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Abstract

Dynamic (also known as instance-based) ensemble pruning, selects a (poten-

tially) different subset of models from an ensemble during prediction based on

the given unknown instance with the goal of maximizing prediction accuracy.

This paper models dynamic ensemble pruning as a multi-label classification

task, by considering the members of the ensemble as labels. Multi-label train-

ing examples are constructed by evaluating whether ensemble members are ac-

curate or not on the original training set via cross-validation. We show that

classification accuracy is maximized when learning algorithms that optimize

example-based precision are used in the multi-label classification task. Results

comparing the proposed framework against state-of-the-art dynamic ensemble

pruning approaches in a variety of datasets using a heterogeneous ensemble of

200 classifiers, show that it leads to significantly improved accuracy.

Keywords: ensemble pruning, ensemble selection, multi-label classification,

dynamic classifier fusion

1. Introduction

Supervised ensemble methods are concerned with the production and the

combination of multiple predictive models. One dimension along which we could
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categorize such methods is based on the number of models that affect the final

decision. Usually all models are taken into consideration. When models are

classifiers, this is called classifier fusion. Some methods, however, select just one

model from the ensemble. When models are classifiers, this is called classifier

selection. A third option, standing in between of these two, is to select a subset

of the ensemble’s models. This is mainly called ensemble pruning or ensemble

selection (Tsoumakas et al., 2009).

Ensemble pruning methods can be either static, meaning that they select

a fixed subset of the original ensemble for all test instances, or dynamic, also

called instance-based, where a different subset of the original ensemble may be

selected for each different test instance. The rationale of using dynamic ensemble

pruning approaches is that different models have different areas of expertise

in the instance space. Therefore, static approaches that are forced to select

a fixed subset prior to seeing an unclassified instance may have a theoretical

disadvantage compared to dynamic ones. On the other hand, static approaches

lead to improved space complexity as they typically retain a small percentage

of the original ensemble, in contrast to dynamic approaches that need to retain

the complete original ensemble.

We propose a new approach to the instance-based ensemble pruning problem

by modeling it as a multi-label learning task (Tsoumakas et al., 2010). Labels

correspond to classifiers and multi-label training examples are formed based on

the ability of each classifier to correctly classify each original training example.

This way we can take advantage of recent advances in the area of multi-label

learning and attack collectively, instead of separately, the problems of predicting

whether each classifier will classify correctly a given unclassified instance. This

paper builds upon our previous work (Markatopoulou et al., 2010) and extends

it in the following main directions: a) it approximately doubles the number of

datasets of the empirical comparison, providing further evidence of the effec-

tiveness of the proposed algorithm and b) it employs a thresholding strategy

that automatically computes the threshold that optimizes precision, leading to

a fairer comparison against the state-of-the-art.
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The rest of this paper is organized as follows. Section 2 reviews related work

on dynamic ensemble pruning and Section 3 discusses the proposed approach.

Section 4 presents the experimental setup. Section 5 presents the empirical

study and Section 6 discusses the conclusions of this work.

2. Related Work

Many approaches deal directly with instance-based ensemble pruning (Tsym-

bal, 2000; Fan et al., 2002; Ko et al., 2007; Hernández-Lobato et al., 2009).

These are presented in Section 2.2. However, there are also some that deal

with dynamic approaches to classifier selection and fusion (Woods et al., 1997;

Giacinto and Roli, 1997; Puuronen et al., 1999b; Ortega et al., 2001), which

can be considered as extreme cases of ensemble pruning. In addition, some

dynamic classifier selection approaches, may in some cases (e.g. ties) take into

consideration more than one model. We therefore discuss in Section 2.1 such

methods too. Section 2.3 discusses the issues of time complexity improvement

and diversity in the context of dynamic ensemble pruning methods. For ease of

reference and navigation of this section, Table 1 shows the category (i.e. selec-

tion, fusion, pruning) of each method that is discussed, using either its acronym

where available (e.g. KNORA) or its citation.

2.1. Dynamic Classifier Selection and Fusion

The approach in (Woods et al., 1997) starts with retrieving the k nearest

neighbors of a given test instance from the training set. It then classifies this test

Table 1: Summary of Dynamic Classifier Selection, Fusion and Pruning methods

Classifier Selection DS, OLA, LCA, MCB,

(Ortega et al., 2001), (Giacinto and Roli, 1997)

Ensemble Pruning k-NN-based DVS, KNORA, (Xiao et al., 2010)

clustering-based (Kuncheva, 2000)

ordering-based (Li et al., 2013), (Yan et al., 2013),

(Hernández-Lobato et al., 2009), (Fan et al., 2002)

other (Lysiak et al., 2014)

Classifier Fusion DV
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instance using the most competent classifier within this local region. In case of

ties, majority voting is applied. The local performance of classifiers is assessed

using two different metrics. The first one, called overall local accuracy (OLA),

measures the percentage of correct classifications of a model for the examples

that exist in the local region. The second one, called local class accuracy (LCA),

measures the percentage of correct classifications of a model within the local

region too, but only for those examples where the model had given the same

output as the one it gives for the current unlabeled instance being considered. A

very similar approach to this one was proposed independently at the same time

(Giacinto and Roli, 1997), also taking the distance of the k nearest neighbors

into account.

The dynamic selection (DS) and dynamic voting (DV) approaches in (Pu-

uronen et al., 1999b,a) are in the same spirit as (Woods et al., 1997; Giacinto

and Roli, 1997). A kNN approach is initially used to find the most similar

training instances with the given test instance. DS selects the classifier with the

least error within the local area of the neighbors weighted by distance. In fact,

DS, is very similar to the weighted version of OLA presented in (Giacinto and

Roli, 1997). DV is different, as it is a classifier fusion approach. It combines all

models weighted by their local competence.

Yet another approach along the same lines is (Giacinto and Roli, 2001). After

finding the k nearest neighbors of the test instance, this approach further filters

the neighborhood based on the similarity of the predictions of all models for this

instance and each neighbor. In this sense, this approach is similar to the LCA

variation in (Woods et al., 1997). It finally selects the most competent classifier

in the reduced neighborhood. The predictions of all models for an instance, are

in this paper called collectively multiple classifier behavior (MCB).

The approach in (Ortega et al., 2001) estimates whether the ensemble’s mod-

els will be correct/incorrect with respect to a given test instance, using a learning

algorithm, trained from the k-fold cross-validation performance of the models

on the training set. It can be considered as a generalization of the approaches

we have seen so far in this subsection, where a nearest neighbor approach was
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specifically used instead. The approach we propose in this paper, is based on

the same principle, with the difference that multi-label learning algorithms are

employed and therefore the binary tasks of predicting correct/incorrect decision

for each model are viewed in a collective way.

2.2. Dynamic Ensemble Selection

Similar with the dynamic Classifier Selection methods, the majority of the

Dynamic Ensemble Selection methods start with retrieving the k nearest neigh-

bors of a given test instance from the training set, in order to construct a new

set of instances known as local region of competence (Xiao et al., 2010). The

selection algorithms decide for the appropriate subset of the initial ensemble

based on different properties (e.g. accuracy, diversity) of the base classifiers in

this local region.

Dynamic Voting with Selection (DVS) (Tsymbal, 2000; Tsymbal and Puuro-

nen, 2000) is an approach that stands in between the DS and DV algorithms

that were mentioned in the previous subsection. First, about half of the models

in the ensemble, those with local errors that fall into the upper half of the error

range of the committee, are discarded. Then, the rest are combined using DV.

Since this variation, eventually selects a subset of the original models, we can

consider it as an instance-based ensemble pruning approach.

The primary goal of k-nearest-oracles (KNORA) (Ko et al., 2007) is improv-

ing the accuracy compared to the complete ensemble. Four different versions

of the basic KNORA algorithm are proposed, all based on an initial stage of

identifying the k nearest neighbors of a given unclassified instance. KNORA-

ELIMINATE selects those classifiers that correctly classify all k neighbors. In

case none such exists, the k value is decreased until at least one is found.

KNORA-UNION selects those classifiers that correctly classify at least one of

the k neighbors. KNORA-ELIMINATE-W and KNORA-UNION-W are varia-

tions that weight the votes of classifiers according to their Euclidean distance

to the unclassified instance.

While the above methods only consider the accuracy of the ensemble within
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the local region, the method proposed by (Xiao et al., 2010) simultaneously con-

siders both the accuracy and the diversity of the pruned ensemble. Specifically,

this method utilizes the symmetric regularity criterion to measure the accuracy

of the ensemble and the double-fault measure to estimate the diversity. Finally,

a GMDH-based neural network, describes the relationship between the class

labels of the local region of competence and the test instance.

We can distinguish two more categories of dynamic ensemble selection meth-

ods that do not consider the k-nearest neighbors of test instances: Clustering

based methods and Ordering based methods. Clustering based methods use

clustering algorithms (k-means, Gaussian Mixture Models etc.) in order to

estimate the local regions (Kuncheva, 2000). In contrast with the k nearest

neighbors based methods that generate the local regions of competence during

the test phase, clustering based methods estimate them offline during the train-

ing phase. Only the selection of a winning local region and the appropriate

classifier ensemble is selected during the test phase.

Ordering based methods utilize statistical or probabilistic measures in order

to produce a decreasing order of the base classifiers from the most suitable

for a given test instance to the less suitable. The method proposed by (Li

et al., 2013) assumes that base classifiers not only make a classification decision

but also return a confidence score that shows their belief that their decision is

correct. Dynamic ensemble selection is performed by ordering the base classifiers

according to the confidence scores and fusion is performed using weighted voting.

The method proposed by (Yan et al., 2013) is a two-step approach. In the first

step classifiers are ordered based on their diversity using the Fleiss’s statistic, in

the second step classifiers in this rank are selected until a confidence threshold

is reached.

Recently, a statistical approach has been proposed for instance-based prun-

ing of homogeneous ensembles, with the provided that the models are produced

via independent applications of a randomized learning algorithm on the same

training data, and that majority voting is used (Hernández-Lobato et al., 2009).

It is based on the observation that given the decisions made by the classifiers
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that have already been queried, the probability distribution of the remaining

class predictions can be calculated via a Polya urn model. During prediction, it

samples the ensemble members randomly without replacement, stopping when

the probability that the predicted class will change is below a specified level. As

this approach assumes homogeneous models, it aims at speeding up the classi-

fication process without significant loss in accuracy. In contrast, our approach

is directed at heterogeneous ensembles and aims primarily at improving the

predictive performance compared to the full ensemble.

Another approach with the same goal as (Hernández-Lobato et al., 2009)

is (Fan et al., 2002). In that work a first stage of static pruning takes place,

followed up by a second stage of dynamic pruning, called dynamic scheduling. In

the dynamic stage, classifiers are considered one by one in a decreasing order of

total benefit (the authors focused on cost-sensitive applications). This iterative

process stops when the difference of the current ensemble and the complete

ensemble, as estimated assuming normal distribution with parameters calculated

on the training set, is small.

Other approaches that cannot been included to any of the aforementioned

categories have been proposed. For example, in (Lysiak et al., 2014) the dy-

namic selection problem is treated as an optimization problem and the proposed

method uses the simulated annealing algorithm to solve it.

2.3. Time Complexity and Diversity

Since the output of dynamic ensemble pruning methods depends on just

a subset of the models of the original ensemble, one would expect that there

are always gains in terms of time complexity. However, this is not necessarily

true. Some methods (e.g. LCA variant in (Woods et al., 1997)) first query

all models and then select a subset of those to combine. Others might require

computations that are more expensive compared to querying all models. For

example, locating the 10 nearest neighbors of a new unclassified instance and

then querying one decision tree, might be more expensive compared to directly

querying 100 decision trees. Therefore, only computationally simple approaches
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to pruning, such as (Hernández-Lobato et al., 2009) can lead to improved time

complexity in the general case, sometimes at the expense of accuracy. The

primary goal of most of the other methods is improving the accuracy compared

to the complete ensemble. The proposed approach falls into this latter category

of methods. It aims at improved accuracy and cannot guarantee time complexity

improvements as it first needs to query a multi-label learner.

A potential point of criticism against most of the presented dynamic classi-

fier combination methods, as well as against the proposed framework, could be

that they are focused on accuracy and ignore diversity. The question is, should

diversity be a desired property of the ensembles selected by instance-based en-

semble pruning methods? The concept of diversity has been studied extensively

(Kuncheva and Whitaker, 2003) and it is generally accepted that diversity and

accuracy are both required for a successful ensemble. Diversity is desired, be-

cause models that err in different parts of the input space can help each other

correct their mistakes through a voting process. In instance-based approaches

however, we are interested in the performance for a specific example, not the

whole input space in general, or a part of it. In this case we would want to

choose only those models that are as accurate as possible for this example, and

not those models that may make mistakes in it. Our approach is based solely

on accuracy to select the appropriate subset of the ensemble. Note, however,

that diversity is still a necessary property of the full ensemble.

3. Our Approach

The main idea of this work is that instance-based ensemble pruning can be

modeled as a multi-label classification task, whose input space is the same as

the input space of the classification task at hand and whose label space contains

one label for each classifier in the ensemble. Given a new test instance, a

multi-label classification model for this task would output a subset of classifiers,

which is exactly what dynamic ensemble pruning is about. Formally, consider

an ensemble of t models hj : X → Y, j = 1 . . . t, where X = Rd is the input space
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and Y = {y1, . . . , yk} is the domain of the target variable of the classification

task at hand. The multi-label classification task aims to learn a model hm :

X → h1, . . . , ht.

To construct a training set for this task, we should have knowledge of which

of the classifiers in the ensemble are correct/incorrect for each training exam-

ple of the classification task at hand. This could be achieved by letting each

member of the ensemble classify each training example and comparing its out-

put with the true class of the example. If the prediction of a classifier is cor-

rect then a positive class value is used for the corresponding label, while if

the prediction is incorrect then a negative class value is used. As the predic-

tions of a classifier on its training set are biased, we suggest the use of cross-

validation for constructing the multi-label training set. Formally, consider a

training set D = (~x(i), y(i)), i = 1 . . . n, where ~x ∈ X and y ∈ Y, and the pre-

dictions o
(i)
j , obtained via cross-validation on D from the t different learning

algorithms and/or different parameterizations of the same algorithms that were

used to produce the models hj , j = 1 . . . t. The multi-label training set is then

M = (~x(i), Y (i)), i = 1 . . . n, where Y (i) = {I
(
o

(i)
j = y(i)

)
}, j = 1 . . . t, where

I(true) = 1 and I(false) = 0. Figure 1 exemplifies the process of constructing

the multi-label training set for the image segmentation dataset (segment) of

the European project Statlog (Feng et al., 1993). The target attribute of this

dataset has 6 values: brickface, sky, foliage, cement, window, path, grass.

Figure 1: Creating the multi-label training set

training set classifier predictions multi-label training set

~x y o1 o2 . . . ot ~x o1 o2 . . . ot

~x(1) sky path sky . . . cement ~x(1) − + . . . −

~x(2) window sky window . . . window ~x(2) − + . . . +

. . . . . . . . .

~x(n) foliage foliage grass . . . path ~x(n) + − . . . −

Given an unlabeled instance, the multi-label classifier hm is first queried,
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outputting a subset of models Z ∈ {h1, . . . , ht} that it considers will correctly

classify this instance. Note that the empty set is a feasible output for certain

multi-label learning algorithms. However, in our case, an empty set is mean-

ingless, as it means that all classifiers are pruned and that no prediction can be

given. Therefore, for the proposed multi-label learning task, multi-label classi-

fiers should be augmented with the constraint of non-empty predictions (Z 6= ∅).

Then, each of the models in the subset is queried and their decisions are com-

bined via plurality voting, often called simple majority voting. Let’s denote the

subset of classifiers that give correct predictions as W . Assuming a two-class

classification task, the final prediction will be correct if more than half of the

models in Z are correct, or in other words if |Z ∩W |/|Z| > 0.5. The left part

of this inequality is actually the definition of the precision of a multi-label pre-

diction (Godbole and Sarawagi, 2004; Tsoumakas et al., 2010). For problems

with more than two class values, a lower precision value than 0.5 could in some

cases suffice for a correct final decision through plurality voting. This analysis

suggests that learning algorithms that optimize precision should be used for the

proposed multi-label training task. We could therefore consider algorithms that

minimize the following loss functions:

loss(Z,W ) =

 0 if |Z ∩W |/|Z| > 0.5

1 otherwise
(1)

loss(Z,W ) = 1− |Z ∩W |
|Z|

(2)

However, not many multi-label learning algorithms accept a specific loss

function as a parameter. Furthermore, some multi-label learning algorithms

learn models that can only output a score vector for each label (Crammer and

Singer, 2003; Hüllermeier et al., 2008), so they cannot be used without mod-

ifications in our case, where a bipartition of the labels into relevant (correct

classifiers) and irrelevant (incorrect classifiers) is required. In addition, most

state-of-the-art multi-label classification algorithms (i.e those that do output a

bipartition) of the recent literature (Zhang and Zhou, 2006; Tsoumakas et al.,
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2011; Read et al., 2008, 2009), actually learn models that output a score vector

primarily and employ a thresholding method in order to be able to output bipar-

titions (Ioannou et al., 2010). Given that high precision is crucial for the success

of our approach, all the above learning algorithms could be used in conjunction

with a thresholding method that optimizes the losses presented above.

4. Experimental Setup

4.1. Datasets

We experimented on 40 data sets from the UCI Machine Learning repository

(Asuncion and Newman, 2007). Table 2 presents the details of these data sets.

4.2. Ensemble Construction

We constructed a heterogeneous ensemble of 200 models, by using different

learning algorithms with different parameters on the training set. The WEKA

machine learning library (Witten and Frank, 2005) was used as the source of

learning algorithms. We trained 40 multilayer perceptrons (MLPs), 60 k Near-

est Neighbors (kNNs), 80 support vector machines (SVMs) and 20 decision

trees (DT) using the C4.5 algorithm. The different parameters used to train

the algorithms were the following (default values were used for the rest of the

parameters):

• MLPs: we used 5 values for the nodes in the hidden layer {1, 2, 4, 8, 16},

4 values for the momentum term {0.0, 0.2, 0.5, 0.9} and 2 values for the

learning rate {0.3, 0.6}.

• kNNs: we used 20 values for k distributed evenly between 1 and the

plurality of the training instances. We also used 3 weighting methods:

no-weighting, inverse-weighting and similarity-weighting.

• SVMs: we used 8 values for the complexity parameter {10−5, 10−4, 10−3,

10−2, 0.1, 1, 10, 100}, and 10 different kernels. We used 2 polynomial

kernels (of degree 2 and 3) and 8 radial kernels (gamma ∈ {0.001, 0.005,

0.01, 0.05, 0.1, 0.5, 1, 2}).

11



Table 2: Details of data sets: Folder in UCI server, number of instances, classes, continuous

and discrete attributes, percentage of missing values

id UCI Folder Instances Classes Continuous Discrete Missing

d1 anneal 798 6 9 29 0.00

d2 arrhythmia 452 16 206 73 0.32

d3 audiology 226 24 0 69 20.33

d4 autos 205 7 15 10 11.51

d5 balance-scale 625 3 4 0 0.00

d6 breast-cancer 286 2 0 9 0.35

d7 breast-w 699 2 0 2 0.00

d8 car 1728 4 0 6 0.00

d9 cmc 1473 3 2 7 0.00

d10 colic 368 2 7 15 23.80

d11 credit-a 690 2 6 9 0.65

d12 credit-g 1000 2 7 13 0.00

d13 dermatology 366 6 1 33 0.00

d14 diabetes 768 2 8 0 0.00

d15 ecoli 336 8 7 0 0.00

d16 eucalyptus 736 5 14 5 3.20

d17 flags 194 8 2 27 0.00

d18 glass 214 7 9 0 0.00

d19 haberman 306 2 3 0 0.00

d20 heart-c 303 5 6 7 0.18

d21 heart-h 294 5 6 7 20.46

d22 heart-statlog 270 2 13 0 0.00

d23 heart-v 200 5 6 7 26.85

d24 hepatitis 155 2 6 13 5.67

d25 hill 607 2 100 0 0.00

d26 hypothyroid 3772 4 7 30 5.4

d27 ionosphere 351 2 34 0 0.00

d28 kr-vs-kp 3196 2 0 36 0.00

d29 liver-disorders 345 2 6 0 0.00

d30 lymph 148 4 3 15 0.00

d31 primary-tumor 339 2 0 17 0.00

d32 segment 2310 7 19 0 0.00

d33 sick 3772 2 7 23 5.40

d34 sonar 195 2 60 0 0.00

d35 soybean 683 19 0 35 0.00

d36 tic-tac-toe 958 2 0 9 0.00

d37 vehicle 846 4 18 0 0.00

d38 vote 435 2 0 16 5.63

d39 wine 178 3 13 0 0.00

d40 zoo 101 7 1 16 0.00
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• Decision trees: We constructed 10 trees using post-pruning with 5 values

for the confidence factor {0.1, 0.2, 0.3, 0.5 } and 2 values for Laplace

smoothing {true, false}, 8 trees using reduced error pruning with 4 values

for the number of folds {2, 3, 4, 5} and 2 values for Laplace smoothing

{true, false}, and 2 unpruned trees using 2 values for the minimum objects

per leaf {2, 3}.

4.3. Dynamic Ensemble Pruning Methods

We compare the proposed approach against most of the methods that were

presented in Section 2 and deal with the issue of accuracy improvement: OLA,

LCA, MCB, DV, DS, DVS and KNORA. These methods start by finding the k

nearest neighbors of a test instance in the training set. We set the number of

neighbors to 10 and used Euclidean distance to estimate the nearest neighbors.

The ELIMINATE version of KNORA was used, as that was found as producing

the overall best results in (Ko et al., 2007). We also calculate the performance

of the complete ensemble of 200 models using simple majority voting for model

combination (MV) as a baseline method.

We did not compare the proposed approach against (Hernández-Lobato

et al., 2009; Fan et al., 2002), which are methods with the different goal of

speeding up the classification process without significant loss in accuracy. As

our approach is based solely on accuracy to select the appropriate subset of the

ensemble, we further refrained from comparing against approaches that consider

diversity as well (Lysiak et al., 2014; Xiao et al., 2010; Yan et al., 2013). This

would be an interesting future work direction. Finally, as we already mention

in Section 2, the approach by Ortega et al. Ortega et al. (2001), is a generalized

version of OLA: In OLA, kNN is used, while in (Ortega et al., 2001) any learning

algorithm could be used. In this sense, we are comparing to that work too.

We instantiate the proposed approach with two multi-label learning algo-

rithms. The first one is ML-kNN (Zhang and Zhou, 2007), which was selected

because it follows an instance-based approach, similarly to the rest of the com-

peting methods, apart from MV. The number of neighbors is also set to 10 here,
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which happens to be the default setting too. The second one is Calibrated La-

bel Ranking (CLR) (Fürnkranz et al., 2008), a multi-label learner that is known

to achieve high precision. The C4.5 learning algorithm with default settings is

used for the binary classification tasks considered by CLR.

Although the above methods do output bipartitions, they primarily output

a score vector containing one score for each label. ML-kNN’s scores are proba-

bility estimates and it uses a 0.5 threshold to output the bipartition. CLR uses

an artificial calibration label to break the ranking of the labels and produce

the bipartition. Apart from using these default methods to obtain the bipar-

tition, we also pair the algorithms with a simple thresholding strategy, called

OneThreshold, which considers a label as positive if its score is higher than a

single threshold t used for all labels (Ioannou et al., 2010).

4.4. Evaluation Methodology

We use 10-fold cross validation to evaluate the different approaches. For

each of the 10 train/test splits, we perform an inner 10-fold cross-validation on

the training set in order to gather meta-data concerning the performance of the

algorithms, which are required by all dynamic ensemble pruning approaches.

Threshold tuning is again based only on the training data, so at no point are

test data seen by any of the approaches.

5. Experiments

Section 5.1 investigates how thresholding affects the precision of the multi-

label learners and consequently the accuracy of the proposed approach. Then,

Section 5.2 investigates the relationship of the optimal threshold for the pro-

posed approach with four dataset properties (difficulty (via the accuracy of our

approach), size in samples, missing values (percentage) and number of classes).

Section 5.3 presents the results of comparing the proposed approach with other

state-of-the-art approaches. Section 5.4 comments on the number and type of

selected models for the competitive dynamic selection approaches. Finally, Sec-
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tion 5.5 examines the relalionship of the relative performance of the proposed

method on different dataset sizes.

5.1. Thresholding the Multi-Label Learners

Tables 3 and 4 present the accuracy and standard deviation of the framework

instantiated with CLR and ML-kNN respectively, for all datasets (column 1)

under the following thresholding schemes: a) their default thresholding strategy

(column 2), b) OneThreshold with threshold values ranging from 0.5 to 0.9

using a step of 0.05 (columns 3 to 11), and c) OneThreshold using 5-fold cross-

validation to automatically compute the threshold value that optimizes the loss

function in Equation 2 (column 12). The last column shows the actual threshold

value that was selected. The highest accuracy at each dataset is underlined. As

suggested in (Demsar, 2006), we base the discussion of the results on the average

ranks of the different versions of the proposed approach (last row of the tables).

For CLR, we notice that threshold values higher than 0.55 lead to better

average ranks compared to the default thresholding strategy. Higher threshold

values lead to the greatest improvement, with 0.80, 0.85 and 0.90 being the

three values with the best performance compared to the rest. This is in line

with the analysis in Section 3, as higher thresholds improve the precision of

the learners. Automatically selecting a threshold via cross-validation performs

relatively well, but not better than a fixed high threshold.

As already discussed, the default version of ML-kNN uses an implicit 0.5

threshold to obtain the bipartition. Therefore the first two columns are identical.

We notice that all threshold values examined lead to better accuracy compared

to the standard threshold. Again, higher thresholds lead to better results, but

the best performance is achieved for a threshold value of 0.75. As in the case of

CLR, automatically selecting a threshold via cross-validation performs relatively

well, but not better than the fixed threshold values of 0.75, 0.85 and 0.90.

The general conclusion is that tuning the threshold improves the perfor-

mance of the multi-label learners. This comes from the improvement of the

precision of the multi-label learners, which in turn comes from the fact that
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Figure 2: Scatterplots and correlation coefficients for the optimal threshold of our approach

instantiated with CLR. The x axis corresponds to the optimal threshold and the y axis to the

four different dataset properties.

the learners are forced to select less classifiers, but classifiers that we are more

confident about their correctness. This assumes correct probability estimations

and hence correct ranking of the classifiers. This of course is not always the

case. That is why we do not see the accuracy of our approach monotonically

increasing with the threshold values.

5.2. Relationship of Optimal Threshold with Dataset Properties

Next we investigate whether the optimal threshold of our approach is corre-

lated with properties of the given dataset, such as its difficulty (via the accuracy

of our approach), size in samples, missing values (percentage) and number of

classes. Figures 2 and 3 show scatterplots contrasting the optimal threshold and

each of the four dataset properties mentioned above for our approach instanti-

ated with CLR and ML-kNN respectively.

No strong relationships are noticed, with the exception of a 0.85 correlation

between the accuracy of our approach using ML-kNN and the optimal threshold.
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Figure 3: Scatterplots and correlation coefficients for the optimal threshold of our approach

instantiated with ML-kNN. The x axis corresponds to the optimal threshold and the y axis

to the four different dataset properties.

This means that the easier the learning task (i.e. the higher the accuracy of

our approach), the higher the optimal threshold of our approach. This suggests

that ML-kNN’s confidence in the accuracy of the ensemble’s members is a bit

optimistic in easier datasets, which is not surprising. This is less pronounced

in the case of CLR with a 0.29 correlation. Easier problems means many more

positive examples per label than negative ones, e.g. a class imbalance which is

opposite to the typical one found in multi-label learning problems, where the

positive examples are scarce. We hypothesize that CLR is better at handling

this class imbalance compared to ML-kNN and does not require setting a much

higher threshold.

In conclusion, the optimal threshold does not appear to be predictable from

dataset properties in the general case. We therefore suggest tuning the threshold

via a validation set.
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5.3. Accuracy

Table 5 shows the accuracy percentage and standard deviation of the com-

peting methods in all datasets. The highest accuracy at each dataset is under-

lined. We, again, start the analysis of the results based on the average ranks,

as suggested in (Demsar, 2006). We notice that the best overall results are

achieved by the proposed approach using CLR. This is in accordance with our

prior knowledge that CLR is an algorithm that achieves good precision perfor-

mance. On the other hand, using ML-kNN led to slightly worse results and

an overall rank of 4.1. Almost the same performance was achieved by OLA

with an average rank of 4.2, while close to this were also MCB and KNORA.

DV and DVS did not perform that well, while the worst results were that of

the static classifier fusion approach of majority voting. Note that automatic

thresholding is used in these experiments by our approach for a fair comparison

with competing approaches.

We also comment the results in terms of the wins, ties and losses for each

pair of algorithms, which are shown in Table 6. We refrain from reporting only

the statistically significant wins and losses, following the recommendation in

(Demsar, 2006). We notice again the high performance of CLR, which loses in

14 datasets maximum (35% of all datasets) from any method. Notable is the fact

that this maximum number of losses happens only when CLR is compared with

our second approach, ML-kNN. ML-kNN presents high performance too, losing

in 26 datasets maximum from any method. Once again the main competitor

seems to be the OLA algorithm.

We also performed the Wilcoxon signed ranks test between our approach

using CLR and its main competitor, namely OLA. The test gave a p-value of

0.0022, indicating that our approach is significantly better than OLA at a 99%

level.

5.4. Number and Type of Selected Models

Table 7 shows the average number of models selected by our approach (with

CLR and ML-kNN), KNORA and DVS across all test instances for all datasets.
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Figure 4: Model frequencies.

The mean across all datasets can be seen in the last row of the table. The lowest

mean number of selected models, 36, is attained by our approach with CLR.

It is therefore clear that one of the reasons for the success of CLR within our

approach is the selection of a small number of accurate models. ML-kNN on the

other hand outputs a larger number of models, 113 on average, which justifies

its lower performance. The average number of models selected by KNORA is 85,

while that of DVS is even larger, 125, justifying its respective lower performance.

Figure 4 shows the frequency of selection of each member of the ensemble

across all datasets and test examples. We notice that decision tree models

are mostly selected, followed by good versions of SVMs (the higher the cost

parameter, the better) and good versions of MLPs (the larger the number of

hidden layer nodes, the better). kNNs are selected with lower frequency and we

notice that the lower the number of nearest neighbours the better the results.

5.5. Relationship of Improvement with Respect to Dataset Size

In this section we investigate if the relative performance of our approach is

correlated with the data set size in samples. The relative performance of our

approach is measured via its rank in each of the 40 different datasets when

compared to the other nine competitive methods, presented on table 5. Figure
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Figure 5: Scatterplots and correlation coefficients for the optimal threshold of our approach

instantiated with ML-kNN (left) and CLR (right). The x axis corresponds to the rank of our

method and the y axis to the dataset size in samples.

5 shows scatter plots contrasting the rank and the dataset size for our approach

instantiated with ML-kNN (left) and CLR (right) respectively.

No relationship can be noticed with respect to our approach using CLR. On

the other hand, a weak negative correlation is noticed when using ML-kNN.

This means that the larger the dataset size, the better the performance of our

approach using ML-kNN (the smaller the rank of the proposed method). This

finding is justified as follows. ML-kNN searches for the nearest neighbors of a

test instance in the training set. A larger training set represents the real data

distribution more accurately and the algorithm is able to generalize better to

unknown instances.

6. Conclusions and Future work

This paper presented a new approach for instance-based ensemble pruning

based on multi-label learning. Each classifier of an ensemble corresponds to

a label and a multi-label model is learned to output the correct classifiers for

a given instance. We have shown theoretically that in order to achieve a cor-

rect prediction after a plurality voting process among the subset of classifiers

output by the multi-label model, this model should exhibit high example-based
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precision.

We instantiated this framework with two multi-label learning algorithms and

investigated the effect of thresholding on the accuracy of the framework. As

expected, the use of higher thresholds leads to improved precision and higher

accuracy. We further investigated the use of a strategy that automatically

determines an appropriate threshold that optimizes the precision of the models.

The performance of the proposed framework was compared with a variety

of state-of-the-art competing methods. Based on the results, we reached the

conclusion that the proposed framework performs significantly better in the

large collection of classification datasets analyzed in this work. We would also

like to stress that the performance of the framework depends on the multi-label

learner and the thresholding strategy used. Therefore, it has the potential to

achieve even better results than those presented here, which are based on the

CLR and ML-kNN algorithms and the OneThreshold strategy.

We also investigated if the optimal threshold of our approach is correlated

with properties of the given dataset, such as its difficulty (via the accuracy of our

approach), size in samples, missing values (percentage) and number of classes.

No strong relationships are noticed, with the exception of a strong correlation

between the accuracy of our approach using ML-kNN and the optimal threshold.

In our future work it would be interesting to compare the proposed approach

against methods that simultaneously consider both the diversity and the accu-

racy of the pruned ensemble. In addition, we would like to examine the benefit

of our approach against popular homogeneous ensemble method, like boosting

or random forests. However, for such an experiment to be fair we would also be

adding the random forest in our heterogeneous ensemble of models, and hence we

expect our framework to do better than random forest by itself. Furthermore,

we would like to examine the benefit of the proposed approach on homoge-

neous ensembles. Finally, we would like to verify the conclusion of previously

published papers that dynamic selection methods perform better than static se-

lection methods by comparing our approach with methods that statically select

subsets from the initial ensemble or statically select a single best model from
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the initial ensemble. Such experiments could also reveal what properties make

dynamic selection methods perform better than their static counterparts.
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Table 7: Average number of models queried by dynamic ensemble selection methods.

dataset id DVS ML-kNN CLR KNORA

d1 116 155 11 87

d2 79 93 15 44

d3 106 54 21 46

d4 135 100 67 103

d5 134 60 8 91

d6 124 167 56 104

d7 101 173 35 41

d8 95 138 15 48

d9 102 96 30 45

d10 144 150 51 91

d11 98 131 47 53

d12 151 127 41 127

d13 105 116 16 56

d14 119 127 29 55

d15 113 120 108 29

d16 112 50 20 31

d17 168 47 21 134

d18 107 48 30 60

d19 136 191 101 114

d20 172 142 57 153

d21 131 171 107 51

d22 176 144 73 159

d23 137 68 30 43

d24 94 173 94 56

d25 167 72 8 91

d26 112 138 14 57

d27 134 147 33 103

d28 120 100 26 134

d29 134 68 21 141

d30 141 140 52 114

d31 145 69 14 96

d32 99 115 15 25

d33 141 182 15 139

d34 156 112 64 129

d35 102 26 15 48

d36 89 108 8 78

d37 131 65 12 107

d38 177 155 33 173

d39 111 78 18 50

d40 79 115 13 109

mean 125 113 36 85
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