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Abstract

Dynamic (also known as instance-based) ensemble pruning, selects a (poten-
tially) different subset of models from an ensemble during prediction based on
the given unknown instance with the goal of maximizing prediction accuracy.
This paper models dynamic ensemble pruning as a multi-label classification
task, by considering the members of the ensemble as labels. Multi-label train-
ing examples are constructed by evaluating whether ensemble members are ac-
curate or not on the original training set via cross-validation. We show that
classification accuracy is maximized when learning algorithms that optimize
example-based precision are used in the multi-label classification task. Results
comparing the proposed framework against state-of-the-art dynamic ensemble
pruning approaches in a variety of datasets using a heterogeneous ensemble of
200 classifiers, show that it leads to significantly improved accuracy.
Keywords: ensemble pruning, ensemble selection, multi-label classification,

dynamic classifier fusion

1. Introduction

Supervised ensemble methods are concerned with the production and the

combination of multiple predictive models. One dimension along which we could
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categorize such methods is based on the number of models that affect the final
decision. Usually all models are taken into consideration. When models are
classifiers, this is called classifier fusion. Some methods, however, select just one
model from the ensemble. When models are classifiers, this is called classifier
selection. A third option, standing in between of these two, is to select a subset
of the ensemble’s models. This is mainly called ensemble pruning or ensemble
selection (Tsoumakas et al., 2009).

Ensemble pruning methods can be either static, meaning that they select
a fixed subset of the original ensemble for all test instances, or dynamic, also
called instance-based, where a different subset of the original ensemble may be
selected for each different test instance. The rationale of using dynamic ensemble
pruning approaches is that different models have different areas of expertise
in the instance space. Therefore, static approaches that are forced to select
a fixed subset prior to seeing an unclassified instance may have a theoretical
disadvantage compared to dynamic ones. On the other hand, static approaches
lead to improved space complexity as they typically retain a small percentage
of the original ensemble, in contrast to dynamic approaches that need to retain
the complete original ensemble.

We propose a new approach to the instance-based ensemble pruning problem
by modeling it as a multi-label learning task (Tsoumakas et al., 2010). Labels
correspond to classifiers and multi-label training examples are formed based on
the ability of each classifier to correctly classify each original training example.
This way we can take advantage of recent advances in the area of multi-label
learning and attack collectively, instead of separately, the problems of predicting
whether each classifier will classify correctly a given unclassified instance. This
paper builds upon our previous work (Markatopoulou et al., 2010) and extends
it in the following main directions: a) it approximately doubles the number of
datasets of the empirical comparison, providing further evidence of the effec-
tiveness of the proposed algorithm and b) it employs a thresholding strategy
that automatically computes the threshold that optimizes precision, leading to

a fairer comparison against the state-of-the-art.



The rest of this paper is organized as follows. Section 2 reviews related work
on dynamic ensemble pruning and Section 3 discusses the proposed approach.
Section 4 presents the experimental setup. Section 5 presents the empirical

study and Section 6 discusses the conclusions of this work.

2. Related Work

Many approaches deal directly with instance-based ensemble pruning (Tsym-
bal, 2000; Fan et al., 2002; Ko et al., 2007; Herndndez-Lobato et al., 2009).
These are presented in Section 2.2. However, there are also some that deal
with dynamic approaches to classifier selection and fusion (Woods et al., 1997;
Giacinto and Roli, 1997; Puuronen et al., 1999b; Ortega et al., 2001), which
can be considered as extreme cases of ensemble pruning. In addition, some
dynamic classifier selection approaches, may in some cases (e.g. ties) take into
consideration more than one model. We therefore discuss in Section 2.1 such
methods too. Section 2.3 discusses the issues of time complexity improvement
and diversity in the context of dynamic ensemble pruning methods. For ease of
reference and navigation of this section, Table 1 shows the category (i.e. selec-
tion, fusion, pruning) of each method that is discussed, using either its acronym

where available (e.g. KNORA) or its citation.

2.1. Dynamic Classifier Selection and Fusion

The approach in (Woods et al., 1997) starts with retrieving the k nearest

neighbors of a given test instance from the training set. It then classifies this test

Table 1: Summary of Dynamic Classifier Selection, Fusion and Pruning methods

Classifier Selection DS, OLA, LCA, MCB,
(Ortega et al., 2001), (Giacinto and Roli, 1997)

Ensemble Pruning k-NN-based DVS, KNORA, (Xiao et al., 2010)

clustering-based (Kuncheva, 2000)

ordering-based (Li et al., 2013), (Yan et al., 2013),

(Hernandez-Lobato et al., 2009), (Fan et al., 2002)
other (Lysiak et al., 2014)

Classifier Fusion DV




instance using the most competent classifier within this local region. In case of
ties, majority voting is applied. The local performance of classifiers is assessed
using two different metrics. The first one, called overall local accuracy (OLA),
measures the percentage of correct classifications of a model for the examples
that exist in the local region. The second one, called local class accuracy (LCA),
measures the percentage of correct classifications of a model within the local
region too, but only for those examples where the model had given the same
output as the one it gives for the current unlabeled instance being considered. A
very similar approach to this one was proposed independently at the same time
(Giacinto and Roli, 1997), also taking the distance of the k nearest neighbors
into account.

The dynamic selection (DS) and dynamic voting (DV) approaches in (Pu-
uronen et al., 1999b.a) are in the same spirit as (Woods et al., 1997; Giacinto
and Roli, 1997). A kNN approach is initially used to find the most similar
training instances with the given test instance. DS selects the classifier with the
least error within the local area of the neighbors weighted by distance. In fact,
DS, is very similar to the weighted version of OLA presented in (Giacinto and
Roli, 1997). DV is different, as it is a classifier fusion approach. It combines all
models weighted by their local competence.

Yet another approach along the same lines is (Giacinto and Roli, 2001). After
finding the k nearest neighbors of the test instance, this approach further filters
the neighborhood based on the similarity of the predictions of all models for this
instance and each neighbor. In this sense, this approach is similar to the LCA
variation in (Woods et al., 1997). It finally selects the most competent classifier
in the reduced neighborhood. The predictions of all models for an instance, are
in this paper called collectively multiple classifier behavior (MCB).

The approach in (Ortega et al., 2001) estimates whether the ensemble’s mod-
els will be correct/incorrect with respect to a given test instance, using a learning
algorithm, trained from the k-fold cross-validation performance of the models
on the training set. It can be considered as a generalization of the approaches

we have seen so far in this subsection, where a nearest neighbor approach was



specifically used instead. The approach we propose in this paper, is based on
the same principle, with the difference that multi-label learning algorithms are
employed and therefore the binary tasks of predicting correct/incorrect decision

for each model are viewed in a collective way.

2.2. Dynamic Ensemble Selection

Similar with the dynamic Classifier Selection methods, the majority of the
Dynamic Ensemble Selection methods start with retrieving the k nearest neigh-
bors of a given test instance from the training set, in order to construct a new
set of instances known as local region of competence (Xiao et al., 2010). The
selection algorithms decide for the appropriate subset of the initial ensemble
based on different properties (e.g. accuracy, diversity) of the base classifiers in
this local region.

Dynamic Voting with Selection (DVS) (Tsymbal, 2000; Tsymbal and Puuro-
nen, 2000) is an approach that stands in between the DS and DV algorithms
that were mentioned in the previous subsection. First, about half of the models
in the ensemble, those with local errors that fall into the upper half of the error
range of the committee, are discarded. Then, the rest are combined using DV.
Since this variation, eventually selects a subset of the original models, we can
consider it as an instance-based ensemble pruning approach.

The primary goal of k-nearest-oracles (KNORA) (Ko et al., 2007) is improv-
ing the accuracy compared to the complete ensemble. Four different versions
of the basic KNORA algorithm are proposed, all based on an initial stage of
identifying the k nearest neighbors of a given unclassified instance. KNORA-
ELIMINATE selects those classifiers that correctly classify all k neighbors. In
case none such exists, the k value is decreased until at least one is found.
KNORA-UNION selects those classifiers that correctly classify at least one of
the k neighbors. KNORA-ELIMINATE-W and KNORA-UNION-W are varia-
tions that weight the votes of classifiers according to their Euclidean distance
to the unclassified instance.

While the above methods only consider the accuracy of the ensemble within



the local region, the method proposed by (Xiao et al., 2010) simultaneously con-
siders both the accuracy and the diversity of the pruned ensemble. Specifically,
this method utilizes the symmetric regularity criterion to measure the accuracy
of the ensemble and the double-fault measure to estimate the diversity. Finally,
a GMDH-based neural network, describes the relationship between the class
labels of the local region of competence and the test instance.

We can distinguish two more categories of dynamic ensemble selection meth-
ods that do not consider the k-nearest neighbors of test instances: Clustering
based methods and Ordering based methods. Clustering based methods use
clustering algorithms (k-means, Gaussian Mixture Models etc.) in order to
estimate the local regions (Kuncheva, 2000). In contrast with the k nearest
neighbors based methods that generate the local regions of competence during
the test phase, clustering based methods estimate them offline during the train-
ing phase. Only the selection of a winning local region and the appropriate
classifier ensemble is selected during the test phase.

Ordering based methods utilize statistical or probabilistic measures in order
to produce a decreasing order of the base classifiers from the most suitable
for a given test instance to the less suitable. The method proposed by (Li
et al., 2013) assumes that base classifiers not only make a classification decision
but also return a confidence score that shows their belief that their decision is
correct. Dynamic ensemble selection is performed by ordering the base classifiers
according to the confidence scores and fusion is performed using weighted voting.
The method proposed by (Yan et al., 2013) is a two-step approach. In the first
step classifiers are ordered based on their diversity using the Fleiss’s statistic, in
the second step classifiers in this rank are selected until a confidence threshold
is reached.

Recently, a statistical approach has been proposed for instance-based prun-
ing of homogeneous ensembles, with the provided that the models are produced
via independent applications of a randomized learning algorithm on the same
training data, and that majority voting is used (Herndndez-Lobato et al., 2009).

It is based on the observation that given the decisions made by the classifiers



that have already been queried, the probability distribution of the remaining
class predictions can be calculated via a Polya urn model. During prediction, it
samples the ensemble members randomly without replacement, stopping when
the probability that the predicted class will change is below a specified level. As
this approach assumes homogeneous models, it aims at speeding up the classi-
fication process without significant loss in accuracy. In contrast, our approach
is directed at heterogeneous ensembles and aims primarily at improving the
predictive performance compared to the full ensemble.

Another approach with the same goal as (Herndndez-Lobato et al., 2009)
is (Fan et al., 2002). In that work a first stage of static pruning takes place,
followed up by a second stage of dynamic pruning, called dynamic scheduling. In
the dynamic stage, classifiers are considered one by one in a decreasing order of
total benefit (the authors focused on cost-sensitive applications). This iterative
process stops when the difference of the current ensemble and the complete
ensemble, as estimated assuming normal distribution with parameters calculated
on the training set, is small.

Other approaches that cannot been included to any of the aforementioned
categories have been proposed. For example, in (Lysiak et al., 2014) the dy-
namic selection problem is treated as an optimization problem and the proposed

method uses the simulated annealing algorithm to solve it.

2.8. Time Complexity and Diversity

Since the output of dynamic ensemble pruning methods depends on just
a subset of the models of the original ensemble, one would expect that there
are always gains in terms of time complexity. However, this is not necessarily
true. Some methods (e.g. LCA variant in (Woods et al., 1997)) first query
all models and then select a subset of those to combine. Others might require
computations that are more expensive compared to querying all models. For
example, locating the 10 nearest neighbors of a new unclassified instance and
then querying one decision tree, might be more expensive compared to directly

querying 100 decision trees. Therefore, only computationally simple approaches



to pruning, such as (Herndndez-Lobato et al., 2009) can lead to improved time
complexity in the general case, sometimes at the expense of accuracy. The
primary goal of most of the other methods is improving the accuracy compared
to the complete ensemble. The proposed approach falls into this latter category
of methods. It aims at improved accuracy and cannot guarantee time complexity
improvements as it first needs to query a multi-label learner.

A potential point of criticism against most of the presented dynamic classi-
fier combination methods, as well as against the proposed framework, could be
that they are focused on accuracy and ignore diversity. The question is, should
diversity be a desired property of the ensembles selected by instance-based en-
semble pruning methods? The concept of diversity has been studied extensively
(Kuncheva and Whitaker, 2003) and it is generally accepted that diversity and
accuracy are both required for a successful ensemble. Diversity is desired, be-
cause models that err in different parts of the input space can help each other
correct their mistakes through a voting process. In instance-based approaches
however, we are interested in the performance for a specific example, not the
whole input space in general, or a part of it. In this case we would want to
choose only those models that are as accurate as possible for this example, and
not those models that may make mistakes in it. Our approach is based solely
on accuracy to select the appropriate subset of the ensemble. Note, however,

that diversity is still a necessary property of the full ensemble.

3. Our Approach

The main idea of this work is that instance-based ensemble pruning can be
modeled as a multi-label classification task, whose input space is the same as
the input space of the classification task at hand and whose label space contains
one label for each classifier in the ensemble. Given a new test instance, a
multi-label classification model for this task would output a subset of classifiers,
which is exactly what dynamic ensemble pruning is about. Formally, consider

an ensemble of ¢ models hj : X = Y, 5 =1...¢, where X = R? is the input space



and Y = {y1,...,yr} is the domain of the target variable of the classification
task at hand. The multi-label classification task aims to learn a model h,, :
X — hy,..., hy.

To construct a training set for this task, we should have knowledge of which
of the classifiers in the ensemble are correct/incorrect for each training exam-
ple of the classification task at hand. This could be achieved by letting each
member of the ensemble classify each training example and comparing its out-
put with the true class of the example. If the prediction of a classifier is cor-
rect then a positive class value is used for the corresponding label, while if
the prediction is incorrect then a negative class value is used. As the predic-
tions of a classifier on its training set are biased, we suggest the use of cross-
validation for constructing the multi-label training set. Formally, consider a
training set D = (£,4#),i = 1...n, where Z € X and y € ), and the pre-

dictions og.i) ,

obtained via cross-validation on D from the ¢ different learning
algorithms and/or different parameterizations of the same algorithms that were
used to produce the models hj,j = 1...t. The multi-label training set is then
M = (@9, YD),i =1...n, where YO = {I (ogﬂ - ym)},j — 1...t, where
I(true) = 1 and I(false) = 0. Figure 1 exemplifies the process of constructing
the multi-label training set for the image segmentation dataset (segment) of

the European project Statlog (Feng et al., 1993). The target attribute of this

dataset has 6 values: brickface, sky, foliage, cement, window, path, grass.

Figure 1: Creating the multi-label training set

training set classifier predictions multi-label training set
T y 01 02 ... o £ 01 09 ... ot
M sky path sky ... cement z — 4 -
#® window sky window ... window 7@ - + ..+
Z" foliage foliage grass ... path zm 4+ — -

Given an unlabeled instance, the multi-label classifier h,, is first queried,



outputting a subset of models Z € {hq,...,h;} that it considers will correctly
classify this instance. Note that the empty set is a feasible output for certain
multi-label learning algorithms. However, in our case, an empty set is mean-
ingless, as it means that all classifiers are pruned and that no prediction can be
given. Therefore, for the proposed multi-label learning task, multi-label classi-
fiers should be augmented with the constraint of non-empty predictions (Z # ().
Then, each of the models in the subset is queried and their decisions are com-
bined via plurality voting, often called simple majority voting. Let’s denote the
subset of classifiers that give correct predictions as W. Assuming a two-class
classification task, the final prediction will be correct if more than half of the
models in Z are correct, or in other words if |Z N W|/|Z| > 0.5. The left part
of this inequality is actually the definition of the precision of a multi-label pre-
diction (Godbole and Sarawagi, 2004; Tsoumakas et al., 2010). For problems
with more than two class values, a lower precision value than 0.5 could in some
cases suffice for a correct final decision through plurality voting. This analysis
suggests that learning algorithms that optimize precision should be used for the
proposed multi-label training task. We could therefore consider algorithms that

minimize the following loss functions:

0 if|ZnNnW|/|Z] > 0.5
loss(Z, W) = (1)
1 otherwise

|znw|
Z|

However, not many multi-label learning algorithms accept a specific loss

loss(Z,W) =1 (2)

function as a parameter. Furthermore, some multi-label learning algorithms
learn models that can only output a score vector for each label (Crammer and
Singer, 2003; Hiillermeier et al., 2008), so they cannot be used without mod-
ifications in our case, where a bipartition of the labels into relevant (correct
classifiers) and irrelevant (incorrect classifiers) is required. In addition, most
state-of-the-art multi-label classification algorithms (i.e those that do output a

bipartition) of the recent literature (Zhang and Zhou, 2006; Tsoumakas et al.,
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2011; Read et al., 2008, 2009), actually learn models that output a score vector
primarily and employ a thresholding method in order to be able to output bipar-
titions (Ioannou et al., 2010). Given that high precision is crucial for the success
of our approach, all the above learning algorithms could be used in conjunction

with a thresholding method that optimizes the losses presented above.

4. Experimental Setup

4.1. Datasets
We experimented on 40 data sets from the UCI Machine Learning repository

(Asuncion and Newman, 2007). Table 2 presents the details of these data sets.

4.2. Ensemble Construction

We constructed a heterogeneous ensemble of 200 models, by using different
learning algorithms with different parameters on the training set. The WEKA
machine learning library (Witten and Frank, 2005) was used as the source of
learning algorithms. We trained 40 multilayer perceptrons (MLPs), 60 k Near-
est Neighbors (kNNs), 80 support vector machines (SVMs) and 20 decision
trees (DT) using the C4.5 algorithm. The different parameters used to train
the algorithms were the following (default values were used for the rest of the

parameters):

e MLPs: we used 5 values for the nodes in the hidden layer {1, 2, 4, 8, 16},
4 values for the momentum term {0.0, 0.2, 0.5, 0.9} and 2 values for the

learning rate {0.3, 0.6}.

e kNNs: we used 20 values for k distributed evenly between 1 and the
plurality of the training instances. We also used 3 weighting methods:

no-weighting, inverse-weighting and similarity-weighting.

e SVMs: we used 8 values for the complexity parameter {107°, 1074, 1073,
1072, 0.1, 1, 10, 100}, and 10 different kernels. We used 2 polynomial
kernels (of degree 2 and 3) and 8 radial kernels (gamma € {0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1, 2}).

11



Table 2: Details of data sets: Folder in UCI server, number of instances, classes, continuous

and discrete attributes, percentage of missing values

id UCI Folder Instances Classes Continuous Discrete Missing
dl anneal 798 6 9 29 0.00
d2 arrhythmia 452 16 206 73 0.32
d3 audiology 226 24 0 69 20.33
d4 autos 205 7 15 10 11.51
ds balance-scale 625 3 4 0 0.00
dé6 breast-cancer 286 2 0 9 0.35
a7 breast-w 699 2 0 2 0.00
ds car 1728 4 0 6 0.00
d9 cmc 1473 3 2 7 0.00
d10 colic 368 2 7 15 23.80
di11 credit-a 690 2 6 9 0.65
d12 credit-g 1000 2 7 13 0.00
d13 dermatology 366 6 1 33 0.00
d14 diabetes 768 2 8 0.00
di15 ecoli 336 8 7 0.00
d16 eucalyptus 736 5 14 5 3.20
d17 flags 194 8 2 27 0.00
d18 glass 214 7 9 0 0.00
d19 haberman 306 2 3 0 0.00
d20 heart-c 303 5 6 7 0.18
d21 heart-h 294 5 6 7 20.46
d22 heart-statlog 270 2 13 0 0.00
d23 heart-v 200 5 6 7 26.85
d24 hepatitis 155 2 6 13 5.67
d25 hill 607 2 100 0 0.00
d26 hypothyroid 3772 4 7 30 5.4

d27 ionosphere 351 2 34 0 0.00
d28 kr-vs-kp 3196 2 0 36 0.00
d29 liver-disorders 345 2 6 0 0.00
d30 lymph 148 4 3 15 0.00
d31 primary-tumor 339 2 0 17 0.00
d32 segment 2310 7 19 0 0.00
d33 sick 3772 2 7 23 5.40
d34 sonar 195 2 60 0 0.00
d35 soybean 683 19 0 35 0.00
d36 tic-tac-toe 958 2 0 9 0.00
d37 vehicle 846 4 18 0 0.00
d38 vote 435 2 0 16 5.63
d39 wine 178 3 13 0 0.00
d40 200 101 7 1 16 0.00
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e Decision trees: We constructed 10 trees using post-pruning with 5 values
for the confidence factor {0.1, 0.2, 0.3, 0.5 } and 2 values for Laplace
smoothing {true, false}, 8 trees using reduced error pruning with 4 values
for the number of folds {2, 3, 4, 5} and 2 values for Laplace smoothing
{true, false}, and 2 unpruned trees using 2 values for the minimum objects

per leaf {2, 3}.

4.8. Dynamic Ensemble Pruning Methods

We compare the proposed approach against most of the methods that were
presented in Section 2 and deal with the issue of accuracy improvement: OLA,
LCA, MCB, DV, DS, DVS and KNORA. These methods start by finding the &
nearest neighbors of a test instance in the training set. We set the number of
neighbors to 10 and used Euclidean distance to estimate the nearest neighbors.
The ELIMINATE version of KNORA was used, as that was found as producing
the overall best results in (Ko et al., 2007). We also calculate the performance
of the complete ensemble of 200 models using simple majority voting for model
combination (MV) as a baseline method.

We did not compare the proposed approach against (Herndndez-Lobato
et al., 2009; Fan et al., 2002), which are methods with the different goal of
speeding up the classification process without significant loss in accuracy. As
our approach is based solely on accuracy to select the appropriate subset of the
ensemble, we further refrained from comparing against approaches that consider
diversity as well (Lysiak et al., 2014; Xiao et al., 2010; Yan et al., 2013). This
would be an interesting future work direction. Finally, as we already mention
in Section 2, the approach by Ortega et al. Ortega et al. (2001), is a generalized
version of OLA: In OLA, kNN is used, while in (Ortega et al., 2001) any learning
algorithm could be used. In this sense, we are comparing to that work too.

We instantiate the proposed approach with two multi-label learning algo-
rithms. The first one is ML-ANN (Zhang and Zhou, 2007), which was selected
because it follows an instance-based approach, similarly to the rest of the com-

peting methods, apart from MV. The number of neighbors is also set to 10 here,
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which happens to be the default setting too. The second one is Calibrated La-
bel Ranking (CLR) (Fiirnkranz et al., 2008), a multi-label learner that is known
to achieve high precision. The C4.5 learning algorithm with default settings is
used for the binary classification tasks considered by CLR.

Although the above methods do output bipartitions, they primarily output
a score vector containing one score for each label. ML-ANN’s scores are proba-
bility estimates and it uses a 0.5 threshold to output the bipartition. CLR uses
an artificial calibration label to break the ranking of the labels and produce
the bipartition. Apart from using these default methods to obtain the bipar-
tition, we also pair the algorithms with a simple thresholding strategy, called
OneThreshold, which considers a label as positive if its score is higher than a

single threshold ¢ used for all labels (Ioannou et al., 2010).

4.4. Fvaluation Methodology

We use 10-fold cross validation to evaluate the different approaches. For
each of the 10 train/test splits, we perform an inner 10-fold cross-validation on
the training set in order to gather meta-data concerning the performance of the
algorithms, which are required by all dynamic ensemble pruning approaches.
Threshold tuning is again based only on the training data, so at no point are

test data seen by any of the approaches.

5. Experiments

Section 5.1 investigates how thresholding affects the precision of the multi-
label learners and consequently the accuracy of the proposed approach. Then,
Section 5.2 investigates the relationship of the optimal threshold for the pro-
posed approach with four dataset properties (difficulty (via the accuracy of our
approach), size in samples, missing values (percentage) and number of classes).
Section 5.3 presents the results of comparing the proposed approach with other
state-of-the-art approaches. Section 5.4 comments on the number and type of

selected models for the competitive dynamic selection approaches. Finally, Sec-
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tion 5.5 examines the relalionship of the relative performance of the proposed

method on different dataset sizes.

5.1. Thresholding the Multi-Label Learners

Tables 3 and 4 present the accuracy and standard deviation of the framework
instantiated with CLR and ML-kNN respectively, for all datasets (column 1)
under the following thresholding schemes: a) their default thresholding strategy
(column 2), b) OneThreshold with threshold values ranging from 0.5 to 0.9
using a step of 0.05 (columuns 3 to 11), and ¢) OneThreshold using 5-fold cross-
validation to automatically compute the threshold value that optimizes the loss
function in Equation 2 (column 12). The last column shows the actual threshold
value that was selected. The highest accuracy at each dataset is underlined. As
suggested in (Demsar, 2006), we base the discussion of the results on the average
ranks of the different versions of the proposed approach (last row of the tables).

For CLR, we notice that threshold values higher than 0.55 lead to better
average ranks compared to the default thresholding strategy. Higher threshold
values lead to the greatest improvement, with 0.80, 0.85 and 0.90 being the
three values with the best performance compared to the rest. This is in line
with the analysis in Section 3, as higher thresholds improve the precision of
the learners. Automatically selecting a threshold via cross-validation performs
relatively well, but not better than a fixed high threshold.

As already discussed, the default version of ML-kKNN uses an implicit 0.5
threshold to obtain the bipartition. Therefore the first two columns are identical.
We notice that all threshold values examined lead to better accuracy compared
to the standard threshold. Again, higher thresholds lead to better results, but
the best performance is achieved for a threshold value of 0.75. As in the case of
CLR, automatically selecting a threshold via cross-validation performs relatively
well, but not better than the fixed threshold values of 0.75, 0.85 and 0.90.

The general conclusion is that tuning the threshold improves the perfor-
mance of the multi-label learners. This comes from the improvement of the

precision of the multi-label learners, which in turn comes from the fact that

15



accuracy (r=0.29) number of classes (r=0.18)

1 Fra—T 30
0.8
20
L
0.6 .
° 10
0.4 .
0.2 0 :
0.4 0.6 0.8 1 0.4 0.6 0.8 1
size in samples (r=0.37) missing values (r=-0.21)
4000 - 30
3000
20
2000
10
1000 .
. LR
0 0
0.4 0.6 0.8 1 0.4 0.6 0.8 1

Figure 2: Scatterplots and correlation coefficients for the optimal threshold of our approach
instantiated with CLR. The = axis corresponds to the optimal threshold and the y axis to the

four different dataset properties.

the learners are forced to select less classifiers, but classifiers that we are more
confident about their correctness. This assumes correct probability estimations
and hence correct ranking of the classifiers. This of course is not always the
case. That is why we do not see the accuracy of our approach monotonically

increasing with the threshold values.

5.2. Relationship of Optimal Threshold with Dataset Properties

Next we investigate whether the optimal threshold of our approach is corre-
lated with properties of the given dataset, such as its difficulty (via the accuracy
of our approach), size in samples, missing values (percentage) and number of
classes. Figures 2 and 3 show scatterplots contrasting the optimal threshold and
each of the four dataset properties mentioned above for our approach instanti-
ated with CLR and ML-kNN respectively.

No strong relationships are noticed, with the exception of a 0.85 correlation

between the accuracy of our approach using ML-ANN and the optimal threshold.
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Figure 3: Scatterplots and correlation coefficients for the optimal threshold of our approach
instantiated with ML-kNN. The x axis corresponds to the optimal threshold and the y axis

to the four different dataset properties.

This means that the easier the learning task (i.e. the higher the accuracy of
our approach), the higher the optimal threshold of our approach. This suggests
that ML-kNN’s confidence in the accuracy of the ensemble’s members is a bit
optimistic in easier datasets, which is not surprising. This is less pronounced
in the case of CLR with a 0.29 correlation. Easier problems means many more
positive examples per label than negative ones, e.g. a class imbalance which is
opposite to the typical one found in multi-label learning problems, where the
positive examples are scarce. We hypothesize that CLR is better at handling
this class imbalance compared to ML-kNN and does not require setting a much
higher threshold.

In conclusion, the optimal threshold does not appear to be predictable from
dataset properties in the general case. We therefore suggest tuning the threshold

via a validation set.
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5.8. Accuracy

Table 5 shows the accuracy percentage and standard deviation of the com-
peting methods in all datasets. The highest accuracy at each dataset is under-
lined. We, again, start the analysis of the results based on the average ranks,
as suggested in (Demsar, 2006). We notice that the best overall results are
achieved by the proposed approach using CLR. This is in accordance with our
prior knowledge that CLR is an algorithm that achieves good precision perfor-
mance. On the other hand, using ML-ANN led to slightly worse results and
an overall rank of 4.1. Almost the same performance was achieved by OLA
with an average rank of 4.2, while close to this were also MCB and KNORA.
DV and DVS did not perform that well, while the worst results were that of
the static classifier fusion approach of majority voting. Note that automatic
thresholding is used in these experiments by our approach for a fair comparison
with competing approaches.

We also comment the results in terms of the wins, ties and losses for each
pair of algorithms, which are shown in Table 6. We refrain from reporting only
the statistically significant wins and losses, following the recommendation in
(Demsar, 2006). We notice again the high performance of CLR, which loses in
14 datasets maximum (35% of all datasets) from any method. Notable is the fact
that this maximum number of losses happens only when CLR is compared with
our second approach, ML-ENN. ML-£NN presents high performance too, losing
in 26 datasets maximum from any method. Once again the main competitor
seems to be the OLA algorithm.

We also performed the Wilcoxon signed ranks test between our approach
using CLR and its main competitor, namely OLA. The test gave a p-value of
0.0022, indicating that our approach is significantly better than OLA at a 99%

level.

5.4. Number and Type of Selected Models

Table 7 shows the average number of models selected by our approach (with

CLR and ML-kNN), KNORA and DVS across all test instances for all datasets.
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Figure 4: Model frequencies.

The mean across all datasets can be seen in the last row of the table. The lowest
mean number of selected models, 36, is attained by our approach with CLR.
It is therefore clear that one of the reasons for the success of CLR within our
approach is the selection of a small number of accurate models. ML-£NN on the
other hand outputs a larger number of models, 113 on average, which justifies
its lower performance. The average number of models selected by KNORA is 85,
while that of DVS is even larger, 125, justifying its respective lower performance.

Figure 4 shows the frequency of selection of each member of the ensemble
across all datasets and test examples. We notice that decision tree models
are mostly selected, followed by good versions of SVMs (the higher the cost
parameter, the better) and good versions of MLPs (the larger the number of
hidden layer nodes, the better). kNNs are selected with lower frequency and we

notice that the lower the number of nearest neighbours the better the results.

5.5. Relationship of Improvement with Respect to Dataset Size

In this section we investigate if the relative performance of our approach is
correlated with the data set size in samples. The relative performance of our
approach is measured via its rank in each of the 40 different datasets when

compared to the other nine competitive methods, presented on table 5. Figure

19



ML-KNN (r=—0.27) GCLR (r=0.013)

4000 4000
3500 3500
3000 3000
2500 2500
2000 2000
1500 . 1500
1000} . . 1000
Ty . !
5001 500 .
' 1 . ] [
. H
0 ; 0
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5: Scatterplots and correlation coefficients for the optimal threshold of our approach
instantiated with ML-kNN (left) and CLR (right). The z axis corresponds to the rank of our

method and the y axis to the dataset size in samples.

5 shows scatter plots contrasting the rank and the dataset size for our approach
instantiated with ML-ANN (left) and CLR (right) respectively.

No relationship can be noticed with respect to our approach using CLR. On
the other hand, a weak negative correlation is noticed when using ML-kNN.
This means that the larger the dataset size, the better the performance of our
approach using ML-kNN (the smaller the rank of the proposed method). This
finding is justified as follows. ML-kNN searches for the nearest neighbors of a
test instance in the training set. A larger training set represents the real data
distribution more accurately and the algorithm is able to generalize better to

unknown instances.

6. Conclusions and Future work

This paper presented a new approach for instance-based ensemble pruning
based on multi-label learning. Each classifier of an ensemble corresponds to
a label and a multi-label model is learned to output the correct classifiers for
a given instance. We have shown theoretically that in order to achieve a cor-
rect prediction after a plurality voting process among the subset of classifiers

output by the multi-label model, this model should exhibit high example-based
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precision.

We instantiated this framework with two multi-label learning algorithms and
investigated the effect of thresholding on the accuracy of the framework. As
expected, the use of higher thresholds leads to improved precision and higher
accuracy. We further investigated the use of a strategy that automatically
determines an appropriate threshold that optimizes the precision of the models.

The performance of the proposed framework was compared with a variety
of state-of-the-art competing methods. Based on the results, we reached the
conclusion that the proposed framework performs significantly better in the
large collection of classification datasets analyzed in this work. We would also
like to stress that the performance of the framework depends on the multi-label
learner and the thresholding strategy used. Therefore, it has the potential to
achieve even better results than those presented here, which are based on the
CLR and ML-ENN algorithms and the OneThreshold strategy.

We also investigated if the optimal threshold of our approach is correlated
with properties of the given dataset, such as its difficulty (via the accuracy of our
approach), size in samples, missing values (percentage) and number of classes.
No strong relationships are noticed, with the exception of a strong correlation
between the accuracy of our approach using ML-kNN and the optimal threshold.

In our future work it would be interesting to compare the proposed approach
against methods that simultaneously consider both the diversity and the accu-
racy of the pruned ensemble. In addition, we would like to examine the benefit
of our approach against popular homogeneous ensemble method, like boosting
or random forests. However, for such an experiment to be fair we would also be
adding the random forest in our heterogeneous ensemble of models, and hence we
expect our framework to do better than random forest by itself. Furthermore,
we would like to examine the benefit of the proposed approach on homoge-
neous ensembles. Finally, we would like to verify the conclusion of previously
published papers that dynamic selection methods perform better than static se-
lection methods by comparing our approach with methods that statically select

subsets from the initial ensemble or statically select a single best model from
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the initial ensemble. Such experiments could also reveal what properties make

dynamic selection methods perform better than their static counterparts.
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Table 7: Average number of models queried by dynamic ensemble selection methods.

dataset id DVS ML-kNN CLR KNORA

d1 116 155 11 87

d2 79 93 15 44

d3 106 54 21 46

d4 135 100 67 103

ds 134 60 8 91

dé6 124 167 56 104

d7 101 173 35 41

ds 95 138 15 48

d9 102 96 30 45
d10 144 150 51 91
di1 98 131 47 53
di12 151 127 41 127
di13 105 116 16 56
d14 119 127 29 55
d1s 113 120 108 29
d16 112 50 20 31
d17 168 47 21 134
di18 107 48 30 60
d19 136 191 101 114
d20 172 142 57 153
d21 131 171 107 51
d22 176 144 73 159
d23 137 68 30 43
d24 94 173 94 56
d25 167 72 8 91
d26 112 138 14 57
d27 134 147 33 103
d28 120 100 26 134
d29 134 68 21 141
d30 141 140 52 114
d31 145 69 14 96
d32 99 115 15 25
d33 141 182 15 139
d34 156 112 64 129
d35 102 26 15 48
d36 89 108 8 78
d37 131 65 12 107
d38 177 155 33 173
d39 111 78 18 50
d40 79 115 13 109
mean 125 113 36 85

30



