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Abstract— The figures found in biomedical literature are
a vital part of biomedical research, education and clinical
decision. The multitude of their modalities and the lack of
corresponding meta-data, constitute search and informa-
tion retrieval a difficult task. We introduce novel multi-label
modality classification approaches for biomedical figures
without segmenting the compound figures. In particular,
we investigate using both simple and compound figures
for training a multi-label model to be used for annotating
either all figures or only those predicted as compound
by a compound figure detection model. Using data from
the medical task of ImageCLEF 2016, we train our ap-
proaches with visual features and compare them with the
approach involving compound figure separation into sub-
figures. Furthermore, we study how multimodal learning,
from both visual and textual features, affects the tasks of
classifying biomedical figures by modality and detecting
compound figures. Finally, we present a web application
for medical figure retrieval, which is based on one of our
classification approaches and allows users to search for
figures of PubMed Central from any device and provide
feedback about the modality of a figure classified by the
system.

Index Terms— Biomedical images, Image classification,
Image retrieval, Modality classification, Multi-label learning,
Supervised learning, Text mining

I. INTRODUCTION

NOWADAYS, a large amount of biomedical figures is
publicly available within open access scientific articles.

PubMed Central1 (PMC), the open access subset of PubMed,
contains 4.7 million articles and is growing at a rapid pace;
489,727 articles were added in 2017. The figures of these
articles can be retrieved through Web interfaces and APIs
along with the full-text. However, the lack of associated meta-
data, besides the captions, hinders the fulfillment of richer
information needs of biomedical researchers, practitioners,
educators and even patients. The modality of a figure (e.g.
angiography, microscopy), in particular, is a very helpful kind
of meta-data for medical retrieval [1]–[3].
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Fig. 1. A compound figure comprising 3 sub-figures: one graph (lower
part) and two obtained via magnetic resonance imaging (upper part).
Adapted from ”A review of imaging techniques for systems biology.”,
Kherlopian, Armen R., et al. BMC systems biology 2.1 (2008): 74.

About 40% of the figures in PMC are compound, com-
prising two or more sub-figures in a multi-panel format [4].
Fig. (1) is an example of a compound figure comprising three
sub-figures: one graph and two obtained through magnetic
resonance imaging. The figure separation approach to biomed-
ical figure modality classification first uses a binary model
to recognize whether the figure is compound or not. If the
figure is not compound, then a single-label model is used to
predict its modality. If it is compound, then a figure separation
algorithm is first invoked to split it into its constituent sub-
figures [5]–[8]. Then a single-label model is used to predict
the modality of each sub-figure. Training and prediction with
the figure separation approach are depicted in Fig. (2).

Figure separation is not perfect. Past ImageCLEF bench-
marks (2015, 2016), show that the best figure separation
accuracy, which is based on the overlap between predicted
and ground truth sub-figures [9], reached approximately 85%.
Errors in figure separation propagate to the single-label model
that predicts the modality of the detected sub-figures, harming
the overall accuracy in modality classification of compound
figures. In addition, classifying sub-figures isolated from their
context (the original compound figure they belong to) can
lead to information loss, as certain types of modalities might
be correlated in compound figures. This is why recently,
multi-label classification approaches have been investigated for
classifying the modalities of compound figures [4], [10]–[12].
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Fig. 2. Training and prediction with the figure separation approach.

This article focuses on using multi-label learning for rec-
ognizing the modalities that characterize a (potentially com-
pound) biomedical figure without using a figure separation
algorithm. We conducted an experimental comparison of the
figure separation approach with a number of multi-label learn-
ing approaches encompassing novel design elements, such as:
(i) using both simple and compound figures for training a
multi-label model and (ii) discarding the compound figure
detection model from the prediction process. In addition, we
examine the performance of visual, textual and multimodal
approaches to learning compound figure detection and multi-
label classification models. Finally, we describe a publicly
available figure retrieval system that runs on top of PMC and
incorporates our best modality classification approach.

We envisage the combination of information and knowledge
from millions of open-access scientific articles (big data), such
as figures and their meta-data, with individual patient data
coming from small wearable or disposable sensors (small
things) [13], [14] to lead to exciting personalized medical
systems and associated business models.

A preliminary version of this work, examining only the
performance of visual features and discussing an early version
of our system, was presented at the 31st IEEE International
Symposium on Computer-Based Medical Systems [15].

The rest of this article is organized as follows. Section (II)
presents our multi-label learning approaches and outlines their
differences from past work. Section (III) describes the data,
the learning algorithms and the evaluation metrics used in
our study. Section (IV) experimentally compares the multi-
label approaches with the figure separation approach, whereas
Section (V) compares the visual, textual and multimodal
approaches. Our medical figure retrieval system is described
in Section (VI) and conclusions along with future work are
presented in Section (VII).

II. MULTI-LABEL MODALITY CLASSIFICATION

At first glance, employing multi-label learning for classify-
ing biomedical figures by modality appears simple. The main
idea is to change the compound figure classification part of
the figure separation approach in Fig. (2) from using a figure
separation module followed by a single-label model to using a
multi-label model trained on compound figures. Training and
prediction with this standard multi-label approach are depicted
in Fig. (3).

However, this approach forgoes the use of non-compound,
hereafter called simple, figures as training examples for the

Fig. 3. Training and prediction with the standard multi-label approach.

Fig. 4. Training and prediction with the simple multi-label approach.

multi-label model. After all, simple figures can be considered
as multi-label training examples annotated with only one label.
On one hand, simple figures are fundamentally different from
compound ones and putting them all in the same model might
require a more complex learning model. On the other hand,
exploiting the simple figures for training the multi-label model
can increase its discrimination capability for modalities that
are under-represented in the set of compound figures.

Therefore, a different and simpler approach we consider
here is to learn a single multi-label model from both compound
and simple figures, essentially treating the latter as multi-label
examples with just a single label. Training and prediction with
this simple multi-label approach are depicted in Fig. (4).

Another approach we consider here concerns replacing the
multi-label model of the standard multi-label approach with
that of the simple multi-label approach. In other words, we
consider using both compound and simple figures for training
the multi-label model in the standard multi-label approach.
Training and prediction with this extended multi-label ap-
proach are depicted in Fig. (5). Only figures predicted by the
binary model as compound are passed on to the multi-label
model.

Fig. 5. Training and prediction with the extended multi-label approach.
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Algorithm 1 Training steps of the four approaches presented.
Input: X - A set of figures, C - A binary vector specifying if a

figure in X is compound (1) or simple (0). |X| = |C| = n
Output: M - A set of trained models.

1: Xsimple ← {xi|xi ∈ X if ci = 0, ci ∈ C}, i = [1, . . . , n]
2: Xcompound ← {xi|xi ∈ X if ci = 1, ci ∈ C}
3: if approach == “figure separation” then
4: binary ← trainBinary(X)
5: single ← trainSingle(Xsimple)
6: return binary, single
7: else if approach == “standard multi-label” then
8: binary ← trainBinary(X)
9: single ← trainSingle(Xsimple)

10: multi ← trainMulti(xcompound)
11: return binary, single, multi
12: else if approach == “simple multi-label” then
13: multi ← trainMulti(xcompound)
14: return multi
15: else if approach == “extended multi-label” then
16: binary ← trainBinary(X)
17: single ← trainSingle(Xsimple)
18: multi ← trainMulti(X)
19: return binary, single, multi

Algorithms (1) and (2) describe, respectively, the training
and prediction steps of all the approaches presented.

Past work on multi-label classification of biomedical figures
by modality sprung out of the medical task of ImageCLEF
2015 and 2016, where multi-label classification of compound
figures was introduced as a sub-task [4], [11]. In particular,
two groups participated in this sub-task in 2015 and another
two groups in 2016 (one of them was our group). All these
works [4], [10]–[12] focused solely on multi-label classifica-
tion of compound figures and did not look at the alternative
architectures we discuss here, which take into consideration
simple figures too, in order to address the full real-world
problem of classifying figures (whether they are compound
or not) from open-access biomedical literature. None of these
works attempted a comparison with the standard process of
figure separation followed by the invocation of a single-label
model per sub-figure. None looked into exploiting both visual
and textual features.

III. MAIN ASPECTS OF OUR EXPERIMENTAL STUDIES

This section initially describes the data we used for our
experimental studies and outlines the features extracted. It then
details the base learning algorithms underlying our approaches
and the evaluation metrics we used to compare them.

A. Original Data
We experimented with the development set distributed for

the medical task of ImageCLEF 20162. The data contain
20,985 figures in JPEG format, along with their captions
and corresponding PMC article IDs, of which 12,338 (59%)

2http://www.imageclef.org/2016/medical

Algorithm 2 Prediction steps of the four approaches presented.
Input: X - Set of unclassified figures, binary - the binary

model, single - the single-label model, multi - the multi-
label model. Each model is trained with respect to the
approach as shown in Algorithm 1

Output: L: Set of binary vectors, one for each figure in X,
with the predicted modalities of the unclassified figures
X .

1: if approach == ”simple multi-label” then
2: L← multi(X)
3: else
4: C ← binary(X)
5: Xsimple ← {xi|xi ∈ X if ci = 0, ci ∈ C}, i =

[1, . . . , n]
6: Xcompound ← {xi|xi ∈ X if ci = 1, ci ∈ C}
7: if approach == “figure separation” then
8: Xsubfigures ← segmentation(Xcompound)
9: L← single(Xsimple +Xsubfigures)

10: else if approach == “standard multi-label” or ”ex-
tended multi-label” then

11: Lsimple ← single(Xsimple)
12: Lcompound ← multi(Xcompound)
13: L = Lsimple + Lcompound

14: return L

are compound and 8,647 (41%) simple. 1,568 (13%) of the
compound figures are annotated with one or more of the 30
classes of the hierarchy in Fig. (6), which refer to biomedical
illustrations and types of diagnostic images (radiology, visible
light photography, printed signals, microscopy, 3D recon-
structions). Furthermore, the 6,776 sub-figures of these 1,568
compound figures are also given along with their annotation
with one of the 30 classes of the hierarchy in Fig. (6).

B. Feature Extraction

We extract visual features from the JPEG file of each figure
and sub-figure using the Caffe framework [16]. We used the
BVLC CaffeNet deep learning model3, which is a replication
of the model described in [17] and has been trained with
1.2 million high-resolution images. For each JPEG file, 4,096
features were extracted via the fc7 (inner product or fully
connected) level.

We extract textual features from a figure’s caption and/or
the sentence, within the full-text of the figure’s article, con-
taining a reference to the figure. In specific, we compute term
frequencies of word n-grams (unigrams and bigrams) using
the TFIDFVectorizer class of scikit-learn4. Inverse document-
frequency reweighing was disabled and English stop-word
removal was used. The rest of the parameters were set to
default values.

Note that we do not extract textual features from sub-figures
since their caption is not provided. The caption of a sub-
figure can be considered as a text snippet (sub-caption) of

3https://git.io/v484G
4http://scikit-learn.org/
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Fig. 6. Hierarchy of 30 modality classes concerning various types of diagnostic images and generic biomedical illustrations.

the caption of the compound figure from which the sub-figure
was extracted. However, caption segmentation is out of the
scope of this work.

C. Learning Algorithms

We employ logistic regression to learn all models with
visual features and linear support vector machines (SVMs) for
the models with textual features. We use the scikit-learn library
and default parameter settings for both algorithms (SVM:
cost parameter equal to 1 - squared hinge loss function - L2
penalization, Logistic Regression: cost parameter equal to 1
- tolerance of 1e − 4 - L1 penalization). The One-vs-Rest
(OvR) transformation was used to decompose the single-label
learning problem into multiple binary classification tasks, and
similarly, the binary relevance (BR) transformation was used
to decompose the multi-label learning problem [18].

D. Evaluation Metrics

We use micro- and macro-averaging to compute binary
evaluation metrics, such as recall, precision and F-measure,
across all labels in the single-label and multi-label tasks.
Micro-averaging calculates metrics globally by counting all
true positives, false negatives and false positives, whereas
macro-averaging calculates metrics per class/label and then
takes the mean across all classes/labels. In a single-label
setting, the number of false positives equals the number of
false negatives making micro-averaging recall, precision and
F-measure metrics equivalent. In the multi-label task, we
further use samples-averaging, which calculates metrics per

instance and then takes the mean across all instances. In the
compound figure detection task, we use balanced accuracy and
g-mean along with per class recall, precision and F-measure
to avoid optimistic estimations due to imbalance. For all the
metrics above, we use the approach described in [19] to avoid
biased cross-validated results. All approaches and models were
evaluated using 10-fold cross-validation. The above binary
evaluation measures are calculated, based on the values of the
confusion matrix: true positives (tp), true negatives (tn), false
positives (fp) and false negatives (fn), as follows:

Recall =
tp

tp+ fn
Precision =

tp

tp+ fp

,

F-measure =
2 ∗ tp

2 ∗ tp+ fn+ fp

Balanced Accuracy =
1

2

(
tp

tp+ fn
+

tn

tn+ fp

)

G-mean =
tp√

(tp+ fp)(tp+ fn)

Let tpλ, fpλ, tnλandfnλ be the number of true positives,
false positives, true negatives and false negatives after binary
evaluation for a label λ. The macro-averaged and micro-
averaged versions of a binary evaluation measure B are
calculated as follows:

Bmacro =
1

q

q∑
λ=1

B (tpλ, fpλ, tnλ, fnλ)
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Bmicro = B

(
q∑

λ=1

tpλ,

q∑
λ=1

fpλ,

q∑
λ=1

tnλ,

q∑
λ=1

fnλ

)

IV. EXPERIMENTAL COMPARISON OF MULTI-LABEL
MODALITY CLASSIFICATION APPROACHES

A. Data

As we mentioned in Section I, about 40% of the available
figures in PMC are compound. However, the medical task of
ImageCLEF 2016 did not provide annotations for the 8,647
simple figures it delivered. Therefore, in order to simulate
training and test sets following the distribution of PMC, we
adopt the following process. We first split the 1,568 compound
figures into 10 equally sized disjoint subsets (folds). At each
fold, we keep 40% of the figures as they are and replace
the rest with their respective sub-figures, which assume the
role of simple figures. This process further ensures that sub-
figures of the same figure stay within the same fold in order
to avoid information leakage from a training set to a test set.
Since we can’t extract textual features from sub-figures, we
only use visual features for comparing the different modality
classification approaches.

B. Results

Table (I) shows the micro-, macro- and samples-averaged
F-measure for the standard, simple and extended multi-label
approaches, for an approach assuming perfect figure separation
into sub-figures, and for a recent figure separation approach
with state-of-the-art results in segmenting biomedical figures
of academic publications based on data from ImageCLEF
2013, 2015 and 2016 [8].

We first notice that the simple multi-label approach is
the worst of all our proposed approaches, highlighting the
importance of having a compound figure detection model.
The standard and extended multi-label approaches have similar
micro-averaged F-measure, but the extended one leads to
higher macro-averaged F-measure. These results appear to
be in alignment with our hypothesis that using additional
training examples can boost the discrimination capability in
rare modality classes, as macro-averaging treats all labels
equivalently, whereas the contribution of each label in micro-
and samples-averaging is proportional to its frequency.

To further look into this issue, we studied the per class
F-measure improvement in the standard and extended multi-
label approaches. We did not find consistent improvements
across classes, as for 7 (14) classes the F-measure was better
with the standard (extended) multi-label approach, and for 9
classes the F-measure did not change between approaches.
In 7 out of the latter 9 classes, the F-measure was actually
zero and this was due to the very small number (less than
5) of training examples. Table (II) shows the 5 classes with
the highest improvement (upper part) and deterioration (lower
part) of their F-measure when switching from the standard to
the extended multi-label approach.

We then looked at the Pearson correlation between the
F-measure of the standard approach and the percentage of
change in F-measure between the two approaches. We found

TABLE I
RESULTS COMPARING THE FOUR APPROACHES

F-measure
Macro Micro Samples

Perfect figure separation 0.3631 0.7875 0.7979
Figure separation 0.3194 0.7646 0.7539
Standard multi-label 0.3278 0.7789 0.7828
Simple multi-label 0.3077 0.7733 0.7268
Extended multi-label 0.3426 0.7785 0.7901

TABLE II
TOP-5 IMPROVED AND DETERIORATED CLASSES WHEN SWITCHING

FROM STANDARD (STD) TO EXTENDED (EXT) MULTI-LABEL APPROACH

F-measure
Diff %

Std Ext

Flowchart 0.0333 0.0833 150.15
Endoscopy 0.2167 0.2833 30.73
Combined Modalities 0.1900 0.2200 15.78
Non-Clinical 0.3447 0.3935 14.15
Other Organs 0.1509 0.1692 12.12

Ultrasound 0.2952 0.2452 -16.93
Chemical Structure 0.3689 0.3409 -7.59
Screenshot 0.1667 0.1619 -2.87
Transmission Microscopy 0.5670 0.5565 -1.85
Light Microscopy 0.8030 0.7968 -0.77

a moderate correlation of (r ≈ −0.41). This appears to be
intuitively meaningful, as the more difficult the learning task
(low standard multi-label F-measure), the higher the potential
for improvement by obtaining additional training examples
through the extended multi-label approach. If we only consider
the 10 classes of Table (II), then this correlation rises to
approximately −0.51.

We also notice that the perfect figure separation approach
achieves the best results in all measures, while the real-
world figure separation approach achieves the worst micro-
& samples-average F-measure. The segmentation part of the
latter approach achieves an accuracy of 81.78%, computed
as described in [9]. We project linearly that a segmentation
accuracy of ≈ 96.7% is needed for a figure separation
approach to achieve the same samples-average F-measure as
the extended multi-label approach. Considering the above and
that the differences between the perfect figure separation and
the extended multi-label approach are quite small, we conclude
that the extended multi-label approach is very promising. We
must also consider that the multi-label models were built
with the basic binary relevance approach that treats labels
independently. Much more elaborate approaches exist in the
literature that take label relationships into account and lead to
improved results compared to binary relevance [18].

Table (III) shows per class recall, precision and F-measure
of the binary compound figure detection model, common in
the figure separation, standard multi-label and extended multi-
label approaches. The last two rows of the table show the
balanced accuracy and the G-mean of this model. We notice
that this model is quite accurate and this offers additional
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TABLE III
RESULTS FOR THE COMPOUND DETECTION MODEL

Compound Simple

Recall 0.7905 0.9803
Precision 0.8601 0.9683
F-measure 0.8238 0.9742
Balanced Accuracy 0.8854
G-mean 0.9448

evidence in favor of using such an initial model for modality
classification of biomedical figures.

For completeness, Table (IV) shows average recall, pre-
cision and F-measure of the single-label model common in
all approaches, apart from the simple multi-label one, as
measured in the pipeline of the standard/extended multi-label
approaches. Evaluation is based on the sub-figures of the
data for this section’s experiments, which as explained at the
beginning of this section come from the 60% of all compound
figures. Note that in single-label tasks, false positives equal
false negatives and so precision equals recall and F-measure.

V. EXPERIMENTAL COMPARISON OF VISUAL, TEXTUAL
AND MULTIMODAL APPROACHES

A. Data

We experiment with two constituent models of the modality
classification approaches that do not involve sub-figures and
therefore textual features can be readily extracted: i) the
compound detection model (binary model), and ii) the multi-
label classification model of the standard multi-label approach.
We use the dataset of 20,985 figures (compound, simple) for
the first model and the 1,568 compound figures for the second
model.

B. Multimodal Approaches

We experiment with both early and late fusion of the textual
and visual modalities of our data. We adopt the standard early
fusion approach which constitutes in merging the visual and
textual features. For late fusion, we adopt a stacking approach
[20]. In general, stacking trains a meta-level classifier using
as input the decision function scores of a number of base
level classifiers. In multimodal learning, each of the base
classifiers is trained on a different data modality. Stacking is
also used as a more advanced, compared to BR, multi-label
learning method aiming to exploit dependencies between the
multiple labels [21]. In this case, each of the base classifiers
corresponds to a different label, while at the meta-level one

TABLE IV
RESULTS FOR THE SINGLE-LABEL MODEL

Macro Micro

Recall 0.3811 0.8044
Precision 0.4412 0.8044
F-measure 0.4090 0.8044

classifier per label is trained for a second time. BR is applied
twice in this typical multi-label stacking framework.

For the compound figure detection model, we first train
two base binary classifiers, one using only the visual features
and one using only the textual features. Then, a meta binary
classifier is trained using as inputs the scores of these two
classifiers. For the multi-label classification model, we first
train 60 binary classifiers, one for each class and data modality
pair, i.e. 30 using visual and 30 using textual features. Then,
we learn 30 meta level classifiers, one for each class, taking as
input the 60 scores of all base-level classifiers. We, therefore,
exploit stacking simultaneously as both a multi-label and a
multimodal learning approach. For a fair comparison against
single modal learning, we also employ stacking as a multi-
label approach using only visual and only textual features. We
use a linear support vector machine algorithm for the meta-
classifiers.

C. Results

Table (V) shows the balanced accuracy, G-mean and average
F-measure for the compound figure detection model compar-
ing different setups of the textual features. We test the different
setups by using a validation set comprising of the 20% of the
20,985 figures dataset. We first notice that the best results are
achieved, in all the measures, when using both the caption
and the article’s content in combination with the use of both
unigrams and bigrams. Also, the fact that the use of the content
in tandem with the caption achieves the best scores, regardless
the n-gram representation, shows that the content of the article
holds information that can help a model better discriminate
compound from simple figures.

Table (VI) compares the single modal and multimodal
approaches we have discussed, using the best textual features
setup (caption, content, unigram, and bigram). We see that the
visual model is clearly better than the textual one in both bal-
anced accuracy and average F-measure. In addition, the results
show that multimodal learning can achieve higher scores in
detecting compound figures. Especially the late fusion model
increases the average F-measure by 3.76% (7.84%) compared
to the visual (textual) model.

Table (VII) shows the macro-, micro-, and samples-averaged
F-measure for the multi-label classification model comparing
different setups of textual features. We test the different
setups by using a validation set comprising of the 20% of
the 1,568 compound figures dataset. Here, the best model
uses just the caption of the figure with both unigram and
bigram representations (micro- and samples-averaging) and
just unigram (macro-averaging). We attribute this finding to
the short length of the content’s text, just one sentence, which
may be inadequate to produce meaningful features for all the
labels of a figure. We further notice that the absence of the
caption severely affects prediction accuracy.

Table (VIII) compares single modal (with and without
stacking) learning with multi-modal learning, using the best
setup for the textual data modality. It is again observed that
the visual model achieves better results than the textual one.
However, the stacking technique improves the textual model



LAGOPOULOS et al.: CLASSIFYING BIOMEDICAL FIGURES BY MODALITY VIA MULTI-LABEL LEARNING 7

TABLE V
RESULTS FOR THE COMPOUND FIGURE DETECTION MODEL COMPARING

DIFFERENT SETUPS OF TEXTUAL FEATURES, SORTED BY AVERAGE

F-MEASURE IN DESCENDING ORDER.

Text Source Representation Balanced
Accuracy G-mean Average

F-measureCaption Content Unigram Bigram

X X X X 0.7202 0.7269 0.7312
X X X 0.7180 0.7023 0.7228
X X X 0.7084 0.7007 0.7134
X X 0.6973 0.6942 0.7025
X X X 0.6862 0.7179 0.6993

X X X 0.6950 0.6874 0.6984
X X 0.6904 0.6680 0.6884

X X 0.6642 0.7027 0.6753
X X 0.6755 0.6373 0.6662

TABLE VI
RESULTS OF THE COMPOUND DETECTION MODEL COMPARING

SINGLE-MODAL TO MULTIMODAL LEARNING.

Balanced
Accuracy G-mean Average

F-measure

Visual 0.8255 0.7273 0.8255
Textual 0.7592 0.7174 0.7942
Early Fusion 0.8138 0.7471 0.8285
Late Fusion 0.8280 0.7882 0.8565

but considerably harms the visual one. We believe that this
irregularity which occurs when using stacking is due to the
rarity of some modality classes. Rare classes, in contradiction
to frequent ones, create weak correlations with other classes
whereas stacking techniques exploit dependencies between
classes. Thus, when stacking, models lose their ability to
classify rare classes and only boost their ability in classifying
frequent classes. Visual models can discriminate rare classes
much better than the textual (higher macro-average, similar
micro-average), but their ability is harmed when using stack-
ing. This also explains the decrease of macro-averaging F-
measure (-8.36%) and a limited decrease of micro-averaging
F-measure (-3.54%) when comparing the visual model with
and without stacking. This behavior is also noticed in the case
of the late fusion model, which shows a significant increase
in micro- and samples- averaged F-measure in comparison to
all the other models, but also a decrease in macro-averaged
F-measure compared to the visual model. Overall, multimodal
learning increases the accuracy of the multi-label classifica-
tion model but the underlying stacking technique harms the
discrimination capabilities in rare classes. A hybrid technique
using late fusion only for the frequent classes and visual for
the rare ones is expected to achieve even better results.

VI. THE MEDIEVAL SYSTEM

We embedded our approaches in a Web application for
MEDical figure retrIEVAL, dubbed MEDIEVAL5. Users can
search for PMC figures by entering a text query to be matched
against the caption of each figure. MEDIEVAL allows filtering

5http://intelligence.csd.auth.gr/medieval

TABLE VII
RESULTS OF THE MULTI-LABEL MODEL COMPARING DIFFERENT SETUPS

OF TEXTUAL FEATURES, SORTED BY SAMPLES F-MEASURE IN

DESCENDING ORDER.

Text Source Representation F-measure
Caption Content Unigram Bigram Macro Micro Samples

X X X 0.1888 0.6584 0.6377
X X X X 0.1603 0.6545 0.6335

X X X 0.1571 0.6458 0.6244

X X 0.2156 0.6461 0.6193

X X X 0.1291 0.5854 0.5724

X X 0.1299 0.5859 0.5634

X X 0.1412 0.5787 0.5615

X X X 0.0973 0.5307 0.5176

X X 0.0685 0.4800 0.4759

TABLE VIII
RESULTS OF THE MULTI-LABEL MODEL COMPARING SINGLE-MODAL AND

MULTIMODAL LEARNING.

F-measure
Macro Micro Samples

Visual 0.2860 0.6906 0.6999
Textual 0.1779 0.6521 0.6295
Visual (Stacking) 0.2621 0.6670 0.6777
Textual (Stacking) 0.2095 0.6788 0.6761
Early Fusion 0.2282 0.6672 0.6718
Late Fusion 0.2439 0.7115 0.7341

the results by modality, by letting the users select the modali-
ties they are interested in. Figures are sorted according to the
similarity of their caption with the text query. Users can see the
image and caption of each retrieved figure and navigate to the
PMC article containing it. The front-end of MEDIEVAL has
been developed with the AngularJS6 JavaScript framework.

MEDIEVAL retrieves articles from PMC using the PMC-
OAI7 service and extracts the figures. For each figure, it first
extracts visual and textual features and then classifies the
modality using the best of the proposed pipelines. Specifically,
it first uses a compound detection model trained on the 20,985
figures data set to identify if the image is compound or simple.
Then, if the figure is compound a multi-label model is invoked
which is trained with the full set of 1,568 figures. Both models
are trained using the late fusion multimodal method. Finally,
if the figure is classified as simple, a single-label model
is invoked which is trained on the 6,776 sub-figures. Since
the training involves sub-figures, this model only employs
visual features. The modality predictions (ground truth for the
training set) along with the figure’s caption, unique PMC ID,
URL are stored in a Solr search platform8 that powers the
back-end of our system. MEDIEVAL visits PMC weekly to
retrieve new articles.

Users can give feedback about the modalities of a figure
appearing in search results. They can add or remove any of
the modalities of a figure and submit their changes for review

6https://angularjs.org/
7https://www.ncbi.nlm.nih.gov/pmc/tools/oai/
8http://lucene.apache.org/solr/
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by an expert. The motivation behind this function of the system
is to enable the crowdsourcing of more annotations, with the
ultimate goal of improving the accuracy of our classification
approaches. Not only will the fresh data allow us to use
actual simple figures for our models, and thus make use
of textual features, but it will also increase the discrimina-
tive capability of our models, particularly for rare modality
classes. Toward this, we added gamification components such
as weekly/monthly leader-boards and achievement batches to
attract more users and experts on giving their feedback [22].

VII. CONCLUSION AND FUTURE WORK

This work discussed the use of multi-label learning models
in the modality classification task of figures found in biomed-
ical literature. We investigated using both compound and sim-
ple figures for training a multi-label model to be used for an-
notating either all figures or only those predicted as compound
by an initial compound figure detection model. The proposed
approaches allow for richer modeling of the modality classi-
fication task, which not only addresses information loss when
treating compound figures as multiple independent figures but
also addresses model redundancy by building separate models
to classify the same underlying modalities. The experimental
study of these approaches and their comparison with the
compound figure separation approach was based on data from
the ImageCLEF 2016 medical task and on well-established
evaluation measures and processes. The extended multi-label
approach showed particularly promising results, only slightly
worse than using a perfect figure separation approach. Fur-
thermore, the comparison of single-modal and multi-modal
learning shows that the addition of textual features can greatly
improve the classification scores. Finally, we implemented a
Web application, which incorporates the proposed approaches
and allows users to search for PMC figures of their preferred
modality by caption and give feedback on the modalities of a
classified figure.

In the future, we plan to investigate how we can further
improve our approaches by using more advanced multi-label
learning techniques, such as ensembles of classifier chains. In
addition, we aim to look further into the available pre-trained
deep learning models for extracting better fitted visual features.
Furthermore, we will consider the use of weak supervision
techniques [23] and specifically how we can combine noisy
supervision and co-training. Our future plans also include a
further extension of MEDIEVAL so as to make use of the
users’ feedback by employing active learning techniques. The
application will be able to explicitly request the feedback that
will mostly benefit the classification system.
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