lies in the non-monotonicity
of the theory that increases the complexity of a well-established proof explana-
tion in comparison to classic, deductive logics. The system developed is described
in more detail in the following section.

3 Method

3.1 Tree—Based Proof Explanation in XML

In order to perform reasoning over a defeasible theory and to provide visualiza-
tion of respective proofs we used a system proposed in [I], [12]. This approach
is based on a translation of a defeasible theory into a logic metaprogram as is
defined in [I5], [I6], that works in conjunction with the logic programming sys-
tem XSB to support defeasible reasoning. When queried upon a literal, XSB
produces a trace of all the successful and unsuccessful paths of the proof ex-
planation. The trace tree is pruned to keep only the necessary information of
every proof tree, and the pruned proof explanation is then expressed in XML, a
meta-language widely used in the Semantic Web.

In their XML schema, they used a similar syntax to RuleML to represent Facts
and Rules. Atom element which refers to an atomic formula is used consisting of
two elements, an operator element (Op) and a finite set of Variable (Var) or/and
Individual constant elements (Ind), preceded optionally by a not statement (in
case representation of a negative literal is required). A Fact consists of an Atom
that comprises certain knowledge. The last primitive entity of the schema is
Rule. In defeasible logic, distinction between two kinds of Rules is provided:
Strict Rules and Defeasible Rules. In the proposed schema every kind of rule is
noted with a different element. Both kind of rules consist of two parts, the Head
element which constitutes of an Atom element, and the Body element which
constitutes of a number of Atom elements.

<xsd:element name = "Atom">
<xsd:complexType>
<xsd:choice>

<xsd:sequence>
<xsd:element name= "QOp"/>

<xsd:sequence minOccurs = "0" maxOccurs = "unbounded">
<xsd:element name= "Var" minOccurs = "0"/>
<xsd:element name ="Ind" minOccurs = "0"/>

</xsd:sequence>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="Not">
<xsd:complexType>
<xsd:sequence>
<xsd:element name= "Op"/>
<xsd:sequence minOccurs = "0" maxOccurs = "unbounded">
<xsd:element name= "Var" minOccurs = "0"/>
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<xsd:element name ="Ind" minOccurs = "0"/>
</xsd:sequence>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
</xsd:sequence>

</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Strict_rule">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Head"/>
<xsd:element ref= "Body"/>
</xsd:sequence>
<xsd:attribute name = "Label" type = "xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Defeasible_rule">
<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref= "Head"/>
<xsd:element ref= "Body"/>
</xsd:sequence>
<xsd:attribute name = "Label" type ="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>

<xsd:element name= "Head">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Atom"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name= "Body">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Atom" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name= "Fact">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Atom"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Different elements exists also for each type of proof. More specifically, the
Definitely provable element consists of the Atom to be proven and its Definite
proof, while the Definite proof itself consists either of a Strict rule supporting
the Atom to be proven with the respective definite proof for each literal in the
rule’s body. In case the literal in question is a fact the Definite proof consists
solely of the corresponding Fact element. The Not Definitely provable element
consists of the Atom in question and its Not Definite proof. The Not Definite
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proof consists of all possible strict rules that support the literal in question and
the reason they are blocked (Blocked element).

<xsd:element name = "Definitely_provable" >
<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Definite_Proof" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Definite_Proof">
<xsd:complexType>
<xsd:choice>
<xsd:sequence>
<xsd:element ref= "Strict_rule"/>
<xsd:element ref= "Definitely_provable" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:element ref= "Fact"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Not_Definitely_provable">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Not_Definite_Proof" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Not_Definite_Proof">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Blocked">
<xsd:complexType>
<xsd:choice>
<xsd:sequence>
<xsd:element ref="Defeasible_rule"/>
<xsd:choice>
<xsd:element ref=“Superior"/>
<xsd:element ref="Not_Defeasibly_provable" />
</xsd:choice>
</xsd:sequence>
<xsd:sequence>
<xsd:element ref="Strict_rule"/>
<xsd:element ref= "Not_Definitely_provable"/>
</xsd:sequence>
<xsd:element name="Not_Superior">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Defeasible_rule"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
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A Defeasibly provable element consists of the Atom to be proven and its
Defeasible proof. The Defeasible proof consists of the applicable rule supporting
the Atom to be proven and its Defeasible proof, followed by a Not Definitely
provable element concerning the negation of Atom, and a sequence of Blocked
elements for every rule that is not known to be inapplicable and has head the
negation of the Atom in question.

<xsd:element name = "Defeasibly_provable" >
<xsd:complexType>
<xsd:choice>
<xsd:element ref="Definitely_provable"/>
<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Defeasible_Proof" />
</xsd:sequence>
</xsd:choice>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Defeasible_Proof">
<xsd:complexType>
<xsd:sequence>
<xsd:choice>
<xsd:element ref= "Strict_rule"/>
<xsd:element ref= "Defeasible_rule"/>
</xsd:choice>
<xsd:element ref="Defeasibly_provable" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="Not_Definitely_provable"/>
<xsd:element ref="Blocked" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

A Not Defeasibly provable element consists of the Atom in question and its Not
Defeasible proof. The Not Defeasible proof consists of the Not Definitely provable
element for the Atom in question and either a sequence of Blocked elements for
every rule with head the Atom in question and the reason they cannot be applied,
or a Definitely provable element for the negation of the Atom, or by the element
Undefeated providing an applicable rule r with head the negation of Atom in
question such that no possibly applicable rule s with head the specified Atom is
superior to 7.

<xsd:element name = "Superior">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Defeasible_rule"/>
<xsd:element ref="Defeasibly_provable" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Not_Defeasibly_provable">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "Atom" />
<xsd:element ref = "Not_Defeasible_Proof" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name = "Not_Defeasible_Proof">
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<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Not_Definitely_provable“/>
<xsd:choice>
<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="Definitely_provable"/>
<xsd:element ref="Undefeated"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="Undefeated">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref= "Defeasible_rule"/>
<xsd:element ref="Defeasibly_provable" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref= "Blocked" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

3.2 XML Proof Processing

Visualizing a proof explanation requires information about its structure, which
must be extracted from the XML document, produced by the system [I1],
[12] based on the aforementioned XSD Schema. Due to the recursiveness of
the xsd, an Recursive Descent Parser (RDP) was implemented. An RDP is a
top-down parser built from a set of mutually-recursive procedures (or a non-
recursive equivalent) where each such procedure usually implements one of the
production rules of the grammar. Thus the structure of the resulting program
closely mirrors that of the grammar it recognizes. In our system, the RDP parses
the XML document with the assistance of Xerces, the Open Source Apache
project’s XML parser, and stores the main proof as well as each secondary
proof in a different tree—shape structure. Each such structure holds the informa-
tion required to represent the corresponding proof explanation, i.e. the sequence
of rules participating in the proof. For each rule the following information is
held:

the name

— the type (definite or defeasible)

the head

the body

— the names of the attacking rules that could defeat it — if such rules exist,
or whether the rule is undefeated.

After parsing the XML document and keeping all the appropriate information,
the visualization of every proof takes place. In order to visualize every proof,
since we consider it has a tree—shape structure, we need to evaluate the height
of each node of the proof in the tree. Each node is considered to be either an
atom that participates in the body or the head of some rule or the rule itself.
For the visualization of the components of the rules , we used the library of [14]
which renders each node and the connections between them.
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In their approach the digraph representation contains two kinds of nodes:

— literals, represented by rectangles, which they call literal boxes
— rules, represented by circles

Each literal box consists of two adjacent atomic formula boxes, with the upper
one of them representing a positive atomic formula and the lower one represent-
ing a negated atomic formula.

3.3 Visualization

Definite Proofs. A definite proof is the simplest case of proof explanation.
Such a proof consists either of a fact of the literal in question or of a sequence
of Strict Rules that fire proving the literal in question.

Not Definite Proofs. A not-definite proof consists of a sequence of proof
explanations. Each proof explanation shows why the Strict Rules with head
equal to the negation of the literal in question do not fire.

Defeasible Proofs. As mentioned above, a literal is defeasibly provable either
if it is already definitely provable or the defeasible part needs to be argued upon.
In case the literal is definitely provable, the proof is visualized as described in
section B3l Otherwise, in order to produce a fully descriptive visualization of
a defeasible proof faithful to the reasoning referred to above, several parts are
included in the graphic:

1. The main proof, i.e. the sequence of defeasible or definite rules supporting
the literal in question.

2. A not definite proof for the negation of the literal in question.

3. A series of not defeasible proofs for every rule attempting to prove the nega-
tion of the literal in question. If the specified rule does not fire, the proof
consists of a chain of rules supporting a literal in the rule’s body that is
not provable. Otherwise, if the rule fires but is defeated by a superior ap-
plicable counterattacking rule, the proof consists of both the chain of rules
proving the negation of the literal and the chain of rules proving the literal
in question, and the superiority relation is displayed verbally.

Seperate proofs are visualized in seperate tabs in the graphic.

Not Defeasible Proofs. As described in section 2] a series of conditions must
hold in order for a literal to be not defeasibly provable. The visualization of a
Non Defeasible Proof consists of two parts:

1. The visualization of the Not Definite Proof for the specified literal.

2. If the literal is not defeasibly provable because all rules that support it do
not fire, a Not Defeasible Proof for each such rule is visualized in a seperate
tab. If the negation of the literal is definitely provable, then a seperate tab
visualizing the Definite Proof is included in the graphic. Otherwise, if there
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¥ 2 Proo alization [ Homealgkirezau/Deck
tabl | tab2 | tab3

not PayHECS(Sofia) is supported by rule r4 with body Student(Sofia), PayFOPS(Sofia). Student(Sofia) Is fact. PayFOPS(Sofia)
is supported by rule rl with body Student(Sofia), Overseas(Sofia). Student(Sofia) Is fact. Overseas(Sofia) is fact.

Fact Owverseas —!

PayFOPS

Stuclent
Fact

=

PayHECS

Student
Fact

=

Fig. 1. The main defeasible proof of ~payHECS(Sofia)

exists an undefeated rule supporting the negation of the literal, the corre-
sponding Defeasible Proof is included in the graphic, and a series of Not
Defeasible Proofs for each counterattacking rule with a not defeasibly prov-
able body on separate tabs. Rules that fail to fire because they are defeated
by the undefeated rule appear on seperate tabs as well, and the superiority
relationship is expressed verbally.

3.4 Example

To demonstrate our tool, we are using as an example a subset of the knowledge
base given in [I7], modelling part of the Griffith University guidelines on fees.
In particular, we consider the following rules:

— r1: student(X), overseas(X) =payFPOS(X)

— 79: student(X), overseas(X), exchange(X) =~ payFPOS(X)
— 7r3: student(X) = payHECS(X)

— r4: student(X), payFPOS(X) =~payHECS(X)

— T4 >T3

The rules represent the following policy:
Overseas students generally pay Overseas Students Fee (FPOS),unless they come
from an international exchanged program. All students pay the Higher Education
Contribution Scheme (HECS), apart from students who pay FPOS.
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tabl |[tab2 | tab3

not PayFOPS(Sofia) is supported by rule r2 with body Student(Sofia), Exchange(Sofia), Overseas(Sofia).
Exchange(Sofia) is not a fact.

Owverseas —

| sisatia N

PayFoPs

Student 5
L | isarap—

I (Sofial) — 2

Exchange
Not fact g

I (Sofial) —

il I Il ] »

Fig. 2. A not definite proof for the negation of the literal payFPOS(Sofia), due to the
recursiveness of defeasible proof

Suppose we have an overseas student named Sofia and we want to query upon
whether she has to pay HECS or not. Our knowledge base now comprises of the
aforementioned rules in addition to the following facts:

— student(Sofia)
— overseas(Sofia)

~payHECS(Sofia) is defeasibly provable, since rule r; fires establishing the
literal payFPOS(Sofia). Therefore, rule r4 fires supporting payHECS(Sofia).
The first tab of the GUI (FigurdIl) illustrates this sequence of applicable rules.
The tree—shaped structure of the proof is achieved with the duplication of the re-
quired nodes(literals), leading to a more easy reading form of visualization. Rule
9 supporting ~payFPOS(Sofia)) does not fire, since Sofia is not an exchange stu-
dent in our knowledge base. This is demonstrated in the second tab of of our GUI
( Figure ). Rule r3 supportingpayHECS(Sofia) fires, but loses due to superior-
ity relation. This renders on the third tab of the GUI (Figure [3)). The seperate
components of this proof are also presented verbally at the top of each tab. As we
mentioned in section[3.3] the superiority relationships are presented only verbally.
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1
»
X

tabl [ tab2 | tab3 |

PayHECS(S0fia) Is supported by rule r3 with body Student(Sofia). Rule rd is superior to rule r3. not PayHECS(Sofia)
is supported by rule rd with body Student(Sofia), PayFOPS(Sofia).

PayFOPS -

FayHECS
B

Student

(Sofial)

Student PayHECS

E (Sofial) } ’E (Sofial) }

W

ST

4| 1

Fig. 3. The not defeasible proof for the rule r3, which is attempting to prove the
negation of the literal in question, payHECS(Sofia)

4 Conclusions and Future Work

This paper attempts to fill the apparent gap in the development of the proof
layer of the Semantic Web, by presenting a system for visualizing proofs in the
Semantic Web environment. The proposed system uses defeasible logic as the un-
derlying inference system and its adopted proof representation schema is based
on enhanced directed graphs that feature a variety of node and connection types
for expressing the necessary elements of the defeasible logic proof theory. More
specifically, the system offers the capability of visualizing both definite (facts
and strict rules only) and non-definite proofs (sequence of proof explanations
that show why strict rules with head equal to the negation of the literal in ques-
tion do not fire) as well as defeasible (either definitely provable or the defeasible
part needs to be argued upon) and non-defeasible proofs (not definitely provable
plus some additional conditions). Section 2 provides a deeper insight on defea-
sible logic proof theory. An example was also provided that demonstrates the
representational capabilities of the proposed implementation.

As for future directions, there is still room for improvement. The visual rep-
resentation should incorporate some further elements of defeasible reasoning,
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like the superiority relationship, which is currently only displayed verbally. Addi-
tionally, the proposed software tool should undergo a thorough user evaluation,
in order to assess the degree of expressiveness it offers and whether the de-
rived proof visualizations are indeed more comprehensible than the XML-based
proofs. An interesting idea would also involve the integration into the system
of a visual defeasible theory representation tool, like the one presented in [IS§].
Then, users would have the ability of (visually) querying the system regarding
the proof status of every literal in the rule base and observe a visualization of
the corresponding proof trace.
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