
 Rule-based OWL Reasoning 1

 Running head: Rule-based OWL Reasoning Systems

Rule-based OWL Reasoning Systems: Implementations, Strengths and Weaknesses

Georgios Meditskos and Nick Bassiliades

Department of Informatics, Aristotle University of Thessaloniki, Greece

 Rule-based OWL Reasoning 2

ABSTRACT

This chapter is focused on the basic principles behind the utilization of rules in order to perform
reasoning about the Web Ontology Language (OWL), a Description Logic-based language that is
the W3C recommendation for creating and sharing ontologies in the Semantic Web. More
precisely, we elaborate on the entailment-based OWL reasoning (EBOR) paradigm, which is
based on the utilization of RDF/RDFS and OWL entailment rules that run on a rule engine,
applying the formal semantics of the ontology language. To this end, seven EBOR systems are
described and compared, analyzing the different approaches. Despite the closed rule
environment, which comes in contrast with the open nature of the Semantic Web, and the fact
that OWL semantics are partially mapped into rules, the rule-based OWL reasoning paradigm
can give great potentials in the Semantic Web, enabling the utilization of rule engines on top of
ontology information.

 Rule-based OWL Reasoning 3

Rule-based OWL Reasoning Systems: Implementations, Strengths and Weaknesses

INTRODUCTION

Rule-based systems have been extensively used in several applications and domains, such as e-
commerce, personalization, games, businesses and academia. They offer a simplistic model for
knowledge representation for both domain experts and programmers; experts usually find it
easier to express knowledge in a rule-like format and programmers usually find rule-based
programming easier to understand and manipulate, decoupling computation from control. The
first is performed by the rules whereas the latter is determined by the rule engine itself, that is
when and how to apply the rules. In that way, it is more easily to add new rules or data,
especially in continuously changing environments.

Nowadays, the Web has been evolved in a large repository of information and has
become a useful means of communication and knowledge sharing. However, in order to exploit
the Web to its full extent, information should become understandable not only to humans but
also to machines. Towards this need, the Semantic Web initiative (W3C, 2008) works on
standards, technologies and tools in order to give to the information a well-defined meaning,
enabling computers and people to work in better cooperation. It is also worth mentioning the
effort to design and build semantic Web services (Paolucci & Sycara, 2003), that are
semantically annotated Web services using service description standards based on ontologies
(OWL-S, 2004; Roman et al., 2005). Ontologies are considered as a primary key for the
Semantic Web since they provide a controlled vocabulary of concepts, each with explicitly
defined and machine processable semantics. The Web Ontology Language (OWL) (McGuinness
& Harmelen, 2004) is the W3C recommendation for creating and sharing ontologies on the Web.
It provides the means for ontology definition and specifies formal semantics on how to derive
new information.

There are mainly two modeling paradigms for the Semantic Web. The first paradigm is
based on the notion of the Classical Logics, such as the Description Logics (Baader, 2003) on
which the OWL is based. In this case, the semantics of OWL ontologies can be handled by DL
reasoning systems, such as Pellet (Sirin, Parsia, Grau, Kalyanpur & Katz, 2007), RacerPro
(Haarslev & Moller, 2003) and Fact++ (Tsarkov & Horrocks, 2006) that reuse existing DL
algorithms, such as tableaux-based algorithms (Baader & Sattler, 2001). The other paradigm is
based on the Datalog paradigm. In this case, a subset of the OWL semantics is transformed into
rules that are used by a rule engine in order to infer implicit knowledge. There are major
differences between these two paradigms, including computational and expressiveness aspects.
For example, the DL reasoning engines have a rather inefficient instance reasoning performance,
whereas rules are insufficient to model certain situations related to the open nature of the
Semantic Web. Obviously, the selection of the most suitable modeling paradigm depends on the
domain and the needs of the application.

This chapter is focused mainly on the practical aspects of the implementation of a rule-
based OWL reasoning system using OWL entailment rules (Horst, 2005), describing the way a
rule engine can be used in order to reason about OWL ontologies. After a short background
about the Semantic Web, the OWL language and the basic approaches behind the combination of
rules and ontologies, a description of the basic foundations of the EBOR paradigm is given,
explaining the way the entailment rules can operate over ontological data in order to apply
semantic relationships. Furthermore, the benefits and limitations are discussed between the

 Rule-based OWL Reasoning 4

approach of building a rule-based OWL reasoning system based on a general-purpose rule
engine and developing from scratch an OWL-aware rule engine. To this end, seven existing
EBOR systems are described and compared that follow different implementation directions.

The chapter presents also the basic arguments of the debate about the suitability of the
Classical and the Datalog paradigms for the Semantic Web. Notions such as the open and closed-
world semantics, the unique name assumption and the reasoning complexity are addressed for
each modeling paradigm, highlighting the basic differences.

BACKGROUND

Semantic Web and the Web Ontology Language

Today’s Web is suitable for human consumption and is organized around content presentation
and not information meaning. The Semantic Web vision (Berners-Lee, Hendler & Lassila, 2001)
emerged after Information Retrieval received great attention in the late 90s and the term
metadata was coined. Metadata is often described as “data about data” and is used to facilitate
the understanding, use and management of other data.

Machines should be able to reason over the represented data, drawing conclusions that
seem obvious to humans but not to machines. Reasoning and logic have been under extensive
study in AI and their ultimate goal is to make implicit knowledge explicit. Using automated
reasoning in the Semantic Web can help uncover implicit knowledge hidden into metadata.

The Semantic Web initiative (W3C, 2008) tries to solve problems related to knowledge
representation by suggesting standards, tools and languages for information annotation. Semantic
Web can be considered as an extension of the current Web where information has unambiguous
and well-defined meaning, enabling machines/agents to understand the semantics of the
information and not only base on the syntax. Ontologies play a key role to the evolution of the
Semantic Web and are widely used to represent knowledge by describing data in a formal and
explicit way.

The Web Service Modeling Language (WSML) (de Bruijn, Lausen, Polleres, & Fensel,
2006) defines a syntax and semantics for ontology descriptions. The goal of the development of
WSML is to investigate the usage of different formalisms, most notably Description Logics
(DLs) and Logic Programming (LP), in the context of Ontologies and Web services. There are
five variants of WSML, namely WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and
WSML-Full, with different logical expressiveness and underlying language paradigms, allowing
users to choose between expressiveness and complexity. WSML is based on the conceptual
model of WSMO (Roman et al., 2005).
 The Web Ontology Language (OWL) (McGuinness & Harmelen, 2004) is the W3C
recommendation for creating and sharing ontologies in the Web and its theoretical background is
based on the DL (Baader, 2003) knowledge representation formalism, a subset of predicate logic.
It has been emerged as the solution to the expressive limitations of RDF and RDF Schema
(RDFS) (Hayes, 2004) that offer the possibility to define only simple hierarchical relationships
among concepts and properties, domain and range property restrictions and instances of
concepts. OWL is a richer vocabulary description language for describing properties and classes,
such as relations between classes (e.g., disjointness), cardinality (e.g. “exactly one”), equality,
richer typing of properties, characteristics of properties (e.g., symmetry), and enumerated classes
(Antoniou & Harmelen, 2004).

 Rule-based OWL Reasoning 5

 The formal semantics of the OWL language enable the application of reasoning
techniques in order to make logical derivations, involving class membership, equivalent classes,
ontology consistency, and instance classification. These derivations are performed by the
reasoners, which are systems able to handle and apply the semantics of the ontology language. A
general reasoning procedure is depicted in Figure 1 and involves two phases, namely the
mapping phase of the asserted knowledge into a knowledge representation formalism and the
application of an inference mechanism in order to perform the basic derivations.

Figure 1. The abstract architecture of an OWL reasoner.

An OWL ontology is actually a finite set of DL axioms, such as axioms about concepts,
concept inclusions (C D), role definitions, role inclusions (R S), concept assertions (C(a))
and role assertions (R(a, b)), where C, D are concepts, R, S are roles and a, b are instances. These
axioms can be divided into two categories, namely the TBox and the ABox of the ontology
(Baader, 2003). The TBox consists of the concept and role definitions/inclusions, and the ABox
of concept and role assertions. Intuitively, the TBox refers to the schema of the ontology,
whereas the ABox to the instances.

 The ability to extract new information is a critical characteristic of every reasoning
system and defines its reasoning completeness and soundness. Unfortunately, there is a tradeoff
between scalability, in terms of reasoning performance, and ontology language expressiveness.
The more expressive is the language the less efficient is the reasoning performance. For that
reason, OWL comes in three flavors, namely OWL Lite (SHIN(D)), OWL DL (SHOIQ(D)) and
OWL Full, having different expressiveness. This is achieved by restricting the available
constructs that can be used or by restricting the way that each construct can be used during the
modeling of a domain. OWL Full is syntactically and semantically upward-compatible with
RDF, allowing the use of all the OWL languages primitives. It also allows the combination of
these primitives in arbitrary ways with RDF and RDF Schema. However, this great degree of
expressiveness does not offer computational guarantees. Thus, most reasoning systems target at
the OWL DL and OWL Lite sublanguages. OWL DL restricts the way the constructors from
OWL and RDF may be used, whereas OWL Lite further restricts the language constructors of
OWL DL (Antoniou & Harmelen, 2004; McGuinness & Harmelen, 2004). In terms of the
WSML variants, OWL Lite is a semantic superset of WSML-Core, whereas OWL DL is
semantically equivalent to WSML-DL.

 Rule-based OWL Reasoning 6

OWL is built upon RDF and RDFS and has the same syntax, the XML-based RDF syntax
(Beckett & McBride, 2004). We present as an example the region ontology that describes the
concept Region, a transitive property subRegionOf and three instances with specific subRegionOf
relationships.

<owl:Class rdf:ID = "Region" />
<owl:TransitiveProperty rdf:ID = "subRegionOf" >
 <rdfs:domain rdf:resource="#Region" />
 <rdfs:range rdf:resource="#Region" />
</owl:TransitiveProperty>
<Region rdf:ID = "region1" />
<Region rdf:ID = "region2" >
 <subRegionOf rdf:resource="#region1" />
</Region>
<Region rdf:ID = "region3">

<subRegionOf rdf:resource="#region2" />
</Region>

 A more machine processable syntax is the N-Triples format (Grant & Beckett, 2004), that
is a textual format for RDF graphs which stems directly from the RDF/XML syntax. More
specifically, N-Triples is a line-oriented format where each triple must be written on a separate
line, and consists of a subject, a predicate, and an object, followed by a period. For example, the
region ontology can be represented in the N-Triple format with nine triples as:

t1: <Region> <rdf:type> <owl:Class> .
t2: <subRegionOf> <rdf:type> <owl:TransitiveProperty> .
t3: <subRegionOf> <rdfs:domain> <Region> .
t4: <subRegionOf> <rdfs:range> <Region> .
t5: <region1> <rdf:type> <Region> .
t6: <region2> <rdf:type> <Region> .
t7: <region3> <rdf:type> <Region> .
t8: <region2> <subRegionOf> <region1> .
t9: <region3> <subRegionOf> <region2> .

OWL Ontologies and Rules

The development of Semantic Web proceeds in layers where each layer is built on top of the
others (Berners-Lee et al., 2001). Currently, the ontology layer has reached a sufficient level of
maturity, having OWL as the basic form for ontology definition. The next step is to move on the
higher levels of unifying logic and proof, which are built on top of the ontology layer. In the
latest version of the Semantic Web stack, rules lay next to the ontology layer and they are
considered as the primary key, since (a) they can serve as extensions of, or alternatives to, DL
based ontology languages and (b) they can be used to develop declarative systems using
ontological information.

The Benefits of Combining DLs and Rules

Although there is a lot of debate about the suitability of Logic Programming (LP) in the
domain of the Semantic Web, many research efforts have been focused on the mapping,
intersection or combination of DLs and LP in order to overcome the shortcomings that emerged

 Rule-based OWL Reasoning 7

during the development of practical OWL applications (Patel-Schneider & Horrocks, 2006;
Motik, Horrocks, Rosati & Sattler, 2006). Such approaches are important for many aspects of the
Semantic Web, such as

• Querying: It is interesting to consider combining DLs with the rule paradigm in order to
state expressive instance queries, since DL reasoning engines have rather a low ABox
reasoning and querying performance (Haarslev & Moller, 1999; Horrocks, Li, Turi &
Bechhofer, 2004a; Hitzler & Vrandecic, 2005).

• Non-monotonicity: DLs follow the principle of the open-world assumption (monotonic).
However, sometimes it is preferable to introduce non-monotonicity in the DLs (Motik et
al., 2006), e.g. the notion of negation as failure in logic programs. In that way, it is
possible to incorporate the semantics of closed-world reasoning over DL knowledge
bases that are used in relational databases.

• DLs’ expressivity: Rules can serve as extensions of description logic based ontology
languages (Horrocks & Sattler, 2004c; Horrocks, Kutz & Sattler, 2006), allowing the
definition of richer semantic relationships.

• Integrity constraints: Sometimes is useful to be able to define integrity constraints, i.e.
constraints over the ABox of the ontology. For example, the ontology that contains the
axioms Person hasSSN.SSN and Person(george) is satisfiable in OWL, even if we do
not define an SSN number for george (open-world semantics). By introducing integrity
constraints, we are able to treat such cases as checks, rather than deriving new
information (Motik, Horrocks, & Sattler, 2007).

Intersection of DLs and Logic Programming

Grosof, Horrocks, Volz and Decker (2003) define the intersection of LP and DL, namely
the Description Logic Programs (DLP). Actually, DLP is the most expressive sublanguage of
OWL DL that can be efficiently mapped to Datalog and it is simpler than OWL Lite. In that way,
it is possible to interoperate between rules and ontologies, transforming LP to DL and vice versa.

WSML-Core corresponds with the intersection of DL and Horn Logic (DLP) (without
function symbols and without equality), extended with datatype support in order to be useful in
practical applications. WSML-Core is fully compliant with a subset of OWL.

While DLP is the intersection of LP and DL, the OWL Flight (de Bruijn, Lara, Polleres &
Fensel, 2005) is an ontology language based totally on the LP subset of OWL. It is inspired by
DLP and imposes certain extensions in the area of datatypes, database-style constraints, such as
cardinality and value constraints, and meta-modeling. OWL Flight restricts the OWL syntax such
that it falls in the Datalog fragment and thus query answering can be done using an LP
implementation. WSML-Flight and WSML-Rule are based on the LP paradigm, rather than the
DL paradigm. They allow non-monotonic negation but do not allow classical negation, full
disjunction and existential quantification.

Mapping of DLs on Logic Programming

Van Belleghem, Denecker and De Schreye (1997) present a mapping of DL knowledge
bases in ALCN to open logic programs, exploring the computational correspondences between a
typical algorithm for DL inference and the resolution procedure for open logic programs. Baral

 Rule-based OWL Reasoning 8

(2003) and Swift (2004) reduce inference in the DL ALCQI to query answering from the answer
sets of logic programs. Horst (2004) defines the pD* semantics (entailments) as a weakened
variant of OWL Full and then (Horst, 2005) the pD* semantics were extended to apply to a
larger subset of the OWL vocabulary. Meditskos and Bassiliades (2008a) combine a DL reasoner
with a dynamic implementation of entailment rules in order to increase scalability. Reduction
(Hustadt, Motik & Sattler, 2004; Motik et al., 2006) is also a way of building a reasoning system
reducing a DL KB to disjunctive Datalog programs.

Combing DL and Logic Programming

The major flaw of the mapping approaches is the fact that there is not an unrestricted
mapping of OWL semantics into the rule paradigm, and thus the resulting languages have
restricted semantics, handling a subset of OWL DL. To solve this expressivity problem, many
research efforts have been focused on the combination of DL and LP. Such a combination is
realized following either a hybrid or a homogeneous approach (Antoniou et al., 2005).

Hybrid approach: The hybrid combination follows a modular architecture of two subsystems,
each of which deals with a distinct portion of the knowledge base. More specifically, it combines
the reasoning capabilities of a DL reasoner and the rule execution capabilities of a rule engine in
order to define rules on top of the ontological information. Rule and ontology predicates are
strictly separated and the ontology predicates can be used as constraints in rules. The hybrid
approaches can be further classified into bidirectional and unidirectional, according to whether
the derived knowledge flows from the rule module to the DL module or not. In the former case,
DL constraints can be used in the head of the rules and thus, the ontological knowledge is
altered, allowing the development of ontologies on top of rules (Wang, Billington, Blee &
Antoniou, 2004; Rosati, 2006; Kattenstroth, May & Schenk, 2007). In the latter case, the
information flows only from the DL component to the rule component by allowing only rule
predicates to be used in rule bodies and thus the ontological information remains unchanged
(Donini, Lenzerini, Nardi & Schaerf, 1998; Levy & Rousset, 1998; Rosati, 1999; Eiter,
Lukasiewicz, Schindlauer & Tompits, 2004; Rosati, 2005; Drabent, Henriksson & Maluszynski,
2007).

Homogeneous approach: The homogeneous approaches treat rule and ontology predicates
homogeneously, as a new single logic language. The general idea is that the rules can use unary
and binary predicates from the ontology (i.e., classes and properties) as well as predicates that
occur only in rules (rules predicates). In order to maintain the decidability of the integrated
language, there is usually a safety condition that restricts variables occurring in the head of a rule
to those that occur in at least one positive rule predicate in the body of the rule. Intuitively, in
homogeneous approaches, the OWL semantics are mapped into a rule-based formalism, e.g.
Datalog rules that coexist in the KB with rule predicates, enhancing the expressivity. The
homogeneous approaches can be used either for building rule programs on top of ontologies or
ontologies on top of rules. Thus, a new reasoner is needed, able to handle the new homogeneous
language that emerges (Heymans, Predoiu, Feier, de Bruijn & Nieuwenborgh, 2006; Mei, Lin &
Boley, 2007; de Bruijn, Eiter, & Tompits, 2008). In fact, the mapping approaches we described
previously can be considered as the first step for building a homogeneous system (Horst, 2005;
Motik et al., 2006).

 Rule-based OWL Reasoning 9

Another proposal is the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004b),
a non-safe approach to the integration of rules and DLs in which rules are interpreted under the
classical first order logic semantics. The addition of this kind of rules to DLs leads to
undecidability of reasoning.
 In the following section we describe the basic principles of the entailment-based OWL
reasoning (EBOR) paradigm that enables the materialization of OWL semantics into the KB of a
rule engine using OWL entailment (inference) rules. It is actually based on the pD* semantics
where the DL knowledge base is mapped on a rule engine and the entailment rules are encoded
in the rule engine’s language. The EBOR paradigm can be considered as the first step in
realizing a homogeneous combination of OWL and rules in order to build rule programs on top
of ontologies, as well as ontologies on top of rule programs, since the rule program coexists with
the inference rules in the rule base, and thus, the rule execution is interleaved with the inference
procedure. Note that the EBOR paradigm by itself does not really bring many of the benefits of
adding rules to ontologies, such as integrity constraints, since it is a subset of OWL and it is
based on open-world semantics. However, by adding custom rules on the underlying rule engine,
we are able to fully exploit the benefits that stem from the combination of rules and ontologies.

ENTAILMENT-BASED OWL REASONING

The EBOR paradigm is realized by using a rule engine as the inference engine in the architecture
of Figure 1, implementing RDF/OWL entailment rules (Hayes, 2004; Horst, 2005).
 The semantics of RDF and RDFS can be captured using entailments rules (Hayes, 2004),
which are rules that denote the information that should be derived based on existing one.
Intuitively, an entailment rule is an if-then rule that denotes the knowledge that should be
inferred (rule head) based on existing knowledge (rule body). The body consists of RDF
statements, where variables can occupy any of the three possible positions in the triple (that of a
subject, of a predicate, or of an object). The head of the rule comprises of one or more
consequences, each of which represents in its turn an RDF statement. The consequences may not
contain free variables, i.e. such that are not used within the body of the rule. The list of the
RDF/RDFS entailments is defined in Hayes (2004). We give as an example the rdfs9 entailment
rule using the N-Triple notation.

if <c> <rdfs:subClassOf> <d> . ∧

<x> <rdf:type> <c> .
then <x> <rdf:type> <d> .

The rdfs9 entailment rule actually defines the subsumption characteristic of the
rdfs:subClassOf property: if there is an instance <x> defined to belong to the class <c>, and <c> is
defined as a subclass of the class <d>, then <x> is also of type <d>.

Although there is a complete set of RDF and RDFS entailments (Hayes, 2004), such a
complete set does not exist for OWL due to the great degree of expressiveness. Horst (2004)
defines the pD* semantics as a weakened variant of OWL Full and then in (Horst, 2005) the pD*
semantics were extended to apply to a larger subset of the OWL vocabulary, which includes
FunctionalProperty, InverseFunctionalProperty, sameAs, SymmetricProperty, TransitiveProperty,
inverseOf, equivalentClass, equivalentProperty, hasValue, someValuesFrom, allValuesFrom,
differentFrom and disjointWith. More precisely, the pD* semantics can be realized by 23 entailment
rules and 2 inconsistency rules. To exemplify, we present the rdfp4 entailment that handles the

 Rule-based OWL Reasoning 10

values of transitive properties that are defined using the owl:TransitiveProperty OWL construct
(Antoniou & Harmelen, 2004).

if <p> <rdfs:type> <owl:TransitiveProperty> . ∧

<s> <p> <x> . ∧
<x> <p> <z> .

then <s> <p> <z>.

The pD* semantics extend RDFS and they are defined in a way analogous to the if-
semantics of RDFS, leading to simple entailment rules that can be used to extend RDF reasoners.
In other words, we do not obtain the full power of OWL’s iff semantics in pD* semantics.
Instead, they represent a reasonable interpretation that is useful for drawing conclusions about
instances in an ontology and that lead to simple entailment rules with a relatively low
computational complexity (consistency is in P and entailment is NP-complete, and in P if there
are not blank nodes in the target graph). The pD* semantics are going to be standardized (at the
time this chapter was being written) as the OWL RL profile of OWL 2 (Motik et al., 2008).

In the EBOR paradigm, the asserted knowledge, that is the knowledge that stems directly
from the ontology definition, is mapped into an internal rule engine representation format, and
inference rules, which are expressed in the language of the rule engine, are applied in order to
deduce new knowledge or to check the consistency of the ontology, based on OWL entailments.
To exemplify, let S be the set of triples of an ontology, where S = {<A subClassOf B>, <x type
A>}. By implementing the rdfs9 entailment rule, we get that S = {<A subClassOf B>, <x type A>,
<x type B>}.

Therefore, for the development of an EBOR system, three issues should be tackled:
• Ontology mapping: An EBOR system should define a mapping procedure of the ontological

knowledge into the KB of the rule engine that uses. Usually, such a mapping procedure is
performed over the ontology triples. The purpose of this phase is to generate an internal, rule
engine-specific representation of the ontological information where the entailment rules will
be applied on.

• Inferencing process: An EBOR system should implement the desirable number of
entailment rules expressed in the engine’s rule language. This phase actually defines the
reasoning completeness of the EBOR system that usually comes with implementations of
different expressiveness according to the number of entailments that are implemented.

• Query support: An EBOR system should be able to answer queries about the semantic
derivations of its KB. Since the core system is a rule engine, the query infrastructure is
implemented with query rules. These query rules follow either the rule language of the
underlying rule engine, or they have a standard-based syntax (Wagner, Antoniou, Tabet &
Boley, 2004; Prud'hommeaux & Seaborne, 2008).

There are two approaches for the development of an EBOR system, namely the extended

and the native approach. An extended entailment-based OWL reasoning (E-EBOR) system is
built on top of an existing, general purpose rule engine that augments it with the ability of
manipulating ontological information. This incorporates the ability of transforming the
ontological information into facts and populating its rule base with the appropriate inference
rules. A native entailment-based OWL reasoning (N-EBOR) system is built from scratch and
draws conclusions directly on the OWL data model. Each approach has advantages and

 Rule-based OWL Reasoning 11

disadvantages and the right choice depends on the requirements of the application. More
specifically:

• Reasoning Performance: Since an N-EBOR system is built directly upon the OWL data

model, it has increased reasoning performance, as far as speed issues are concerned,
comparing it to the E-EBOR paradigm that does not apply any optimization in the way it
handles the ontological information. Thus, an N-EBOR system is an appropriate choice in the
cases where reasoning speed is a critical requirement.

• Ontology Utilization: The use of an E-EBOR system gives the opportunity to efficiently
utilize the ontology information by building rule-based applications. Ontologies can be
inserted into the system and, after the application of the inference rules, user-defined rules
can operate over the inferred knowledge. In that way, an EBOR system built on top of a
general purpose rule engine gives the opportunity to reuse the practicality, efficiency and
optimized techniques that rule engines have obtained throughout the years of their
development. On the other hand, an N-EBOR system built from scratch tends to throw away
decades of research and development on efficient and robust rule engines. Therefore, an E-
EBOR has increased capabilities concerning post-reasoning utilization of ontological
information into rule programs.

In the following sections we present in detail examples of E-EBOR and N-EBOR

systems, describing the way they map ontologies into their KBs, as well as the rule language that
use in order to implement the inference rules and to query the KB. For the legibility of the
description, we present also the way each system manipulates the region ontology we presented
in the beginning of the chapter.

Extended Entailment-based OWL Reasoning Systems

In this section we present three E-EBOR systems, namely OWLJessKB (Kopena, Regli, 2003),
F-OWL (Zou, Finin & Chen, 2004), and O-DEVICE (Meditskos & Bassiliades, 2008b).

OWLJessKB

OWLJessKB is built on top of the Jess (Friedman-Hill, 2003) production rule engine. Jess is an
Expert System Shell developed in the Java programming language. It uses an enhanced version
of the Rete algorithm (Forgy, 1982) to process rules. Jess has many unique features including
backwards chaining and working memory queries, and it can directly manipulate and reason
about Java objects.

The functionality of OWLJessKB involves the translation of OWL ontologies into RDF
triples and their transformation into Jess facts in order to build the KB on where the entailment
rules will be applied. More specifically, each RDF triple of the form <subject> <predicate>
<object> is transformed into a fact of the following Jess template construct:

(deftemplate triple (slot predicate) (slot subject) (slot object)).

In that way, an OWL ontology is represented in Jess as a set of template facts and OWL
semantics are implemented as Jess production rules over the KB. To exemplify, the triples of the
region ontology are transformed into the following Jess facts:

 Rule-based OWL Reasoning 12

j1: (triple (predicate "rdf:type") (subject "Region") (object "owl:Class")).
j2: (triple (predicate "rdf:type") (subject "subRegionOf") (object "owl:TransitiveProperty")).
j3: (triple (predicate "rdfs:domain") (subject "subRegionOf") (object "Region")).
j4: (triple (predicate "rdfs:range") (subject "subRegionOf") (object "Region")).
j5: (triple (predicate "rdf:type") (subject "region1") (object "Region")).
j6: (triple (predicate "rdf:type") (subject "region2") (object "Region")).
j7: (triple (predicate "rdf:type") (subject "region3") (object "Region")).
j8: (triple (predicate "subRegionOf") (subject "region2") (object "region1")).
j9: (triple (predicate "subRegionOf") (subject "region3") (object "region2")).

The entailment rules of OWLJessKB are actually Jess production rules that match the
facts that exist in the KB and deduce the implicit knowledge in the form of new facts. To
exemplify on the syntax of the entailments, we present the production rule for the manipulation
of the values of the transitive properties (rdfp4 entailment in (Horst, 2005)).

(defrule transitive-property

(triple (predicate "rdf:type") (subject ?prop) (object "owl:TransitiveProperty"))
(triple (predicate ?prop) (subject ?x) (object ?y))
(triple (predicate ?prop) (subject ?y) (object ?z))

=>
(assert (triple (predicate ?prop) (subject ?x) (object ?z)))

)

The application of the transitive rule over the facts of the region ontology results in the
assertion of the following inferred fact into the KB.

j10: (triple (predicate "subRegionOf") (subject "region3") (object "region1")).

The query infrastructure of OWLJessKB is based on the defquery construct of Jess, which
is a special kind of rule with no right-hand-side (RHS). A query is actually a pattern that is used
to search the working memory and the matched facts are returned in a list. In the region
ontology, we can retrieve all the instances of the Region concept that have in their subRegionOf
property the instance value region1 as

(defquery region-instances

(triple (subject ?s) (predicate "rdf:type") (object "Region"))
(triple (subject ?s) (predicate "subRegionOf") (object "region1"))

)

The example query matches both the j8 and j10 facts which can be retrieved using the
OWLJessKB Java API.

F-OWL

F-OWL is built on top of Flora2 (Yang, Kifer & Zhao, 2003), an implementation of the F-Logic
language (Kifer, Lausen & Wu, 1995) for data definition and querying that makes use of the
XSB Logic Programming and Deductive Database system (Sagonas, Swift & Warren, 1994). In
contrast to OWLJessKB that transforms ontology triples directly into Jess facts, F-OWL

 Rule-based OWL Reasoning 13

transforms ontology triples into the F-logic syntax, exploiting the semantics and the knowledge
representation paradigm of a frame-based syntax.

F-Logic is a deductive, object-oriented knowledge representation language based on
frames and extends first-order predicate calculus with:

• Objects with complex internal structure
• Class hierarchies and inheritance
• Typing
• Encapsulation

In this way, F-logic integrates the paradigms of logic programming and deductive

databases with the object-oriented programming paradigm, and it has been viewed as a natural
candidate for an ontology language due to its direct support for object-oriented concepts, its
frame-based syntax, and extensive support for meta-programming. More specifically:

• Ontology concepts: F-logic supports the definition of concepts, as well as a hierarchy of
concepts using subclass relationships, for example A :: B (A is subclass of B). In that way,
the Region concept with the subRegionOf property of the region ontology can be
represented as Region[subRegionOf *=>> Region], which is called a signature. The *=>>
symbol denotes a multivalue (=>> symbol), inheritable instance attribute (* symbol).
Since F-logic is tightly connected to the object-oriented programming paradigm, the
hierarchical relationships encapsulate property inheritance as well as class membership
transitivity.

• Ontology instances: The definition of an instance in F-logic incorporates the declaration
of the concept to where it belongs (: notation), as well as the values in the corresponding
properties. In that way, the three instances of the region ontology can be represented as:

region1:Region.
region2:Region.
region3:Region.
region2[subRegionOf =>> region1].
region3[subRegionOf =>> region2].

F-OWL maps the ontology triples into Flora2 facts of the form triple(s, p, o) and applies a

set of transformation rules that generate the F-logic code. For example, the ontology triples are
transformed into Flora2 statements using the rule

S[P->>O] :- triple(S, P, O),

and the instance definitions are generated using the rule

A:B :- A[rdf_type ->> B].

Obviously, the transformation procedure of ontological information into the internal rule
engine representation format is more complicated in F-OWL than in OWLJessKB. However, F-
OWL achieves a more compact and human-friendly representation of the ontological information
than of OWLJessKB, exploiting object-oriented programming principles.

 Rule-based OWL Reasoning 14

OWL semantics are implemented as Flora2 Prolog-like rules that operate over the
generated KB. For example, the rule that implements the transitive entailment is defined as

S[P->>V] :- P[rdf_type->>owl_TransitiveProperty], S[P->>X], X[P->>V].

In that way, the following F-logic statement can be inferred in the region ontology,
denoting that region3 is related to the region1 instance through the subRegionOf property.

region3[subRegionOf =>> region1].

 Both the schema information associated with classes and the structure of individual
objects can be queried by simply putting variables in the appropriate syntactic positions in the
Prolog-like rules. Therefore, in order to retrieve all the instances of the Region concept with the
region1 instance in their subRegionOf property, we should define the following query:

X : Region [subRegionOf ->> region1].

O-DEVICE

O-DEVICE is built on top of the CLIPS production rule engine (Riley, 1991). Its reasoning
process is characterized by the transformation of ontological information into the object-oriented
model of the COOL language of CLIPS and the application of inference production rules over
the generated object-oriented schema. O-DEVICE has been also used in the domain of semantic
Web service discovery and composition (Meditskos & Bassiliades, 2007).

CLIPS is a RETE-based production rule engine written in C that was developed in 1985
by NASA's Johnson Space Center and it has undergone continual refinement and improvement
ever since. Today it is widely used throughout the government, industry and academia. One of
the most interesting capabilities of CLIPS is that integrates the production rule paradigm with the
object-oriented model, which can be defined using the COOL (CLIPS Object-Oriented
Language) language of CLIPS. In that way, classes, attributes and objects can be matched on the
production rule conditions (LHS), as well as to be altered on rules actions (RHS).

O-DEVICE transforms OWL ontologies into triples and applies a set of transformation
rules in order to generate a COOL-based object-oriented schema of classes, attributes (slots) and
objects. For example, the Region class and the subRegionOf property of the region ontology are
transformed into a COOL defclass construct and the ontology instances into COOL objects, as
follows:

(defclass Region
 (is-a owl:Thing)
 (subRegionOf (type INSTANCE-NAME)))

(make-instance region1 of Region)
(make-instance region2 of Region

subRegionOf region1)
(make-instance region3 of Region

subRegionOf region2)

 Rule-based OWL Reasoning 15

Although this approach seems similar to the one followed by F-OWL, there is one major
difference. The object-oriented model that is generated in O-DEVICE is fully compliant with
object-oriented principles, whereas F-OWL is based only partially on object-oriented principles.
To exemplify, consider the case where an ontology instance x is defined to belong to more than
one classes, such as:

<x> <rdf:type> <Class1> .
<x> <rdf:type> <Class2> .

 This case is represented directly in F-OWL, since Flora2 translates the F-logic statements
into facts in XSB, using the frame-based syntax only for representing the information, as

x:Class1
x:Class2

However, since O-DEVICE is based on object-oriented principles, such a definition is not
allowed, since every object can have only one class type. O-DEVICE handles this case by
creating a subclass T of the two classes and defines x to be an instance of T, that is:

(defclass T
 (is-a Class1 Class2))

(make-instance x of T)

The reasoning procedure of O-DEVICE separates the TBox and the ABox reasoning

activities, using static production rules for the former, in the same way as OWLJessKB and F-
OWL, whereas it follows a template-based methodology for the latter, generating domain-
dependent inference rules according to the degree of the expressiveness of the loaded ontology.
To exemplify, the template rule for property transitivity (rdfp4) is defined in O-DEVICE as

(defrule <rule-name>

(object (is-a <pd>) (name ?o1) (<p> $? ?o2 $?))
=>

(bind $?v1 (send ?o1 get-<p>))
(bind $?v2 (send ?o2 get-<p>))
(send ?o1 put-<p> (union $?v1 $?v2)))

where <pd> denotes the domain of the transitive property <p>. O-DEVICE generates these rules
at runtime, grounding the template (<>) elements with ontology TBox values. In that way, for k
transitive properties in an ontology, k transitive rules will be generated. For the region ontology,
one transitive inference rule for the subRegionOf will be generated as

(defrule subRegionOf

(object (is-a Region) (name ?o1) (subRegionOf $? ?o2 $?))
=>

(bind $?v1 (send ?o1 get-subRegionOf))
(bind $?v2 (send ?o2 get-subRegionOf))
(send ?o1 put-subRegionOf (union $?v1 $?v2)))

 Rule-based OWL Reasoning 16

The deductive rule language of O-DEVICE supports querying over OWL instances
represented as objects. The conclusions of deductive rules represent derived classes, whose
objects are generated by evaluating these rules over the current set of objects. Each deductive
rule is implemented as a CLIPS production rule that inserts a derived object when the condition
of the deductive rule is satisfied. More specifically, the query for the instances of the Region class
that have the region1 instance in their subRegionOf property is defined as

(deductiverule region-instances

?id<- (Region (subRegionOf $? [region1] $?))
=>

(DERIVED (result ?id)))

The query denotes that the objects that match the LHS of the rule will be collected as

property values in the result slot of the objects of the DERIVED class. Thus, the query will
generate two objects of the DERIVED class with an arbitrary OID, with the region2 and region3
instances in their result slot.

Native Entailment-based OWL Reasoning Systems

In this section we present four EBOR systems that use rule engines built from scratch, namely
Jena2 (McBride, 2001), Bossam (Minsu & Sohn, 2004), OWLIM (Kiryakov, Ognyanov &
Manov, 2005) and BaseVISor (Matheus, Baclawski & Kokar, 2006).

Jena2

Jena2 is a programmatistic environment that contains a rule-based reasoner which is used to
implement the RDFS and OWL entailment rules. Although the rule engine is also available as a
general purpose rule engine, we classify Jena2 as an N-EBOR system, since the rule engine
follows a triple-oriented syntax, mainly used for ontology reasoning. The reasoner supports rule-
based inference over RDF graphs and provides forward chaining, backward chaining and a
hybrid execution model. Actually, there are two internal rule engines: one forward chaining Rete
engine and one tabled datalog engine. They can be run separately or the forward engine can be
used to prime the backward engine which in turn will be used to answer queries.

The ontologies are transformed into triples, and inference rules are applied in order to
materialize the semantics in the form of inferred triples. This approach is similar to the
OWLJessKB system, rather than the frame-based approaches of F-OWL and O-DEVICE, with
the exception that OWLJessKB is based on a general purpose rule engine (Jess) and not on a
triple-oriented rule engine like the one that Jena2 uses over the RDF graphs.

In the forward chaining mode, any rules which fire and create additional triples, do so in
an internal deductions graph and can in turn trigger additional rules. There is a remove primitive
that can be used to remove triples and such removals can also trigger rules to fire in removal
mode. This cascade of rule firings continues until no more rules can fire. When the inference
procedure is completed, the inference graph will act as if it were the union of all the statements
in the original model together with all the statements in the internal deductions graph generated
by the rule firings. To exemplify on the forward chaining rule syntax of Jena, the transitive
entailment rule is implemented as

 Rule-based OWL Reasoning 17

[transProp-f: (?P rdf:type owl:TransitiveProperty), (?A ?P ?B), (?B ?P ?C) -> (?A ?P ?C)].

If the rule reasoner is run in backward chaining mode it uses an LP engine with a similar
execution strategy to Prolog engines. When the inference model is queried, then the query is
translated into a goal and the engine attempts to satisfy that goal by matching to any stored
triples and by goal resolution against the backward chaining rules. This is also the way F-OWL
performs inferencing based on Prolog-like rules. The backward chaining syntax of the transitive
entailment in Jena is defined as

[transProp-b: (?A ?P ?C) <- (?P rdf:type owl:TransitiveProperty), (?A ?P ?B), (?B ?P ?C)].

 The rule reasoner of Jena has the option of employing both the forward and backward
rule engines in conjunction (hybrid mode). The forward engine runs and maintains a set of
inferred statements in the deductions store. Any forward rules which assert new backward rules
will instantiate those rules according to the forward variable bindings and pass the instantiated
rules on to the backward engine. The hybrid rule syntax of the transitive entailment in Jena is
defined as

[transProp-h: (?P rdf:type owl:TransitiveProperty) ->

[transitiveProperty1b: (?A ?P ?C) <- (?A ?P ?B), (?B ?P ?C)]]

By applying one of the three reasoners we have described in the region ontology, the

triple (region3 subRegionOf region1) is inferred.
Queries are answered by using the backward chaining LP engine. Jena supports queries

written in the SPARQL RDF Query Language (Prud'hommeaux & Seaborne, 2008), a W3C
recommendation. The SPARQL query language consists of the syntax and semantics for asking
and answering queries against RDF graphs. It contains capabilities for querying by triple
patterns, conjunctions, disjunctions, and optional patterns. It also supports constraining queries
by source RDF graph and extensible value testing. Results of SPARQL queries can be ordered,
limited and offset in number, and presented in several different forms. To exemplify on
SPARQL syntax, we present the query that retrieves all the instances of the Region class that
have the region1 instance in their subRegionOf property.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?x
WHERE
{
 ?x rdf:type Region.
 ?x subRegionOf region1
}

Bossam

Bossam is a Rete-based forward chaining N-EBOR engine, which is equipped with extended
representational and extra-logical features:

• Support for both negation-as-failure and classical negation

 Rule-based OWL Reasoning 18

• Relieved range-restrictedness in the rule heads
• Remote binding for cooperative inferencing among multiple rule engines

Following the EBOR paradigm, Bossam imports and translates OWL ontologies into a

list of Bossam facts and then applies the OWL entailment rules expressed in the Buchingae rule
language of Bossam. The translation process of Bossam involves the transformation of OWL
documents into a collection of RDF triples and then each triple into a plain fact with three terms.
In that way, Bossam translates RDF triples involved in declaring OWL classes and restrictions
into 1-ary predicates, and the triples declaring property values into 2-ary predicates. Concerning
the region ontology, the generated Bossam facts are depicted below:

owl:Class(Region);
owl:TransitiveProperty(subRegionOf)
rdfs:domain(subRegionOf, Region)
rdfs:range(subRegionOf, Region)
Region(region1);
Region(region2);
Region(region3);
subRegionOf(region2, region1);
subRegionOf(region3, region2);

A typical rule definition structure of Bossam’s rule language is as follows:

rule ruleID is if condition-part then conclusion-part;

In the condition-part, the conditional elements are specified that should be true in order for the rule
to fire. In the conclusion-part, some new knowledge elements are entailed. To exemplify, the
transitive entailment rule is defined as

prefix owl = http://www.w3.org/2002/07/owl#;
rulebase transitiveProperty
{

rule TransProp is
if owl:TransitiveProperty(?p) and ?p(?x,?y) and ?p(?y,?z)

then ?p(?x,?z);
}

 However, the rule language of Bossam offers the opportunity to assert new rules in the
conclusion part of a rule. The pattern at the consequent part is called the rule template. Thus,
instead of deriving facts, Bossam generates rule instances from the rule templates. Therefore,
Bossam has built-in the feature that O-DEVICE implements with templates. For example, the
transitive rule can be defined also as

prefix owl = http://www.w3.org/2002/07/owl#;
rulebase transitivePropertyEx
{

rule TransPropEx is
if owl:TransitiveProperty(?p) then

assert if ?p(?x,?y) and ?p(?y,?z) then ?p(?x,?z);
}

 Rule-based OWL Reasoning 19

Concerning querying OWL ontologies, Bossam supports queries in the Buchingae rule

language. It is actually a rule without a conclusion-part, just like the defquery construct of
OWLJessKB. For example, in order to retrieve all the instances of the Region class that have the
region1 instance in their subRegionOf property, we should write

query region-instances is Region(?x) and subRegionOf(?x, region1);

OWLIM

OWLIM is a high-performance Storage and Inference Layer (SAIL) for Sesame (Broekstra,
Kampman, & van Harmelen, 2002), which performs reasoning based on forward-chaining of
entailment rules. The inferencing procedure is based on the TRREE dedicated OWL reasoning
engine. OWLIM is available in two versions:

• SwiftOWLIM performs reasoning and query evaluation in memory, while a reliable
persistence strategy assures data preservation, consistency, and integrity.

• BigOWLIM operates directly with binary persistence files, which allows it to scale to
billions of statements.

The TRREE engine can be configured with a set of inference rules, which determines the

supported semantics. Each rule has a set of premises, which conjunctively define the body of the
rule. The premises are RDF statements, which can contain free variables. The rule head contains
one or more consequences, each of which is an RDF statement, without free variables (safe
rules). The implementation of TRREE relies on a compile stage, when the entailment rules are
compiled into chunks of Java code that are merged together to generate the main entry point for
the reasoner. To exemplify on the syntax of the rule language of OWLIM, we present the syntax
of the transitive entailment rule.

Id: owl_TransProp
 p <rdf:type> <owl:TransitiveProperty>
 x p y [Constraint x != y]
 y p z [Constraint y != z]

 x p z

Queries are encoded in the SeRQL (SeRQL, 2008) language. To give an example, the
query for retrieving all the instances of the Region concept that have the region1 instance in their
subRegionOf property is defined as

select x

from {x} rdf:type {Region},
{x} subRegionOf {region1}

 Rule-based OWL Reasoning 20

BaseVISor

BaseVISor is a forward-chaining inference engine based on a Rete network optimized for the
processing of RDF triples that is able to process RuleML (RuleML, 2008) rules containing n-ary
predicates.

The Rete-based forward chaining inference engine is similar to Jess and CLIPS. The
primary difference is that it uses a simple data structure for its facts rather than arbitrary list
structures, which permits greatly enhanced efficiency in pattern matching which is at the core of
a Rete network. The facts are defined as triples with subjects, predicates and objects, following
an XML syntax. For example, the t1 triple of the region ontology is transformed as

<triple>

<subject resource=”Region”/>
<predicate resource=”rdf:type”/>
<object resource=”owl:Class”/>

</triple>

Rules are defined in the RuleML syntax within a rulebase with each rule consisting of a
body and a head element. BaseVISor has the built-in ability of converting such RuleML
rulebases into native BaseVISor code. In that way, the transitive entailment is represented as

<rule name="rdfp4">

<body>
<triple>

<subject variable="p"/>
<predicate resource="rdf:type"/>
<object resource="owl:TransitiveProperty"/>

</triple>
 <triple>
 <subject variable="u"/>

<predicate variable="p"/>
<object variable="v"/>

</triple>
<triple>

<subject variable="v"/>
 <predicate variable="p"/>

<object variable="w"/>
</triple>

</body>
<head>

<debug><param>rdfp4</param></debug>
<assert>

<triple>
<subject variable="u"/>
<predicate variable="p"/>
<object variable="w"/>

</triple>
</assert>

 </head>
</rule>

 Rule-based OWL Reasoning 21

It is possible to query the facts using the query element and placing in its content one or
more triples containing variables. The result of a query is a list of variable bindings that satisfy
the constraints of the query. For example, the query for retrieving the Region instances that have
the region1 in their subRegionOf property can be defined as

<query name="region-instances">

<triple>
<subject variable="X"/>
<predicate resource="rdf:type"/>
<object resource="Region "/>

</triple>
<triple>

<subject variable="X"/>
<predicate resource="subRegionOf"/>
<object resource="region1"/>

</triple>
</query>

DL VS RULE-BASED OWL REASONING

There is a lot of debate about the suitability of the LP paradigm in the domain of Semantic Web.
In this section we are focused on the comparison of the DL reasoning paradigm that embodies
the Classical Logic, and the rule-based OWL reasoning paradigm that embodies the Datalog
paradigm.

Open and Closed-World Semantics

One of the most controversial topics of discussion is related to the open nature of the Semantic
Web. Since in this environment it is difficult to have the complete information modeled into an
application, the assumption that the lack of information is equivalent to negative information
(negation as failure) seems improper. To this end, the Classical paradigm seems more
appropriate for modeling in the Semantic Web since it follows the open-world assumption
(OWA), that is, unstated information does not necessarily mean negated information. On the
other hand, the Datalog paradigm follows the closed-world assumption (CWA), that is, all the
relevant information is explicitly known and thus unprovable facts should be assumed not to
hold. For example, consider the two statements friendOf(George, Nick) and friendOf(George, Peter)
that denote the friends of George. The Datalog paradigm assumes that George has only these two
friends, whereas the Classical paradigm does not exclude the possibility of George to have more
friends.
 Although the Classical paradigm seems more appropriate for the open nature of the
Semantic Web, there are many cases that require closed-world reasoning, such as database
applications or applications that require queries about negative information. In these cases the
Datalog paradigm has an advantage since it natively supports such kind of reasoning. For
example, consider a database with the students of a university department. In order to answer a
query about whether a person is a student at the department, a form of closed-world reasoning is
required, whereas such queries cannot be answered following the Classical paradigm of OWL.
The notion of closed-world reasoning can be emulated in the Classical paradigm, based on the
way the results are interpreted. In that way we can treat the query results of the Classical

 Rule-based OWL Reasoning 22

paradigm as information that is "known to hold". For example, a query for the friends of George
will return Nick and Peter and thus, we can say that these are the two persons that "is known to be
George’s friends". However the native closed-world reasoning ability of the rule paradigm is
more intuitive and practical in the domains that require such type of reasoning.

Unique Name Assumption

In the Classical Logic two different name identifiers do not necessarily mean that they are
different objects, in contrast to the Datalog paradigm where different identifiers always denote
different objects (unique name assumption - UNA). The approach of Classical Logic fits better in
the domain of Semantic Web where, due to the decentralized nature, people might use different
identifies to denote the same individual. For example, OWL supports the notion of the functional
property (owl:FunctionalProperty) that denotes that there cannot be two distinct values y and z such
that the pairs (x,y) and (x,z) are both instances of the property. Thus, if there is a functional
property hasBiologicalMother and two statements

hasBiologicalMother(George, Maria)
hasBiologicalMother(George, Eva),

then Maria and Eva will be inferred to be the same individuals. Such possibility does not exist in
the Datalog paradigm that follows the UNA. However, there are critical situations where we
want the UNA to hold, otherwise the system could result in false inferences due to mistakes
either at the ontology level or at the instance level, such as names of seats in an airplane (de
Bruijn et al., 2005). Although in Classical Logic the UNA does not hold by default, there is the
possibility of expressing the UNA for a set of individual, for example the owl:AllDifferent OWL
construct, whereas in Datalog different names always identify different objects. However, the
native UNA behavior of rule engines seems more practical especially in cases with large number
of instances.

Reasoning with Incomplete Information

The open nature of the Semantic Web requires also the ability to reason with incomplete
information, that is, the ability to state something about a resource without providing the
complete information. For example, it is useful to say that George has at least two friends,
without stating who they are or the exact number of his friends. This case can be defined in
OWL stating that George ∈ ≥2 friendOf (cardinality restrictions). However, in Datalog such
relationships can not be stated since the relationships can be expressed only over named
individuals that exist in the KB (CWA). Even if two arbitrary individuals are generated to play
the role of the two friends of George, this would incorrectly affect the total number of his friends
due to the UNA.

The same holds in the case of a concept definition where local property range constraints
are provided. For example, in the Classical paradigm we can state that the parents of a person are
also instances of the class Person as Person ∀parent.Person (universal quantifiers). In Datalog
such constraint can be represented as

← Person(x) ∧ parent(x, y) ∧ ¬Person(y).

 Rule-based OWL Reasoning 23

However, the two modeling paradigms have a conceptually different intention. In
Classical Logic, the notion of constraint allows performing additional inferences. Thus, the
statement parent(George, Peter) is valid in the Classical paradigm, inferring also that
Person(Peter), whereas in Datalog is not valid. In Datalog, the notion of constraints is more
similar to the notion of the database constraints in order to restrict the value into a specific type.
Furthermore, the above restriction can be modeled in Datalog as

Person(y) ← Person(x) ∧ parent(x, y).

Such a rule requires that every person has a known parent, and thus can only be applied
on named individuals that exist in the KB. Therefore, OWL offers more inferencing capabilities,
while Datalog has native support for capturing application inconsistencies.

Reasoning Complexity

The size of the web is overwhelming and one of the most important requirements in real world
ontology applications is the ability of reasoning over large number of instances (ABox
reasoning). The Tableaux-based algorithms, on which the DL reasoning paradigm is based,
provide efficient and optimized TBox reasoning, that is the computation of the subsumption
hierarchy, but they do not provide efficient ABox reasoning and consequently, query answering
capabilities. For example, the reasoning in OWL DL is NEXPTIME-complete (Horrocks &
Patel-Schneider, 2003). Although there are many efforts towards the development of efficient
reasoning algorithms (Haarslev & Moller, 1999; Horrocks et al., 2004a; Hitzler & Vrandecic,
2005), efficient ABox reasoning is still an open issue.

In contrast to the increased complexity of the Classical Logic, the polynomial-time
reasoning complexity of the Datalog paradigm is very attractive. However, a direct comparison
of the reasoning complexity of the two paradigms seems unfair. The DL reasoning paradigm has
increased inferencing capabilities, enabling it to reason over the incomplete information of the
open environment of the Semantic Web. On the other hand, the polynomial reasoning time of
Datalog is achieved when the query answering is performed against a fixed program, that is, over
unchanged instances. Otherwise, the complexity becomes exponential. The same holds for more
expressive Datalog versions, such as the Datalog¬∨ with negation as failure in the body and
disjunction in the head of rules, where complexity goes beyond polynomial time (Eiter, Gottlob
& Mannila, 1997). Therefore, the reasoning complexity is proportional to the expressivity we
want to incorporate during modeling.

CONCLUSIONS

The advantages that stem from the rule-based representation paradigm, such as the flexible and
declarative way of specifying knowledge or the simplicity it offers during transfer of knowledge
between different parties, have been quickly identified and rules have become an inextricable
part of many real-world applications. The importance of rules has motivated many
standardization organizations to work on the recommendation of a common rule standard, such
as the RuleML (RuleML, 2008), W3C (W3C, 2008) and the OASIS (OASIS, 2008) initiatives. It
is worth to mention the OMG Production Rule Representation (OMG, 2008) that works towards
the specification of a standard for platform-independent expression of production rules.

 Rule-based OWL Reasoning 24

In this chapter we addressed the basic principles behind the utilization of rules in order to
handle OWL ontological information. Such utilization is based on two approaches. Firstly, rules
can be considered as alternatives to the OWL language, mapping a subset of DL into the LP
paradigm. Secondly, rules can be combined with the OWL language, enhancing the semantics.
Such combinations can be either hybrid, based on the inferencing capabilities of a DL
component and a rule engine to run the rules, or homogeneous, where rule and ontology
predicates are treated homogeneously as a single logic language with new semantics.
 The chapter is mainly focused on presenting the practical aspects of the utilization of rule
engines towards the development of entailment-based OWL reasoning (EBOR) systems for
handling the OWL language. In fact, this is the first step towards the development of a
homogeneous system for building rules on top of ontologies, as well as ontologies on top of
rules. Towards this end, we presented the notion of RDF and OWL entailment rules and a
classification of the EBOR paradigm into extended and native, according to the nature of the
underlying rule engine. We presented three extended (OWLJessKB, F-OWL and O-DEVICE)
and four native (Jena2, Bossam, OWLIM and BaseVISor) EBOR systems, describing (a) the
distinctive implementation aspects of each system, (b) their rule languages, presenting the way
the RDF/OWL entailments are implemented, and (c) the query languages they use in order to
retrieve ontological resources. F-OWL and O-DEVICE are motivated by the similarities that
exist between OWL and the object-oriented paradigm, whereas the other approaches follow a
triple-based functionality. Furthermore, F-OWL uses a Prolog-like and Jena2 can use a backward
chaining inference engine, whereas the other approaches follow the production rule paradigm
where the inferred triples are computed and stored a priori in the KB.
 We presented also a comparison regarding the DL and the rule-based reasoning
paradigms. Since OWL is based on the DL formalism, existing sound and complete DL
reasoning systems can be used for reasoning on ontologies. However, they have some
limitations, such as inefficient ABox reasoning capabilities or the inability to handle complex
and large rule programs, since they are not rule engines. Thus, although the rule-based reasoning
paradigm offers less expressivity, it is closer to real-world application domains, such as database
applications where there is the need for type constraints rather than high inferencing capabilities.
Nevertheless, each modeling paradigm has its own weaknesses and strengths, depending on the
application domain it is applied.

 Rule-based OWL Reasoning 25

REFERENCES

Antoniou, G., & Harmelen, F. (2004). A Semantic Web Primer. Cooperative Information
Systems. MIT Press.

Antoniou, G., Damasio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., & Patel-
Schneider, P.F. (2005). Combining Rules and Ontologies. A Survey. Reasoning on the Web with
Rules and Semantics, REWERSE Deliverables.

Baader, F. (2003). The Description Logic Handbook : Theory, Implementation and Applications.
Cambridge University Press.

Baader, F. and Sattler, U. (2001). An overview of tableau algorithms for description logics.
Studia Logica, 69(1), 5-40. Springer.

Baral, C. (2003). Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge. Cambridge University Press.

Beckett, D., & McBride, B. (2004). RDF/XML Syntax Specification (Revised). Retrieved April
14, 2008, from http://www.w3.org/TR/rdf-syntax-grammar/.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American
Magazine, 284(5), 34-43.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002). Sesame: A generic architecture for
storing and querying rdf and rdf schema. International Semantic Web Conference (pp. 64-68).

de Bruijn, J., Eiter, T., & Tompits, H. (2008). Embedding approaches to combining rules and
ontologies into autoepistemic logic. 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR2008), Sydney, Australia, September 16-19.

de Bruijn, J., Lausen, H., Polleres, A., & Fensel, D. (2006). The web service modeling language:
An overview, Proc. 3rd European Semantic Web Conf., June 2006.

de Bruijn, J., Lara, R., Polleres, A., & Fensel, D. (2005). OWL DL vs. OWL Flight: Conceptual
Modeling and Reasoning for the Semantic Web. In Proceedings of the International Conference
on World Wide Web (pp. 623-632), ACM Press.

Donini, F. M., Lenzerini, M., Nardi, D., & Schaerf, A. (1998). AL-log: Integrating Datalog and
Description Logics. Intelligent and Cooperative Information Systems, 10, 227-252.

Drabent, W., Henriksson, J., & Maluszynski, J. (2007). HD-rules: A Hybrid System Interfacing
Prolog with DL-reasoners. In Proceedings of Applications of Logic Programming to the Web,
Semantic Web and Semantic Web Services. Vol. 287 (pp. 76-90). CEUR-WS.

 Rule-based OWL Reasoning 26

Eiter, T., Gottlob, G., & Mannila, H. (1997). Disjunctive Datalog. ACM Transactions on
Database Systems, 22(3), 364-418.

Eiter, T., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2004). Combining Answer Set
Programming with Description Logics for the Semantic Web. In Proceedings of the International
Conference of Knowledge Representation and Reasoning (pp. 141-151). Morgan Kaufmann.

Forgy, C.L. (1982). Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. Artificial Intelligence, 19(1), 17-37.

Friedman-Hill, E. (2003). Jess in Action. Manning, Greenwich.

Grant, J., & Beckett, D. (2004). RDF Test Cases. Retrieved April 14, 2008, from
http://www.w3.org/TR/rdf-testcases/.

Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description Logic Programs:
Combining Logic Programs with Description Logic. In Proceedings of the International
Conference on World Wide Web (pp. 48-57). ACM Press.

Haarslev, V., & Moller, R. (1999). An Empirical Evaluation of Optimization Strategies for ABox
Reasoning in Expressive Description Logics. In Proceedings of the International Workshop on
Description Logics. Vol. 22. CEUR-WS.

Haarslev, V., & Moller, R. (2003). Racer: A Core Inference Engine for the Semantic Web. In
Proceedings of the International Workshop on Evaluation of Ontology-based Tools (pp. 27-36).

Hayes, P. (2004). RDF Semantics. Retrieved April 14, 2008, from http://www.w3.org/TR/rdf-
mt/.

Heymans, S., Predoiu, L., Feier, C., de Bruijn, J., & Van Nieuwenborgh, D. (2006). G-Hybrid
Knowledge Bases. In Proceedings of the Workshop on Applications of Logic Programming in
the Semantic Web and Semantic Web Services. Vol. 196. CEUR-WS.

Hitzler, P., & Vrandecic, D. (2005). The SCREECH OWL Reasoner - Scalable approximate
ABox reasoning for OWL. International Semantic Web Conference, Software Demo.

Horrocks, I., & Patel-Schneider, P. F. (2003). Reducing OWL Entailment to Description Logic
Satisfiability. In Proceedings of the International Semantic Web Conference (pp. 17-29).
Springer.

Horrocks, I., Li, L., Turi, D., & Bechhofer, S. (2004a). The Instance Store: Description Logic
Reasoning with Large Numbers of Individuals. In Proceedings of the Workshop on Description
Logics. Vol. 104 (pp. 31-40). CEUR-WS.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004b).
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Technical report, W3C

 Rule-based OWL Reasoning 27

Member Submission.

Horrocks, I., & Sattler, U. (2004c). Decidability of SHIQ with Complex Role Inclusion Axioms.
Artificial Intelligence, 160(1), 79-104. Elsevier.

Horrocks, I., Kutz, O., & Sattler, U. (2006). The Even More Irresistible SROIQ. In Proceedings
of the International Conference on Principles of Knowledge Representation and Reasoning (pp.
57-67). AAAI Press.

Horst, H.J. (2004). Extending the RDFS Entailment Lemma, In Proceedings of the International
Semantic Web Conference (pp. 77-91). Springer.

Horst, H.J. (2005). Completeness, Decidability and Complexity of Entailment for RDF Schema
and a Semantic Extension Involving the OWL Vocabulary, Journal of Web Semantics, 3(2–3),
79-115.

Hustadt, U., Motik, B., & Sattler, U. (2004). Reducing SHIQ-Description Logic to Disjunctive
Datalog Programs. In Proceedings of the International Conference on Knowledge Representation
and Reasoning (pp. 152-162). AAAI Press.

Kattenstroth, H., May, W., & Schenk, F. (2007). Combining OWL with F-Logic Rules and
Defaults. In Proceedings of the International Workshop on Applications of Logic Programming
to the Web, Semantic Web and Semantic Web Services. Vol. 287 (pp. 60-75). CEUR-WS.

Kifer, M., Lausen, D., & Wu, J. (1995). Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of ACM, 42(4), 741-843.

Kiryakov, A., Ognyanov, D., & Manov, F. (2005). OWLIM - A Pragmatic Semantic Repository
for OWL. In Proceedings of the International Workshop on Scalable Semantic Web Knowledge
Base Systems (pp. 182-192). Springer.

Kopena, J.B., & Regli, W.C. (2003). DAMLJessKB: A Tool for Reasoning with the Semantic
Web. 2nd Intl. Semantic Web Conference (ISWC2003).

Levy, A.Y., & Rousset, M. (1998). Combining Horn Rules and Description Logics in CARIN.
Artificial Intelligence, 104(1-2), 165-209. Elsevier.

Matheus, C., Baclawski, K., & Kokar, M. (2006). BaseVISor: A Triples-Based Inference Engine
Outfitted to Process RuleML and R-Entailment Rules. In Proceedings of the International
Conference on Rules and Rule Languages for the Semantic Web.

McBride, B. (2001). Jena, Implementing the RDF Model and Syntax Specification, In
Proceedings of the International Workshop on the Semantic Web. Vol. 40. CEUR-WS.

McGuinness, D. L. & Harmelen, F. (2004). OWL Web Ontology Language Overview, W3C
Recommendation, Retrieved April 14, 2008, from http://www.w3.org/TR/owl-features/.

 Rule-based OWL Reasoning 28

Meditskos, G., & Bassiliades, N. (2007). A Semantic Web Service Discovery and Composition
Prototype Framework Using Production Rules. Workshop on OWL-S: Experiences and Future
Developments, European Semantic Web Conference, Innsbruck.

Meditskos, G., & Bassiliades, N. (2008a). Combining a DL Reasoner and a Rule Engine for
Improving Entailment-based OWL Reasoning. International Semantic Web Conference (ISWC).
Karlsruhe, Germany.

Meditskos, G., & Bassiliades, N. (2008b). A Rule-Based Object-Oriented OWL Reasoner. IEEE
Transactions on Knowledge and Data Engineering, 20, 397-410.

Mei, J., Lin, & Z., Boley, H. (2007). ALC: An Integration of Description Logic and General
Rules, In Proceedings of the Web Reasoning and Rule Systems (pp. 163-177). Springer.

Minsu, J., & Sohn, J.C. (2004). Bossam: An Extended Rule Engine for OWL Inferencing. In
Proceedings of Rules and Rule Markup Languages for the Semantic Web (pp. 128-138).
Springer.

Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2008). OWL 2 Web
Ontology Language Profiles. OWL Working Group.

Motik, B., Horrocks, I., & Sattler, U. (2007). Adding Integrity Constraints to OWL, Proc. of the
Third OWL Experiences and Directions Workshop. CEUR.

Motik, B., Horrocks, I., Rosati, R., & Sattler, U. (2006). Can OWL and Logic Programming Live
Together Happily Ever After?. In Proceedings of the International Semantic Web Conference
(pp. 501-514). Springer.

OASIS (2008). Organization for the Advancement of Structured Information Standards.
Retrieved April 14, 2008, from www.oasis-open.org/.

OMG (2008). The Object Management Group (OMG), Retrieved April 14, 2008, from
http://www.omg.org/

OWL-S (2004). Semantic Markup for Web Services, Retrieved April 14, 2008, from
http://www.w3.org/Submission/OWL-S/

Paolucci, M., & Sycara, K. (2003). Autonomous Semantic Web Services. IEEE Internet
Computing, 7(5), 34-41.

Patel-Schneider, P. F., & Horrocks, I. (2006). Position Paper: A Comparison of Two Modelling
Paradigms in the Semantic Web. In Proceedings of the International Conference on World Wide
Web (pp 3-12). ACM Press.

Prud'hommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for RDF. W3C

 Rule-based OWL Reasoning 29

Recommendation. Retrieved April 14, 2008, from http://www.w3.org/TR/rdf-sparql-query/.

Riley, G. (1991). CLIPS: An Expert System Building Tool. Proceedings of the Technology
2001Conference, San Jose, CA.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C.,
Bussler, C., & Fensel, D. (2005). Web Service Modeling Ontology, Applied Ontology, 1(1), 77-
106.

Rosati, R. (1999). Towards expressive KR systems integrating datalog and description logics:
preliminary report. In Proceedings of the International Workshop on Description Logics. Vol. 22
(pp. 160-164). CEUR-WS.

Rosati, R. (2005). Semantic and Computational Advantages of the Safe Integration of Ontologies
and Rules. In Proceedings of Principles and Practice of Semantic Web Reasoning (pp. 50-64).
Springer.

Rosati, R. (2006). DL+log: Tight Integration of Description Logics and Disjunctive
Datalog. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning (pp 68-78). AAAI Press.

RuleML (2008). The Rule Markup Initiative. Retrieved April 14, 2008, from
http://www.ruleml.org/.

Sagonas, K., Swift, T., & Warren, D.S. (1994). XSB as an Efficient Deductive Database Engine,
ACM SIGMOD Record, 23(2), 442-453.

SeRQL (2008). The SeRQL query language. User Manual. Retrieved April 14, 2008, from
http://www.openrdf.org/doc/sesame/users/ch06.html

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A Practical OWL-DL
Reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51-53.

Swift, T. (2004). Deduction in Ontologies via ASP. In Proceedings of Logic Programming and
Nonmonotonic Reasoning (pp. 275-288). Springer.

Tsarkov, D. and Horrocks, I. (2006). Fact++ description logic reasoner: System description. In
Proceedings of Automated Reasoning (pp. 292-297). Springer.

Van Belleghem, K., Denecker, M., & De Schreye, D. (1997). A strong correspondence between
description logics and open logic programming. In Proceedings of the International Conference
on Logic Programming (pp. 346-360). MIT Press.

W3C (2008). The Semantic Web Activity. Retrieved April 14, 2008, from
http://www.w3.org/2001/sw/.

 Rule-based OWL Reasoning 30

Wagner, G., Antoniou, G., Tabet, S., & Boley, H. (2004). The Abstract Syntax of RuleML -
Towards a General Web Rule Language Framework. In Proceedings of the International
Conference on Web Intelligence (pp. 628-631). IEEE Computer Society.

Wang, K., Billington, D., Blee, J., & Antoniou, G. (2004). Combining Description Logic and
Defeasible Logic for the Semantic Web, In Proceedings of Rules and Rule Markup Languages
for the Semantic Web (pp. 170-181). Springer.

Yang, D., Kifer, M., & Zhao, C. (2003). FLORA-2: A Rule-Based Knowledge Representation
and Inference Infrastructure for the Semantic Web. In Proceedings of the International
Conference on Ontologies, Databases and Applications of Semantics (pp. 671-688). Springer.

Zou, Y., Finin, T., & Chen, H. (2004). F-OWL: An Inference Engine for Semantic Web. In
Proceedings of the International Workshop on Formal Approaches to Agent-Based Systems (pp.
238-248). Springer.

 Rule-based OWL Reasoning 31

KEY TERMS AND THEIR DEFINITION

1. Rule Engine: A computer program able to derive answers from a knowledge base based
on a set of rules.

2. Semantic Web: The extension of the current Web where information is given well-
defined meaning, enabling computers and people to work in better cooperation.

3. Ontology: A specification of a shared conceptualization using a formal language.
4. Web Ontology Language (OWL): The W3C recommendation for creating and sharing

ontologies on the Web.
5. Rule-based OWL Reasoning: The process of reasoning about OWL ontologies based on a

rule engine.
6. Description Logic Reasoning: The process of reasoning about OWL ontologies based on

Description Logic algorithms (e.g. tableaux-based algorithms).
7. Entailment Rule: An inference rule that defines the information that should be derived

based on existing ontological knowledge.

 Rule-based OWL Reasoning 32

LIST OF ACRONYMS

CWA: Closed-World Assumption
DL: Description Logic
DLP: Description Logic Programs
EBOR: Entailment-based OWL Reasoning
E-EBOR: Extended Entailment-based OWL Reasoning
LHS: Left-Hand Side
LP: Logic Programming
N-EBOR: Native Entailment-based OWL Reasoning
OID: Object ID
OWA: Open-World Assumption
RHS: Right-Hand Side
SWRL: Semantic Web Rule Language
UNA: Unique Name Assumption

