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Abstract—The figures found in biomedical literature are
a vital part of biomedical research, education and clinical
decision. The multitude of their modalities and the lack of
corresponding meta-data, constitute search and information
retrieval a difficult task. We present multi-label modality
classification approaches for biomedical figures. In particular,
we investigate using both simple and compound figures for
training a multi-label model to be used for annotating either
all figures, or only those predicted as compound by an initial
compound figure detection model. Using data from the medical
task of ImageCLEF 2016, we train our approaches with visual
features and compare them with the standard approach involv-
ing compound figure separation into sub-figures. Furthermore,
we present a web application for medical figure retrieval, which
is based on one of our classification approaches and allows
users to search for figures of PubMed Central.
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I. INTRODUCTION

Nowadays, a large amount of biomedical figures is pub-
licly available within open access scientific articles. PubMed
Centraﬂ (PMC), the open access subset of PubMed, contains
more than 4 million articles and is growing at a rapid pace;
200,000 articles were added in 2014 alone [1]. The figures
of these articles can be retrieved through Web interfaces
and APIs along with the full-text. However, the lack of
associated meta-data, besides the captions, hinders the fulfill-
ment of richer information needs of biomedical researchers,
practitioners and educators. The modality of a figure (e.g.
angiography, microscopy), in particular, is a very helpful
kind of meta-data for medical retrieval [2], [3], [4].

About 40% of the figures in PMC are compound, compris-
ing two or more sub-figures in a multi-panel format [5]. Fig-
ure [I] is an example of a compound figure comprising three
sub-figures: one graph and two obtained through magnetic
resonance imaging. The standard approach to biomedical
figure modality classification first uses a binary model to
recognize whether the figure is compound or not. If the
figure is simple, then a multi-class model is used to predict
its modality. If it is compound, then a figure separation
algorithm is first invoked to split it into its constituent sub-
figures [6], [7], [8]. Then a multi-class model is used to
predict the modality of each sub-figure.

Uhttp://www.ncbi.nlm.nih.gov/pmc/
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Figure 1. A compound figure comprising 3 sub-figures: one graph
(lower part) and two obtained via magnetic resonance imaging (upper
part). Adapted from "A review of imaging techniques for systems biology.",
Kherlopian, Armen R., et al. BMC systems biology 2.1 (2008): 74.

Figure separation is not perfect. In the last two Image-
CLEF benchmarks (2015, 2016), the best figure separation
accuracy, which is based on the overlap between predicted
and ground truth sub-figures [9], reached approximately
85%. Errors in figure separation propagate to the multi-class
model that predicts the modality of the detected sub-figures,
harming the overall accuracy in modality classification of
compound figures. In addition, classifying sub-figures iso-
lated from their context (the original compound figure they
belong to) can lead to information loss, as certain types of
modalities might be correlated in compound figures. This
is why recently, multi-label classification approaches have
been investigated for classifying the modalities of compound
figures [S], [1O[, [, [111.

This paper focuses on using multi-label learning for
recognizing the image modalities that characterize a (poten-
tially compound) biomedical figure. It empirically compares
the standard approach, based on figure separation, with a
number of multi-label learning approaches encompassing
novel design elements, such as: (i) using both simple and
compound figures for training a multi-label model, and (ii)
doing without an initial compound figure detection model.
Finally, this paper describes a publicly available information
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Figure 3. Prediction with the standard multi-label approach.

retrieval system that runs on top of PMC and incorporates
the best model discovered via our empirical work.

The rest of the paper is organized as follows. Section
[ presents our multi-label learning approaches and out-
lines their differences from past work. Section [[TI] describes
the available data and discusses the evaluation of our ap-
proaches. Our medical figure retrieval system is described
in Section [[V] and final conclusions along with future work
are drawn in Section [V]

II. MULTI-LABEL MODALITY CLASSIFICATION

At first glance, employing multi-label learning for clas-
sifying biomedical figures by modality appears simple. The
main idea is to change the compound figure classification
part of the standard approach from using a figure separation
module followed by a multi-class model to using a multi-
label model trained on compound figures. Training and pre-
diction with this standard multi-label approach is depicted
in Figures [2] and [3] respectively.

However, this simple approach forgoes the use of simple
figures as training examples for the multi-label model. After
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Figure 4. Training and prediction with the simple multi-label approach.
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Figure 5. Training with the extended multi-label approach.

all, simple figures can be considered as multi-label training
examples annotated with only one label. On one hand,
simple figures are fundamentally different from compound
ones and putting them all in the same model might require a
more complex learning model. On the other hand, exploiting
the simple figures for training the multi-label model can
increase its discrimination capability for modalities that are
under-represented in the set of compound figures.

Therefore, a different and simpler approach we consider
here is to learn a single multi-label model from both com-
pound and non-compound figures, essentially treating the
latter as multi-label examples with just a single label. Train-
ing and prediction with this simple multi-label approach is
depicted in Figure @]

Another approach we consider here concerns replacing the
multi-label model of the standard multi-label approach with
that of the simple multi-label approach. In other words, we
use both compound and non-compound figures for training
the multi-label model in the standard multi-label approach.
Training with this extended multi-label approach is depicted
in Figure 5| Prediction remains the same, as depicted in



Figure 3} only figures predicted by the binary model as
compound are passed on to the multi-label model.

Past work on multi-label classification of biomedical
figures by modality sprung out of the medical task of
ImageCLEF 2015 and 2016, where multi-label classification
of compound figures was introduced as a sub-task [3], [L]. In
particular, two groups participated in this sub-task in 2015
and another two groups in 2016 (one of them was our group).
All these works [3]], [10], [L], [L1] focused solely on multi-
label classification of compound figures and did not look at
the alternative architectures we discuss here, which take into
consideration non-compound figures too, in order to address
the full real-world problem of classifying figures (be they
compound or non-compound) from open-access biomedical
literature. None of these works attempted a comparison with
the standard process of figure separation followed by the
invocation of a multi-class model per sub-figure.

III. EMPIRICAL STUDY

This section initially describes the data we used for
our empirical study and gives details about the evaluation
process we followed and about the base learning algorithms
we used underneath our approaches. It then presents and
discusses the evaluation results of the different approaches
for classifying biomedical figures by modality.

A. Data

We experimented with the development set distributed for
the medical task of ImageCLEF 2016%} The data contain
20,985 figures in JPEG format, of which 12,338 (59%)
are compound and 8,647 (41%) non-compound. 1,568 fig-
ures (13%) of the set of compound figures are further
annotated with one or more classes out of a hierarchy of
30 modality classes (see Figure [6), which refer to types
of diagnostic images (radiology, visible light photography,
printed signals/waves, microscopy, 3D reconstructions) and
biomedical illustrations. This hierarchy is a minor extension
of the hierarchy used in [12]], where a class representing
compound figures was also present. Finally, the organizers
of the medical task of ImageCLEF 2016 further provide the
6,776 sub-figures of these 1,568 compound figures, along
with their annotation with one of the 30 classes of the
hierarchy of Figure [6]

As we mentioned in Section [, about 40% (60%) of the
available figures in PMC are compound (simple). However,
the medical task of ImageCLEF 2016 did not provide
annotations for the 8,647 non-compound figures it delivered.
Therefore, in order to simulate a training set following the
distribution of PMC, we adopt the following process. We
work with the 1,568 compound figures only, keeping 40%
of them as they are and replacing the rest of them with
their respective sub-figures, which assume the role of non-
compound figures.

Zhttp://www.imageclef.org/2016/medical

We extract visual features from the JPEG file of each
compound and simulated non-compound figure using the
Caffe framework [13]]. For each figure, 4,096 features were
extracted via the fc7 (inner product or fully connected) level.
Every feature is a non-negative number with 9 decimals. We
used the BVLC CaffeNet Modeﬂ which is a replication of
the model described in [14] and has been trained with 1.2
million high-resolution images.

B. Learning Algorithms and Evaluation Process

We employ linear support vector machines (SVMs) from
the scikit-learn libraryE] to learn all models [15]]. We use de-
fault parameter settings (cost parameter equal to 1, squared
hinge loss function, L2 penalization). The one-vs-rest trans-
formation was used to decompose the multi-class learn-
ing problem into multiple binary classification tasks, and
similarly the binary relevance transformation was used to
decompose the multi-label learning problem [16]].

All approaches were evaluated using 10-fold cross vali-
dation. We first split the 1,568 figures into 10 equally sized
disjoint subsets and then we apply the process discussed in
the 2nd paragraph of Section separately at each fold.
This ensures that sub-figures of the same figure stay within
the same fold in order to avoid information leakage from a
training to a test set. We use the approach described in [17]
to avoid biased cross-validated results.

We use micro- and macro-averaging to compute binary
evaluation metrics, such as recall, precision and f-measure,
across all classes (labels) in the multi-class (multi-label)
tasks. Micro-averaging calculates metrics globally by count-
ing all true positives, false negatives and false positives,
while macro-averaging calculates metrics per class/label
and then takes the mean across all classes/labels. In the
multi-label task, we further use samples-averaging, which
calculates metrics per instance and then takes the mean
across all instances.

C. Results

Table [ shows the micro-, macro- and samples-averaged
F-measure for the standard, simple and extended multi-label
approaches and for the standard approach assuming perfect
figure separation into sub-figures.

We first notice that the simple multi-label approach is the
worst of all, highlighting the importance of having a com-
pound figure detection model. The standard and extended
multi-label approaches have similar micro- and samples-
averaged F-measure, but the extended one leads to slightly
higher macro-averaged F-measure. These results appear to
be in alignment with our hypothesis that using additional
training examples can boost the discrimination capability in
rare modality classes, as macro-averaging treats all labels

3https://git.io/v484G
4http://scikit-learn.org/
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Figure 6. Hierarchy of 30 modality classes concerning various types of diagnostic images and generic biomedical illustrations.

equivalently, while the contribution of each label in micro-
and samples-averaging is proportional to its frequency.

To further look into this issue, we studied the per class F-
measure in the standard multi-label and extended multi-label
approaches. We did not find consistent improvements across
classes, as for 8 (12) classes the F-measure was better with
the standard (extended) multi-label approach, and for 10
classes the F-measure did not change between approaches.
In 7 out of the latter 10 classes the F-measure was actually
zero and this was due to the very small number of training
examples (less than 5 examples).

We looked at potential correlations that could explain
the per class difference in F-measure between the two
approaches, with the first hypothesis concerning the fre-
quency of the classes. However, we found only a negligible
correlation (r =~ —0.1). The strongest correlation we found,
still only a small one (r = —0.35), concerned the F-measure
of the standard approach. This appears to be intuitively
meaningful, as the more difficult the learning task (low
standard multi-label F-measure), the higher the potential
for improvement by obtaining additional training examples
through the extended multi-label approach. In the process,
we also computed another quantity: the mean cardinality of
the multi-label examples of each class, where cardinality
is the number of different labels of a multi-label example

Table 1
RESULTS COMPARING THE FOUR APPROACHES
F-measure .
Macro Micro Samples
Approach
Standard 0.3569 0.7786 0.7912
Standard multi-label 0.3270 0.7667 0.7726
Simple multi-label 0.3139 0.7581 0.7215
Extended multi-label 0.3309 0.7666 0.7728

[16]. Intuitively, this should be correlated with the difficulty
of recognizing a class, as the higher its mean cardinality,
the higher the number of sub-figures of different modality
appear in the same figure. Indeed mean cardinality has a
moderate correlation (r ~ —0.6) with the F-measure of
a class. Table [II| shows frequencies, f-measures and mean
cardinality for the 5 classes with highest improvement (upper
part) and deterioration (lower part) of the F-measure when
switching from the standard to the extended multi-label
approach.

We also notice that the standard approach achieves the
best results in all measures. However, the differences with
the extended multi-label approach are quite small. This is
very encouraging for the extended multi-label approach,
given that we assumed a perfect separation of compound



Table 11
TOP-5 IMPROVED AND TOP-5 DETERIORATED CLASSES WHEN
SWITCHING FROM THE STANDARD (STD) TO THE EXTENDED (EXT)
MULTI-LABEL APPROACH

Class Card F-measure Frequency

Std Ext Std Ext

Screenshot 1.8 0.1571 | 0.2024 7.6 23.4
Combination 2.29 0.19 0.22 49 27.9
Other Organs 2.1 0.1244 | 0.1431 | 11.5 | 44.6
System Overview 231 | 0.1761 | 0.1994 | 24.7 70.2
Gene sequence 2 0.3495 | 0.3816 | 36.8 | 124.3
Ultrasound 1.75 | 0.3833 | 0.3333 7.1 18.5
Endoscopy 1.91 0.32 0.2867 6.1 12.6

Hand-drawn 2.11 | 0.3258 | 0.3147 | 27.1 95
Transmission 2.01 0.5516 | 0.5401 | 38.2 | 2109
Tomography 2.06 | 03817 | 0.3765 | 14.6 36.5

Table III

RESULTS FOR THE COMPOUND FIGURE DETECTION MODEL

) Class Compound Simple
Metric

Recall 0.8016 0.9749

Precision 0.8306 0.9697

F-measure 0.8158 0.9723
Balanced Accuracy 0.8883
G-mean 0.9407

Table IV

RESULTS FOR THE MULTI-CLASS MODEL

Metric Macro Micro
Recall 0.3958
Precision 0.4212 | 0.7954
F-measure 0.4081

figures into sub-figures. We must also consider that the
multi-label models were built with the basic binary rele-
vance approach that treats labels independently. Much more
elaborate approaches exist in the literature that take label
relationships into account and lead to improved results
compared to binary relevance [16]].

Table [III| shows per class recall, precision and F-measure
of the binary compound figure detection model, common
in the standard, standard multi-label and extended multi-
label approaches. The last two rows of the table show the
balanced accuracy and the G-mean of this model. We notice
that this model is quite accurate and this offers additional
evidence in favor of using such an initial model for modality
classification of biomedical figures.

For completeness, Table shows average recall, preci-
sion and F-measure of the multi-class model common in
the standard, standard multi-label and extended multi-label
approaches, estimated based on the simple figures of our
data set (sub-figures of the 60% of the compound figures).

IV. THE MEDIEVAL SYSTEM

This section describes the Web application we have devel-
oped for MEDical figure retrIEVAL, dubbed MEDIEVAIE}
Users can search for PMC figures by entering a text query to
be matched against the caption of each figure. MEDIEVAL
allows filtering the results by modality, by letting the users
select the modalities they are interested in. Figures are
sorted according to the similarity of their caption with the
text query. Users can see the image and caption of each
retrieved figure and navigate to the PMC article containing
it. The front-end of MEDIEVAL has been developed with
the Angular] Sﬂ JavaScript framework.

MEDIEVAL retrieves articles from PMC using the PMC-
OA]E] service and extracts the figures. For each figure, it
first extracts visual features and then classifies the modality
using the extended multi-label approach, with constituent
models trained on the full training set of 1,568 compound
figures except for the binary classification model. The latter
model was trained on the 20,985 figures data set, primarily
because it is much larger and secondarily because PMC
consists of actual non-compound figures and not sub-figures.
The modality predictions (ground truth for the training set)
along with the figure’s caption, unique PMC ID, URL and
useful information about the corresponding articles (i.e., the
article’s unique PMC ID, title and URL) are stored in a Solr
search platfomﬂ that powers the back-end of our system.
MEDIEVAL visits PMC weekly to retrieve new articles.

V. CONCLUSION AND FUTURE WORK

This work discussed the use of multi-label learning mod-
els in the modality classification task of figures found in
biomedical literature. We investigated using both simple
and compound figures for training a multi-label model to
be used for annotating either all figures, or only those
predicted as compound by an initial compound figure de-
tection model. The proposed approaches allow for a richer
modeling of the modality classification task, which not only
addresses information loss when treating compound figures
as multiple independent figures, but also addresses model
redundancy due to building separate models to classify the
same underlying modalities. The empirical study of these
approaches and their comparison with the compound figure
separation approach was based on data from the Image-
CLEF 2016 medical task and on well-established evaluation
measures and process. The extended multi-label approach
showed particularly promising results, only slightly worse
than using a perfect figure separation approach. Finally,
we implemented a Web application, which incorporates the
proposed approaches and allows users to search for PMC
figures of their preferred modality by caption.

Shttp://atypon.csd.auth.gr/medieval/
Shttps://angularjs.org/
7https://www.ncbi.nlm.nih.gov/pmc/tools/oai/
Shttp://lucene.apache.org/solr/
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In the future, we plan to investigate how textual features
fare in the task of classifying biomedical figures by modality,
both by themselves and in tandem with visual features.
Towards this, we have already experimented with multigram
representations of a figure’s caption and of the text referring
to the figure within the article, which we found to slightly
improve the results compared to using captions alone [[1]. We
achieved 88.13% accuracy in the compound figure detection
sub-task of the ImageCLEF 2016 medical task, which was
the best result for a textual only approach. We also achieved
0.32 F-measure in the multi-label classification sub-task,
which was equal to the results of the sole other group that
participated in this sub-task using a visual approach based
on deep learning and convolutional neural networks [11].

Our future plans also include an extension of MEDIEVAL
towards taking into account user feedback, to allow for
the crowdsourcing of ground truth data, which can then
be used to improve the underlying models. Users will be
able to give feedback for particular figures returned to them
during their search sessions, but we will also employ active
learning techniques to explicitly request the feedback that
will mostly benefit the system. We will further add a gam-
ification component with a leader-board of weekly/monthly
top contributors, which is expected to lead to increased user
engagement.
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