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ABSTRACT 

This chapter is focused on the basic principles behind the utilization of rules in order to perform 
reasoning about the Web Ontology Language (OWL), a Description Logic-based language that is 
the W3C recommendation for creating and sharing ontologies in the Semantic Web. More 
precisely, we elaborate on the entailment-based OWL reasoning (EBOR) paradigm, which is 
based on the utilization of RDF/RDFS and OWL entailment rules that run on a rule engine, 
applying the formal semantics of the ontology language. To this end, seven EBOR systems are 
described and compared, analyzing the different approaches. Despite the closed rule 
environment, which comes in contrast with the open nature of the Semantic Web, and the fact 
that OWL semantics are partially mapped into rules, the rule-based OWL reasoning paradigm 
can give great potentials in the Semantic Web, enabling the utilization of rule engines on top of 
ontology information. 
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Rule-based OWL Reasoning Systems: Implementations, Strengths and Weaknesses 
 

INTRODUCTION 

Rule-based systems have been extensively used in several applications and domains, such as e-
commerce, personalization, games, businesses and academia. They offer a simplistic model for 
knowledge representation for both domain experts and programmers; experts usually find it 
easier to express knowledge in a rule-like format and programmers usually find rule-based 
programming easier to understand and manipulate, decoupling computation from control. The 
first is performed by the rules whereas the latter is determined by the rule engine itself, that is 
when and how to apply the rules. In that way, it is more easily to add new rules or data, 
especially in continuously changing environments.  

Nowadays, the Web has been evolved in a large repository of information and has 
become a useful means of communication and knowledge sharing. However, in order to exploit 
the Web to its full extent, information should become understandable not only to humans but 
also to machines. Towards this need, the Semantic Web initiative (W3C, 2008) works on 
standards, technologies and tools in order to give to the information a well-defined meaning, 
enabling computers and people to work in better cooperation. It is also worth mentioning the 
effort to design and build semantic Web services (Paolucci & Sycara, 2003), that are 
semantically annotated Web services using service description standards based on ontologies 
(OWL-S, 2004; Roman et al., 2005). Ontologies are considered as a primary key for the 
Semantic Web since they provide a controlled vocabulary of concepts, each with explicitly 
defined and machine processable semantics. The Web Ontology Language (OWL) (McGuinness 
& Harmelen, 2004) is the W3C recommendation for creating and sharing ontologies on the Web. 
It provides the means for ontology definition and specifies formal semantics on how to derive 
new information. 

There are mainly two modeling paradigms for the Semantic Web. The first paradigm is 
based on the notion of the Classical Logics, such as the Description Logics (Baader, 2003) on 
which the OWL is based. In this case, the semantics of OWL ontologies can be handled by DL 
reasoning systems, such as Pellet (Sirin, Parsia, Grau, Kalyanpur & Katz, 2007), RacerPro 
(Haarslev & Moller, 2003) and Fact++ (Tsarkov & Horrocks, 2006) that reuse existing DL 
algorithms, such as tableaux-based algorithms (Baader & Sattler, 2001). The other paradigm is 
based on the Datalog paradigm. In this case, a subset of the OWL semantics is transformed into 
rules that are used by a rule engine in order to infer implicit knowledge. There are major 
differences between these two paradigms, including computational and expressiveness aspects. 
For example, the DL reasoning engines have a rather inefficient instance reasoning performance, 
whereas rules are insufficient to model certain situations related to the open nature of the 
Semantic Web. Obviously, the selection of the most suitable modeling paradigm depends on the 
domain and the needs of the application.  

This chapter is focused mainly on the practical aspects of the implementation of a rule-
based OWL reasoning system using OWL entailment rules (Horst, 2005), describing the way a 
rule engine can be used in order to reason about OWL ontologies. After a short background 
about the Semantic Web, the OWL language and the basic approaches behind the combination of 
rules and ontologies, a description of the basic foundations of the EBOR paradigm is given, 
explaining the way the entailment rules can operate over ontological data in order to apply 
semantic relationships. Furthermore, the benefits and limitations are discussed between the 
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approach of building a rule-based OWL reasoning system based on a general-purpose rule 
engine and developing from scratch an OWL-aware rule engine. To this end, seven existing 
EBOR systems are described and compared that follow different implementation directions.  

The chapter presents also the basic arguments of the debate about the suitability of the 
Classical and the Datalog paradigms for the Semantic Web. Notions such as the open and closed-
world semantics, the unique name assumption and the reasoning complexity are addressed for 
each modeling paradigm, highlighting the basic differences. 
 

BACKGROUND 

Semantic Web and the Web Ontology Language 

Today’s Web is suitable for human consumption and is organized around content presentation 
and not information meaning. The Semantic Web vision (Berners-Lee, Hendler & Lassila, 2001) 
emerged after Information Retrieval received great attention in the late 90s and the term 
metadata was coined. Metadata is often described as “data about data” and is used to facilitate 
the understanding, use and management of other data. 

Machines should be able to reason over the represented data, drawing conclusions that 
seem obvious to humans but not to machines. Reasoning and logic have been under extensive 
study in AI and their ultimate goal is to make implicit knowledge explicit. Using automated 
reasoning in the Semantic Web can help uncover implicit knowledge hidden into metadata. 

The Semantic Web initiative (W3C, 2008) tries to solve problems related to knowledge 
representation by suggesting standards, tools and languages for information annotation. Semantic 
Web can be considered as an extension of the current Web where information has unambiguous 
and well-defined meaning, enabling machines/agents to understand the semantics of the 
information and not only base on the syntax. Ontologies play a key role to the evolution of the 
Semantic Web and are widely used to represent knowledge by describing data in a formal and 
explicit way.  

The Web Service Modeling Language (WSML) (de Bruijn, Lausen, Polleres, & Fensel, 
2006) defines a syntax and semantics for ontology descriptions. The goal of the development of 
WSML is to investigate the usage of different formalisms, most notably Description Logics 
(DLs) and Logic Programming (LP), in the context of Ontologies and Web services. There are 
five variants of WSML, namely WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and 
WSML-Full, with different logical expressiveness and underlying language paradigms, allowing 
users to choose between expressiveness and complexity. WSML is based on the conceptual 
model of WSMO (Roman et al., 2005). 
 The Web Ontology Language (OWL) (McGuinness & Harmelen, 2004) is the W3C 
recommendation for creating and sharing ontologies in the Web and its theoretical background is 
based on the DL (Baader, 2003) knowledge representation formalism, a subset of predicate logic. 
It has been emerged as the solution to the expressive limitations of RDF and RDF Schema 
(RDFS) (Hayes, 2004) that offer the possibility to define only simple hierarchical relationships 
among concepts and properties, domain and range property restrictions and instances of 
concepts. OWL is a richer vocabulary description language for describing properties and classes, 
such as relations between classes (e.g., disjointness), cardinality (e.g. “exactly one”), equality, 
richer typing of properties, characteristics of properties (e.g., symmetry), and enumerated classes 
(Antoniou & Harmelen, 2004). 
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 The formal semantics of the OWL language enable the application of reasoning 
techniques in order to make logical derivations, involving class membership, equivalent classes, 
ontology consistency, and instance classification. These derivations are performed by the 
reasoners, which are systems able to handle and apply the semantics of the ontology language. A 
general reasoning procedure is depicted in Figure 1 and involves two phases, namely the 
mapping phase of the asserted knowledge into a knowledge representation formalism and the 
application of an inference mechanism in order to perform the basic derivations. 
 

 
 
Figure 1. The abstract architecture of an OWL reasoner. 
 

An OWL ontology is actually a finite set of DL axioms, such as axioms about concepts, 
concept inclusions (C  D), role definitions, role inclusions (R  S), concept assertions (C(a)) 
and role assertions (R(a, b)), where C, D are concepts, R, S are roles and a, b are instances. These 
axioms can be divided into two categories, namely the TBox and the ABox of the ontology 
(Baader, 2003). The TBox consists of the concept and role definitions/inclusions, and the ABox 
of concept and role assertions. Intuitively, the TBox refers to the schema of the ontology, 
whereas the ABox to the instances. 

 The ability to extract new information is a critical characteristic of every reasoning 
system and defines its reasoning completeness and soundness. Unfortunately, there is a tradeoff 
between scalability, in terms of reasoning performance, and ontology language expressiveness. 
The more expressive is the language the less efficient is the reasoning performance. For that 
reason, OWL comes in three flavors, namely OWL Lite (SHIN(D)), OWL DL (SHOIQ(D)) and 
OWL Full, having different expressiveness. This is achieved by restricting the available 
constructs that can be used or by restricting the way that each construct can be used during the 
modeling of a domain. OWL Full is syntactically and semantically upward-compatible with 
RDF, allowing the use of all the OWL languages primitives. It also allows the combination of 
these primitives in arbitrary ways with RDF and RDF Schema. However, this great degree of 
expressiveness does not offer computational guarantees. Thus, most reasoning systems target at 
the OWL DL and OWL Lite sublanguages. OWL DL restricts the way the constructors from 
OWL and RDF may be used, whereas OWL Lite further restricts the language constructors of 
OWL DL (Antoniou & Harmelen, 2004; McGuinness & Harmelen, 2004). In terms of the 
WSML variants, OWL Lite is a semantic superset of WSML-Core, whereas OWL DL is 
semantically equivalent to WSML-DL. 
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OWL is built upon RDF and RDFS and has the same syntax, the XML-based RDF syntax 
(Beckett & McBride, 2004). We present as an example the region ontology that describes the 
concept Region, a transitive property subRegionOf and three instances with specific subRegionOf 
relationships.  

 
<owl:Class rdf:ID = "Region" /> 
<owl:TransitiveProperty rdf:ID = "subRegionOf" > 
 <rdfs:domain rdf:resource="#Region" /> 
 <rdfs:range rdf:resource="#Region" /> 
</owl:TransitiveProperty> 
<Region rdf:ID = "region1" /> 
<Region rdf:ID = "region2" > 
 <subRegionOf rdf:resource="#region1" /> 
</Region> 
<Region rdf:ID = "region3"> 

<subRegionOf rdf:resource="#region2" /> 
</Region> 
 
 A more machine processable syntax is the N-Triples format (Grant & Beckett, 2004), that 
is a textual format for RDF graphs which stems directly from the RDF/XML syntax. More 
specifically, N-Triples is a line-oriented format where each triple must be written on a separate 
line, and consists of a subject, a predicate, and an object, followed by a period. For example, the 
region ontology can be represented in the N-Triple format with nine triples as:   
 
t1: <Region> <rdf:type> <owl:Class> . 
t2: <subRegionOf> <rdf:type> <owl:TransitiveProperty> . 
t3: <subRegionOf> <rdfs:domain> <Region> . 
t4: <subRegionOf> <rdfs:range> <Region> . 
t5: <region1> <rdf:type> <Region> . 
t6: <region2> <rdf:type> <Region> . 
t7: <region3> <rdf:type> <Region> . 
t8: <region2> <subRegionOf> <region1> . 
t9: <region3> <subRegionOf> <region2> . 
 

OWL Ontologies and Rules 

The development of Semantic Web proceeds in layers where each layer is built on top of the 
others (Berners-Lee et al., 2001). Currently, the ontology layer has reached a sufficient level of 
maturity, having OWL as the basic form for ontology definition. The next step is to move on the 
higher levels of unifying logic and proof, which are built on top of the ontology layer. In the 
latest version of the Semantic Web stack, rules lay next to the ontology layer and they are 
considered as the primary key, since (a) they can serve as extensions of, or alternatives to, DL 
based ontology languages and (b) they can be used to develop declarative systems using 
ontological information. 
 

The Benefits of Combining DLs and Rules 

Although there is a lot of debate about the suitability of Logic Programming (LP) in the 
domain of the Semantic Web, many research efforts have been focused on the mapping, 
intersection or combination of DLs and LP in order to overcome the shortcomings that emerged 



                                                                                                  Rule-based OWL Reasoning     7

during the development of practical OWL applications (Patel-Schneider & Horrocks, 2006; 
Motik, Horrocks, Rosati & Sattler, 2006). Such approaches are important for many aspects of the 
Semantic Web, such as 

• Querying: It is interesting to consider combining DLs with the rule paradigm in order to 
state expressive instance queries, since DL reasoning engines have rather a low ABox 
reasoning and querying performance (Haarslev & Moller, 1999; Horrocks, Li, Turi & 
Bechhofer, 2004a; Hitzler & Vrandecic, 2005). 

• Non-monotonicity: DLs follow the principle of the open-world assumption (monotonic). 
However, sometimes it is preferable to introduce non-monotonicity in the DLs (Motik et 
al., 2006), e.g. the notion of negation as failure in logic programs. In that way, it is 
possible to incorporate the semantics of closed-world reasoning over DL knowledge 
bases that are used in relational databases.  

• DLs’ expressivity: Rules can serve as extensions of description logic based ontology 
languages (Horrocks & Sattler, 2004c; Horrocks, Kutz & Sattler, 2006), allowing the 
definition of richer semantic relationships. 

• Integrity constraints: Sometimes is useful to be able to define integrity constraints, i.e. 
constraints over the ABox of the ontology. For example, the ontology that contains the 
axioms Person  hasSSN.SSN and Person(george) is satisfiable in OWL, even if we do 
not define an SSN number for george (open-world semantics). By introducing integrity 
constraints, we are able to treat such cases as checks, rather than deriving new 
information (Motik, Horrocks, & Sattler, 2007).   

 
 
Intersection of DLs and Logic Programming 

Grosof, Horrocks, Volz and Decker (2003) define the intersection of LP and DL, namely 
the Description Logic Programs (DLP). Actually, DLP is the most expressive sublanguage of 
OWL DL that can be efficiently mapped to Datalog and it is simpler than OWL Lite. In that way, 
it is possible to interoperate between rules and ontologies, transforming LP to DL and vice versa.  

WSML-Core corresponds with the intersection of DL and Horn Logic (DLP) (without 
function symbols and without equality), extended with datatype support in order to be useful in 
practical applications. WSML-Core is fully compliant with a subset of OWL. 

While DLP is the intersection of LP and DL, the OWL Flight (de Bruijn, Lara, Polleres & 
Fensel, 2005) is an ontology language based totally on the LP subset of OWL. It is inspired by 
DLP and imposes certain extensions in the area of datatypes, database-style constraints, such as 
cardinality and value constraints, and meta-modeling. OWL Flight restricts the OWL syntax such 
that it falls in the Datalog fragment and thus query answering can be done using an LP 
implementation. WSML-Flight and WSML-Rule are based on the LP paradigm, rather than the 
DL paradigm. They allow non-monotonic negation but do not allow classical negation, full 
disjunction and existential quantification. 
 
Mapping of DLs on Logic Programming 

Van Belleghem, Denecker and De Schreye (1997) present a mapping of DL knowledge 
bases in ALCN to open logic programs, exploring the computational correspondences between a 
typical algorithm for DL inference and the resolution procedure for open logic programs. Baral 
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(2003) and Swift (2004) reduce inference in the DL ALCQI to query answering from the answer 
sets of logic programs. Horst (2004) defines the pD* semantics (entailments) as a weakened 
variant of OWL Full and then (Horst, 2005) the pD* semantics were extended to apply to a 
larger subset of the OWL vocabulary. Meditskos and Bassiliades (2008a) combine a DL reasoner 
with a dynamic implementation of entailment rules in order to increase scalability. Reduction 
(Hustadt, Motik & Sattler, 2004; Motik et al., 2006) is also a way of building a reasoning system 
reducing a DL KB to disjunctive Datalog programs. 

 
Combing DL and Logic Programming 

The major flaw of the mapping approaches is the fact that there is not an unrestricted 
mapping of OWL semantics into the rule paradigm, and thus the resulting languages have 
restricted semantics, handling a subset of OWL DL. To solve this expressivity problem, many 
research efforts have been focused on the combination of DL and LP. Such a combination is 
realized following either a hybrid or a homogeneous approach (Antoniou et al., 2005). 
 
Hybrid approach: The hybrid combination follows a modular architecture of two subsystems, 
each of which deals with a distinct portion of the knowledge base. More specifically, it combines 
the reasoning capabilities of a DL reasoner and the rule execution capabilities of a rule engine in 
order to define rules on top of the ontological information. Rule and ontology predicates are 
strictly separated and the ontology predicates can be used as constraints in rules. The hybrid 
approaches can be further classified into bidirectional and unidirectional, according to whether 
the derived knowledge flows from the rule module to the DL module or not. In the former case, 
DL constraints can be used in the head of the rules and thus, the ontological knowledge is 
altered, allowing the development of ontologies on top of rules (Wang, Billington, Blee & 
Antoniou, 2004; Rosati, 2006; Kattenstroth, May & Schenk, 2007). In the latter case, the 
information flows only from the DL component to the rule component by allowing only rule 
predicates to be used in rule bodies and thus the ontological information remains unchanged 
(Donini, Lenzerini, Nardi & Schaerf, 1998; Levy & Rousset, 1998; Rosati, 1999; Eiter, 
Lukasiewicz, Schindlauer & Tompits, 2004; Rosati, 2005; Drabent, Henriksson & Maluszynski, 
2007). 

 
Homogeneous approach: The homogeneous approaches treat rule and ontology predicates 
homogeneously, as a new single logic language. The general idea is that the rules can use unary 
and binary predicates from the ontology (i.e., classes and properties) as well as predicates that 
occur only in rules (rules predicates). In order to maintain the decidability of the integrated 
language, there is usually a safety condition that restricts variables occurring in the head of a rule 
to those that occur in at least one positive rule predicate in the body of the rule. Intuitively, in 
homogeneous approaches, the OWL semantics are mapped into a rule-based formalism, e.g. 
Datalog rules that coexist in the KB with rule predicates, enhancing the expressivity. The 
homogeneous approaches can be used either for building rule programs on top of ontologies or 
ontologies on top of rules. Thus, a new reasoner is needed, able to handle the new homogeneous 
language that emerges (Heymans, Predoiu, Feier, de Bruijn & Nieuwenborgh, 2006; Mei, Lin & 
Boley, 2007; de Bruijn, Eiter, & Tompits, 2008). In fact, the mapping approaches we described 
previously can be considered as the first step for building a homogeneous system (Horst, 2005; 
Motik et al., 2006). 
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Another proposal is the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004b), 
a non-safe approach to the integration of rules and DLs in which rules are interpreted under the 
classical first order logic semantics. The addition of this kind of rules to DLs leads to 
undecidability of reasoning. 
 In the following section we describe the basic principles of the entailment-based OWL 
reasoning (EBOR) paradigm that enables the materialization of OWL semantics into the KB of a 
rule engine using OWL entailment (inference) rules. It is actually based on the pD* semantics 
where the DL knowledge base is mapped on a rule engine and the entailment rules are encoded 
in the rule engine’s language. The EBOR paradigm can be considered as the first step in 
realizing a homogeneous combination of OWL and rules in order to build rule programs on top 
of ontologies, as well as ontologies on top of rule programs, since the rule program coexists with 
the inference rules in the rule base, and thus, the rule execution is interleaved with the inference 
procedure. Note that the EBOR paradigm by itself does not really bring many of the benefits of 
adding rules to ontologies, such as integrity constraints, since it is a subset of OWL and it is 
based on open-world semantics. However, by adding custom rules on the underlying rule engine, 
we are able to fully exploit the benefits that stem from the combination of rules and ontologies.  

 
ENTAILMENT-BASED OWL REASONING 

The EBOR paradigm is realized by using a rule engine as the inference engine in the architecture 
of Figure 1, implementing RDF/OWL entailment rules (Hayes, 2004; Horst, 2005).  
 The semantics of RDF and RDFS can be captured using entailments rules (Hayes, 2004), 
which are rules that denote the information that should be derived based on existing one. 
Intuitively, an entailment rule is an if-then rule that denotes the knowledge that should be 
inferred (rule head) based on existing knowledge (rule body). The body consists of RDF 
statements, where variables can occupy any of the three possible positions in the triple (that of a 
subject, of a predicate, or of an object). The head of the rule comprises of one or more 
consequences, each of which represents in its turn an RDF statement. The consequences may not 
contain free variables, i.e. such that are not used within the body of the rule. The list of the 
RDF/RDFS entailments is defined in Hayes (2004). We give as an example the rdfs9 entailment 
rule using the N-Triple notation. 
 
if  <c> <rdfs:subClassOf> <d> . ∧ 

<x> <rdf:type> <c> .  
then  <x> <rdf:type> <d> . 
 

The rdfs9 entailment rule actually defines the subsumption characteristic of the 
rdfs:subClassOf property: if there is an instance <x> defined to belong to the class <c>, and <c> is 
defined as a subclass of the class <d>, then <x> is also of type <d>. 

Although there is a complete set of RDF and RDFS entailments (Hayes, 2004), such a 
complete set does not exist for OWL due to the great degree of expressiveness. Horst (2004) 
defines the pD* semantics as a weakened variant of OWL Full and then in (Horst, 2005) the pD* 
semantics were extended to apply to a larger subset of the OWL vocabulary, which includes 
FunctionalProperty, InverseFunctionalProperty, sameAs, SymmetricProperty, TransitiveProperty, 
inverseOf, equivalentClass, equivalentProperty, hasValue, someValuesFrom, allValuesFrom, 
differentFrom and disjointWith. More precisely, the pD* semantics can be realized by 23 entailment 
rules and 2 inconsistency rules. To exemplify, we present the rdfp4 entailment that handles the 
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values of transitive properties that are defined using the owl:TransitiveProperty OWL construct 
(Antoniou & Harmelen, 2004). 
 
if  <p> <rdfs:type> <owl:TransitiveProperty> . ∧ 

<s> <p> <x> . ∧  
<x> <p> <z> .  

then  <s> <p> <z>. 
 

The pD* semantics extend RDFS and they are defined in a way analogous to the if-
semantics of RDFS, leading to simple entailment rules that can be used to extend RDF reasoners. 
In other words, we do not obtain the full power of OWL’s iff semantics in pD* semantics. 
Instead, they represent a reasonable interpretation that is useful for drawing conclusions about 
instances in an ontology and that lead to simple entailment rules with a relatively low 
computational complexity (consistency is in P and entailment is NP-complete, and in P if there 
are not blank nodes in the target graph). The pD* semantics are going to be standardized (at the 
time this chapter was being written) as the OWL RL profile of OWL 2 (Motik et al., 2008).  

In the EBOR paradigm, the asserted knowledge, that is the knowledge that stems directly 
from the ontology definition, is mapped into an internal rule engine representation format, and 
inference rules, which are expressed in the language of the rule engine, are applied in order to 
deduce new knowledge or to check the consistency of the ontology, based on OWL entailments. 
To exemplify, let S be the set of triples of an ontology, where S = {<A subClassOf B>, <x type 
A>}. By implementing the rdfs9 entailment rule, we get that S = {<A subClassOf B>, <x type A>, 
<x type B>}. 

Therefore, for the development of an EBOR system, three issues should be tackled: 
• Ontology mapping: An EBOR system should define a mapping procedure of the ontological 

knowledge into the KB of the rule engine that uses. Usually, such a mapping procedure is 
performed over the ontology triples. The purpose of this phase is to generate an internal, rule 
engine-specific representation of the ontological information where the entailment rules will 
be applied on. 

• Inferencing process: An EBOR system should implement the desirable number of 
entailment rules expressed in the engine’s rule language. This phase actually defines the 
reasoning completeness of the EBOR system that usually comes with implementations of 
different expressiveness according to the number of entailments that are implemented. 

• Query support: An EBOR system should be able to answer queries about the semantic 
derivations of its KB. Since the core system is a rule engine, the query infrastructure is 
implemented with query rules. These query rules follow either the rule language of the 
underlying rule engine, or they have a standard-based syntax (Wagner, Antoniou, Tabet & 
Boley, 2004; Prud'hommeaux & Seaborne, 2008). 

 
There are two approaches for the development of an EBOR system, namely the extended 

and the native approach. An extended entailment-based OWL reasoning (E-EBOR) system is 
built on top of an existing, general purpose rule engine that augments it with the ability of 
manipulating ontological information. This incorporates the ability of transforming the 
ontological information into facts and populating its rule base with the appropriate inference 
rules. A native entailment-based OWL reasoning (N-EBOR) system is built from scratch and 
draws conclusions directly on the OWL data model. Each approach has advantages and 
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disadvantages and the right choice depends on the requirements of the application. More 
specifically: 
 
• Reasoning Performance: Since an N-EBOR system is built directly upon the OWL data 

model, it has increased reasoning performance, as far as speed issues are concerned, 
comparing it to the E-EBOR paradigm that does not apply any optimization in the way it 
handles the ontological information. Thus, an N-EBOR system is an appropriate choice in the 
cases where reasoning speed is a critical requirement.  

• Ontology Utilization: The use of an E-EBOR system gives the opportunity to efficiently 
utilize the ontology information by building rule-based applications. Ontologies can be 
inserted into the system and, after the application of the inference rules, user-defined rules 
can operate over the inferred knowledge. In that way, an EBOR system built on top of a 
general purpose rule engine gives the opportunity to reuse the practicality, efficiency and 
optimized techniques that rule engines have obtained throughout the years of their 
development. On the other hand, an N-EBOR system built from scratch tends to throw away 
decades of research and development on efficient and robust rule engines. Therefore, an E-
EBOR has increased capabilities concerning post-reasoning utilization of ontological 
information into rule programs. 

 
In the following sections we present in detail examples of E-EBOR and N-EBOR 

systems, describing the way they map ontologies into their KBs, as well as the rule language that 
use in order to implement the inference rules and to query the KB. For the legibility of the 
description, we present also the way each system manipulates the region ontology we presented 
in the beginning of the chapter.  
 

Extended Entailment-based OWL Reasoning Systems 

In this section we present three E-EBOR systems, namely OWLJessKB (Kopena, Regli, 2003), 
F-OWL (Zou, Finin & Chen, 2004), and O-DEVICE (Meditskos & Bassiliades, 2008b). 
 

OWLJessKB 

OWLJessKB is built on top of the Jess (Friedman-Hill, 2003) production rule engine. Jess is an 
Expert System Shell developed in the Java programming language. It uses an enhanced version 
of the Rete algorithm (Forgy, 1982) to process rules. Jess has many unique features including 
backwards chaining and working memory queries, and it can directly manipulate and reason 
about Java objects. 

The functionality of OWLJessKB involves the translation of OWL ontologies into RDF 
triples and their transformation into Jess facts in order to build the KB on where the entailment 
rules will be applied. More specifically, each RDF triple of the form <subject> <predicate> 
<object> is transformed into a fact of the following Jess template construct: 
 
(deftemplate triple (slot predicate) (slot subject) (slot object)). 
 

In that way, an OWL ontology is represented in Jess as a set of template facts and OWL 
semantics are implemented as Jess production rules over the KB. To exemplify, the triples of the 
region ontology are transformed into the following Jess facts: 
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j1: (triple (predicate "rdf:type") (subject "Region") (object "owl:Class")). 
j2: (triple (predicate "rdf:type") (subject "subRegionOf") (object "owl:TransitiveProperty")). 
j3: (triple (predicate "rdfs:domain") (subject "subRegionOf") (object "Region")). 
j4: (triple (predicate "rdfs:range") (subject "subRegionOf") (object "Region")). 
j5: (triple (predicate "rdf:type") (subject "region1") (object "Region")). 
j6: (triple (predicate "rdf:type") (subject "region2") (object "Region")). 
j7: (triple (predicate "rdf:type") (subject "region3") (object "Region")). 
j8: (triple (predicate "subRegionOf") (subject "region2") (object "region1")). 
j9: (triple (predicate "subRegionOf") (subject "region3") (object "region2")). 
 

The entailment rules of OWLJessKB are actually Jess production rules that match the 
facts that exist in the KB and deduce the implicit knowledge in the form of new facts. To 
exemplify on the syntax of the entailments, we present the production rule for the manipulation 
of the values of the transitive properties (rdfp4 entailment in (Horst, 2005)).  
 
(defrule transitive-property  

(triple (predicate "rdf:type") (subject ?prop) (object "owl:TransitiveProperty")) 
(triple (predicate ?prop) (subject ?x) (object ?y)) 
(triple (predicate ?prop) (subject ?y) (object ?z)) 

=> 
(assert (triple (predicate ?prop) (subject ?x) (object ?z))) 

) 
 

The application of the transitive rule over the facts of the region ontology results in the 
assertion of the following inferred fact into the KB. 

 
j10: (triple (predicate "subRegionOf") (subject "region3") (object "region1")). 
 

The query infrastructure of OWLJessKB is based on the defquery construct of Jess, which 
is a special kind of rule with no right-hand-side (RHS). A query is actually a pattern that is used 
to search the working memory and the matched facts are returned in a list. In the region 
ontology, we can retrieve all the instances of the Region concept that have in their subRegionOf 
property the instance value region1 as 
 
(defquery region-instances  

(triple (subject ?s) (predicate "rdf:type") (object "Region")) 
(triple (subject ?s) (predicate "subRegionOf") (object "region1")) 

) 
 

The example query matches both the j8 and j10 facts which can be retrieved using the 
OWLJessKB Java API.  

  
F-OWL 

F-OWL is built on top of Flora2 (Yang, Kifer & Zhao, 2003), an implementation of the F-Logic 
language (Kifer, Lausen & Wu, 1995) for data definition and querying that makes use of the 
XSB Logic Programming and Deductive Database system (Sagonas, Swift & Warren, 1994). In 
contrast to OWLJessKB that transforms ontology triples directly into Jess facts, F-OWL 
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transforms ontology triples into the F-logic syntax, exploiting the semantics and the knowledge 
representation paradigm of a frame-based syntax. 

F-Logic is a deductive, object-oriented knowledge representation language based on 
frames and extends first-order predicate calculus with: 
 

• Objects with complex internal structure 
• Class hierarchies and inheritance 
• Typing 
• Encapsulation 

 
In this way, F-logic integrates the paradigms of logic programming and deductive 

databases with the object-oriented programming paradigm, and it has been viewed as a natural 
candidate for an ontology language due to its direct support for object-oriented concepts, its 
frame-based syntax, and extensive support for meta-programming. More specifically: 
 

• Ontology concepts: F-logic supports the definition of concepts, as well as a hierarchy of 
concepts using subclass relationships, for example A :: B (A is subclass of B). In that way, 
the Region concept with the subRegionOf property of the region ontology can be 
represented as Region[subRegionOf *=>> Region], which is called a signature. The *=>> 
symbol denotes a multivalue (=>> symbol), inheritable instance attribute (* symbol). 
Since F-logic is tightly connected to the object-oriented programming paradigm, the 
hierarchical relationships encapsulate property inheritance as well as class membership 
transitivity. 

• Ontology instances: The definition of an instance in F-logic incorporates the declaration 
of the concept to where it belongs (: notation), as well as the values in the corresponding 
properties. In that way, the three instances of the region ontology can be represented as: 

 
region1:Region. 
region2:Region. 
region3:Region. 
region2[subRegionOf =>> region1]. 
region3[subRegionOf =>> region2]. 

 
F-OWL maps the ontology triples into Flora2 facts of the form triple(s, p, o) and applies a 

set of transformation rules that generate the F-logic code. For example, the ontology triples are 
transformed into Flora2 statements using the rule 
 
S[P->>O] :- triple(S, P, O), 
 
and the instance definitions are generated using the rule 
 
A:B :-  A[rdf_type ->> B]. 
 

Obviously, the transformation procedure of ontological information into the internal rule 
engine representation format is more complicated in F-OWL than in OWLJessKB. However, F-
OWL achieves a more compact and human-friendly representation of the ontological information 
than of OWLJessKB, exploiting object-oriented programming principles.  
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OWL semantics are implemented as Flora2 Prolog-like rules that operate over the 
generated KB. For example, the rule that implements the transitive entailment is defined as 
 
S[P->>V] :- P[rdf_type->>owl_TransitiveProperty], S[P->>X], X[P->>V]. 
 

In that way, the following F-logic statement can be inferred in the region ontology, 
denoting that region3 is related to the region1 instance through the subRegionOf property. 
 
region3[subRegionOf =>> region1]. 

 
 Both the schema information associated with classes and the structure of individual 
objects can be queried by simply putting variables in the appropriate syntactic positions in the 
Prolog-like rules. Therefore, in order to retrieve all the instances of the Region concept with the 
region1 instance in their subRegionOf property, we should define the following query: 
 
X : Region [subRegionOf ->> region1]. 
 

O-DEVICE 

O-DEVICE is built on top of the CLIPS production rule engine (Riley, 1991). Its reasoning 
process is characterized by the transformation of ontological information into the object-oriented 
model of the COOL language of CLIPS and the application of inference production rules over 
the generated object-oriented schema. O-DEVICE has been also used in the domain of semantic 
Web service discovery and composition (Meditskos & Bassiliades, 2007). 

CLIPS is a RETE-based production rule engine written in C that was developed in 1985 
by NASA's Johnson Space Center and it has undergone continual refinement and improvement 
ever since. Today it is widely used throughout the government, industry and academia. One of 
the most interesting capabilities of CLIPS is that integrates the production rule paradigm with the 
object-oriented model, which can be defined using the COOL (CLIPS Object-Oriented 
Language) language of CLIPS. In that way, classes, attributes and objects can be matched on the 
production rule conditions (LHS), as well as to be altered on rules actions (RHS). 

O-DEVICE transforms OWL ontologies into triples and applies a set of transformation 
rules in order to generate a COOL-based object-oriented schema of classes, attributes (slots) and 
objects. For example, the Region class and the subRegionOf property of the region ontology are 
transformed into a COOL defclass construct and the ontology instances into COOL objects, as 
follows: 
 
(defclass Region 
 (is-a owl:Thing) 
 (subRegionOf (type INSTANCE-NAME))) 
 
(make-instance region1 of Region) 
(make-instance region2 of Region  

subRegionOf region1) 
(make-instance region3 of Region  

subRegionOf region2) 
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Although this approach seems similar to the one followed by F-OWL, there is one major 
difference. The object-oriented model that is generated in O-DEVICE is fully compliant with 
object-oriented principles, whereas F-OWL is based only partially on object-oriented principles. 
To exemplify, consider the case where an ontology instance x is defined to belong to more than 
one classes, such as: 
 
<x> <rdf:type> <Class1> . 
<x> <rdf:type> <Class2> . 
 
 This case is represented directly in F-OWL, since Flora2 translates the F-logic statements 
into facts in XSB, using the frame-based syntax only for representing the information, as 
 
x:Class1 
x:Class2 
 

However, since O-DEVICE is based on object-oriented principles, such a definition is not 
allowed, since every object can have only one class type. O-DEVICE handles this case by 
creating a subclass T of the two classes and defines x to be an instance of T, that is: 
 
(defclass T 
 (is-a Class1 Class2)) 
 
(make-instance x of T) 

  
The reasoning procedure of O-DEVICE separates the TBox and the ABox reasoning 

activities, using static production rules for the former, in the same way as OWLJessKB and F-
OWL, whereas it follows a template-based methodology for the latter, generating domain-
dependent inference rules according to the degree of the expressiveness of the loaded ontology. 
To exemplify, the template rule for property transitivity (rdfp4) is defined in O-DEVICE as 
 
(defrule <rule-name> 

(object (is-a <pd>) (name ?o1) (<p> $? ?o2 $?)) 
=>  

(bind $?v1 (send ?o1 get-<p>)) 
(bind $?v2 (send ?o2 get-<p>)) 
(send ?o1 put-<p> (union $?v1 $?v2)))  

 
where <pd> denotes the domain of the transitive property <p>. O-DEVICE generates these rules 
at runtime, grounding the template (<>) elements with ontology TBox values. In that way, for k 
transitive properties in an ontology, k transitive rules will be generated. For the region ontology, 
one transitive inference rule for the subRegionOf will be generated as 
 
(defrule subRegionOf 

(object (is-a Region) (name ?o1) (subRegionOf $? ?o2 $?)) 
=> 

(bind $?v1 (send ?o1 get-subRegionOf)) 
(bind $?v2 (send ?o2 get-subRegionOf)) 
(send ?o1 put-subRegionOf (union $?v1 $?v2)))  
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The deductive rule language of O-DEVICE supports querying over OWL instances 
represented as objects. The conclusions of deductive rules represent derived classes, whose 
objects are generated by evaluating these rules over the current set of objects. Each deductive 
rule is implemented as a CLIPS production rule that inserts a derived object when the condition 
of the deductive rule is satisfied. More specifically, the query for the instances of the Region class 
that have the region1 instance in their subRegionOf property is defined as 
 
(deductiverule region-instances 

?id<- (Region (subRegionOf $? [region1] $?)) 
=>  

(DERIVED (result ?id))) 
 
The query denotes that the objects that match the LHS of the rule will be collected as 

property values in the result slot of the objects of the DERIVED class. Thus, the query will 
generate two objects of the DERIVED class with an arbitrary OID, with the region2 and region3 
instances in their result slot. 
 

Native Entailment-based OWL Reasoning Systems 

In this section we present four EBOR systems that use rule engines built from scratch, namely 
Jena2 (McBride, 2001), Bossam (Minsu & Sohn, 2004), OWLIM (Kiryakov, Ognyanov & 
Manov, 2005) and BaseVISor (Matheus, Baclawski & Kokar, 2006). 
 

Jena2 

Jena2 is a programmatistic environment that contains a rule-based reasoner which is used to 
implement the RDFS and OWL entailment rules. Although the rule engine is also available as a 
general purpose rule engine, we classify Jena2 as an N-EBOR system, since the rule engine 
follows a triple-oriented syntax, mainly used for ontology reasoning. The reasoner supports rule-
based inference over RDF graphs and provides forward chaining, backward chaining and a 
hybrid execution model. Actually, there are two internal rule engines: one forward chaining Rete 
engine and one tabled datalog engine. They can be run separately or the forward engine can be 
used to prime the backward engine which in turn will be used to answer queries. 

The ontologies are transformed into triples, and inference rules are applied in order to 
materialize the semantics in the form of inferred triples. This approach is similar to the 
OWLJessKB system, rather than the frame-based approaches of F-OWL and O-DEVICE, with 
the exception that OWLJessKB is based on a general purpose rule engine (Jess) and not on a 
triple-oriented rule engine like the one that Jena2 uses over the RDF graphs. 

In the forward chaining mode, any rules which fire and create additional triples, do so in 
an internal deductions graph and can in turn trigger additional rules. There is a remove primitive 
that can be used to remove triples and such removals can also trigger rules to fire in removal 
mode. This cascade of rule firings continues until no more rules can fire. When the inference 
procedure is completed, the inference graph will act as if it were the union of all the statements 
in the original model together with all the statements in the internal deductions graph generated 
by the rule firings. To exemplify on the forward chaining rule syntax of Jena, the transitive 
entailment rule is implemented as 
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[transProp-f: (?P rdf:type owl:TransitiveProperty), (?A ?P ?B), (?B ?P ?C) -> (?A ?P ?C)]. 
 

If the rule reasoner is run in backward chaining mode it uses an LP engine with a similar 
execution strategy to Prolog engines. When the inference model is queried, then the query is 
translated into a goal and the engine attempts to satisfy that goal by matching to any stored 
triples and by goal resolution against the backward chaining rules. This is also the way F-OWL 
performs inferencing based on Prolog-like rules. The backward chaining syntax of the transitive 
entailment in Jena is defined as  
 
[transProp-b: (?A ?P ?C) <- (?P rdf:type owl:TransitiveProperty), (?A ?P ?B), (?B ?P ?C)]. 
 
 The rule reasoner of Jena has the option of employing both the forward and backward 
rule engines in conjunction (hybrid mode). The forward engine runs and maintains a set of 
inferred statements in the deductions store. Any forward rules which assert new backward rules 
will instantiate those rules according to the forward variable bindings and pass the instantiated 
rules on to the backward engine. The hybrid rule syntax of the transitive entailment in Jena is 
defined as 
 
[transProp-h: (?P rdf:type owl:TransitiveProperty) -> 

[transitiveProperty1b:  (?A ?P ?C) <- (?A ?P ?B), (?B ?P ?C)]] 
 
By applying one of the three reasoners we have described in the region ontology, the 

triple (region3 subRegionOf region1) is inferred.  
Queries are answered by using the backward chaining LP engine. Jena supports queries 

written in the SPARQL RDF Query Language (Prud'hommeaux & Seaborne, 2008), a W3C 
recommendation. The SPARQL query language consists of the syntax and semantics for asking 
and answering queries against RDF graphs. It contains capabilities for querying by triple 
patterns, conjunctions, disjunctions, and optional patterns. It also supports constraining queries 
by source RDF graph and extensible value testing. Results of SPARQL queries can be ordered, 
limited and offset in number, and presented in several different forms. To exemplify on 
SPARQL syntax, we present the query that retrieves all the instances of the Region class that 
have the region1 instance in their subRegionOf property. 

 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT ?x  
WHERE  
{ 
 ?x rdf:type Region. 
 ?x subRegionOf region1  
} 
 
 

Bossam 

Bossam is a Rete-based forward chaining N-EBOR engine, which is equipped with extended 
representational and extra-logical features: 
 

• Support for both negation-as-failure and classical negation 
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• Relieved range-restrictedness in the rule heads 
• Remote binding for cooperative inferencing among multiple rule engines 

 
Following the EBOR paradigm, Bossam imports and translates OWL ontologies into a 

list of Bossam facts and then applies the OWL entailment rules expressed in the Buchingae rule 
language of Bossam. The translation process of Bossam involves the transformation of OWL 
documents into a collection of RDF triples and then each triple into a plain fact with three terms. 
In that way, Bossam translates RDF triples involved in declaring OWL classes and restrictions 
into 1-ary predicates, and the triples declaring property values into 2-ary predicates. Concerning 
the region ontology, the generated Bossam facts are depicted below: 
 
owl:Class(Region); 
owl:TransitiveProperty(subRegionOf) 
rdfs:domain(subRegionOf, Region) 
rdfs:range(subRegionOf, Region) 
Region(region1); 
Region(region2); 
Region(region3); 
subRegionOf(region2, region1); 
subRegionOf(region3, region2); 
 

A typical rule definition structure of Bossam’s rule language is as follows: 
 
rule ruleID is if condition-part then conclusion-part; 
 
In the condition-part, the conditional elements are specified that should be true in order for the rule 
to fire. In the conclusion-part, some new knowledge elements are entailed. To exemplify, the 
transitive entailment rule is defined as 
 
prefix owl = http://www.w3.org/2002/07/owl#; 
rulebase transitiveProperty 
{ 

rule TransProp is  
if owl:TransitiveProperty(?p) and ?p(?x,?y) and ?p(?y,?z)  

then ?p(?x,?z); 
} 
 
 However, the rule language of Bossam offers the opportunity to assert new rules in the 
conclusion part of a rule. The pattern at the consequent part is called the rule template. Thus, 
instead of deriving facts, Bossam generates rule instances from the rule templates. Therefore, 
Bossam has built-in the feature that O-DEVICE implements with templates. For example, the 
transitive rule can be defined also as  
 
prefix owl = http://www.w3.org/2002/07/owl#; 
rulebase transitivePropertyEx 
{ 

rule TransPropEx is  
if owl:TransitiveProperty(?p) then 

assert if ?p(?x,?y) and ?p(?y,?z) then ?p(?x,?z); 
} 
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Concerning querying OWL ontologies, Bossam supports queries in the Buchingae rule 

language. It is actually a rule without a conclusion-part, just like the defquery construct of 
OWLJessKB. For example, in order to retrieve all the instances of the Region class that have the 
region1 instance in their subRegionOf property, we should write 
 
query region-instances is Region(?x) and subRegionOf(?x, region1); 

 
OWLIM 

OWLIM is a high-performance Storage and Inference Layer (SAIL) for Sesame (Broekstra, 
Kampman, & van Harmelen, 2002), which performs reasoning based on forward-chaining of 
entailment rules. The inferencing procedure is based on the TRREE dedicated OWL reasoning 
engine. OWLIM is available in two versions: 
 

• SwiftOWLIM performs reasoning and query evaluation in memory, while a reliable 
persistence strategy assures data preservation, consistency, and integrity. 

• BigOWLIM operates directly with binary persistence files, which allows it to scale to 
billions of statements. 

 
The TRREE engine can be configured with a set of inference rules, which determines the 

supported semantics. Each rule has a set of premises, which conjunctively define the body of the 
rule. The premises are RDF statements, which can contain free variables. The rule head contains 
one or more consequences, each of which is an RDF statement, without free variables (safe 
rules). The implementation of TRREE relies on a compile stage, when the entailment rules are 
compiled into chunks of Java code that are merged together to generate the main entry point for 
the reasoner. To exemplify on the syntax of the rule language of OWLIM, we present the syntax 
of the transitive entailment rule. 
 
Id: owl_TransProp 
     p  <rdf:type>  <owl:TransitiveProperty> 
     x  p  y                                  [Constraint x != y] 
     y  p  z                                  [Constraint y != z] 
    ------------------------------- 
     x  p  z 
 

Queries are encoded in the SeRQL (SeRQL, 2008) language. To give an example, the 
query for retrieving all the instances of the Region concept that have the region1 instance in their 
subRegionOf property is defined as 
 
select x 

from {x} rdf:type {Region}, 
{x} subRegionOf {region1} 
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BaseVISor 

BaseVISor is a forward-chaining inference engine based on a Rete network optimized for the 
processing of RDF triples that is able to process RuleML (RuleML, 2008) rules containing n-ary 
predicates.  

The Rete-based forward chaining inference engine is similar to Jess and CLIPS. The 
primary difference is that it uses a simple data structure for its facts rather than arbitrary list 
structures, which permits greatly enhanced efficiency in pattern matching which is at the core of 
a Rete network. The facts are defined as triples with subjects, predicates and objects, following 
an XML syntax. For example, the t1 triple of the region ontology is transformed as   
 
<triple> 

<subject resource=”Region”/> 
<predicate resource=”rdf:type”/> 
<object resource=”owl:Class”/> 

</triple> 
 

Rules are defined in the RuleML syntax within a rulebase with each rule consisting of a 
body and a head element. BaseVISor has the built-in ability of converting such RuleML 
rulebases into native BaseVISor code. In that way, the transitive entailment is represented as  
 
<rule name="rdfp4"> 

<body> 
<triple> 

<subject variable="p"/> 
<predicate resource="rdf:type"/> 
<object resource="owl:TransitiveProperty"/> 

</triple> 
  <triple> 
     <subject variable="u"/> 

<predicate variable="p"/> 
<object variable="v"/> 

</triple> 
<triple> 

<subject variable="v"/> 
    <predicate variable="p"/> 

<object variable="w"/> 
</triple> 

</body> 
<head> 

<debug><param>rdfp4</param></debug> 
<assert> 

<triple> 
<subject variable="u"/> 
<predicate variable="p"/> 
<object variable="w"/> 

</triple> 
</assert> 

 </head> 
</rule> 
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It is possible to query the facts using the query element and placing in its content one or 
more triples containing variables. The result of a query is a list of variable bindings that satisfy 
the constraints of the query. For example, the query for retrieving the Region instances that have 
the region1 in their subRegionOf property can be defined as 
 
<query name="region-instances"> 

<triple> 
<subject variable="X"/> 
<predicate resource="rdf:type"/> 
<object resource="Region "/> 

</triple> 
<triple> 

<subject variable="X"/> 
<predicate resource="subRegionOf"/> 
<object resource="region1"/> 

</triple> 
</query> 
 

DL VS RULE-BASED OWL REASONING 

There is a lot of debate about the suitability of the LP paradigm in the domain of Semantic Web. 
In this section we are focused on the comparison of the DL reasoning paradigm that embodies 
the Classical Logic, and the rule-based OWL reasoning paradigm that embodies the Datalog 
paradigm.  
 

Open and Closed-World Semantics 

One of the most controversial topics of discussion is related to the open nature of the Semantic 
Web. Since in this environment it is difficult to have the complete information modeled into an 
application, the assumption that the lack of information is equivalent to negative information 
(negation as failure) seems improper. To this end, the Classical paradigm seems more 
appropriate for modeling in the Semantic Web since it follows the open-world assumption 
(OWA), that is, unstated information does not necessarily mean negated information. On the 
other hand, the Datalog paradigm follows the closed-world assumption (CWA), that is, all the 
relevant information is explicitly known and thus unprovable facts should be assumed not to 
hold. For example, consider the two statements friendOf(George, Nick) and friendOf(George, Peter) 
that denote the friends of George. The Datalog paradigm assumes that George has only these two 
friends, whereas the Classical paradigm does not exclude the possibility of George to have more 
friends. 
 Although the Classical paradigm seems more appropriate for the open nature of the 
Semantic Web, there are many cases that require closed-world reasoning, such as database 
applications or applications that require queries about negative information. In these cases the 
Datalog paradigm has an advantage since it natively supports such kind of reasoning. For 
example, consider a database with the students of a university department. In order to answer a 
query about whether a person is a student at the department, a form of closed-world reasoning is 
required, whereas such queries cannot be answered following the Classical paradigm of OWL. 
The notion of closed-world reasoning can be emulated in the Classical paradigm, based on the 
way the results are interpreted. In that way we can treat the query results of the Classical 
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paradigm as information that is "known to hold". For example, a query for the friends of George 
will return Nick and Peter and thus, we can say that these are the two persons that "is known to be 
George’s friends". However the native closed-world reasoning ability of the rule paradigm is 
more intuitive and practical in the domains that require such type of reasoning. 
 

Unique Name Assumption 

In the Classical Logic two different name identifiers do not necessarily mean that they are 
different objects, in contrast to the Datalog paradigm where different identifiers always denote 
different objects (unique name assumption - UNA). The approach of Classical Logic fits better in 
the domain of Semantic Web where, due to the decentralized nature, people might use different 
identifies to denote the same individual. For example, OWL supports the notion of the functional 
property (owl:FunctionalProperty) that denotes that there cannot be two distinct values y and z such 
that the pairs (x,y) and (x,z) are both instances of the property. Thus, if there is a functional 
property hasBiologicalMother and two statements 
 
hasBiologicalMother(George, Maria) 
hasBiologicalMother(George, Eva), 
 
then Maria and Eva will be inferred to be the same individuals. Such possibility does not exist in 
the Datalog paradigm that follows the UNA. However, there are critical situations where we 
want the UNA to hold, otherwise the system could result in false inferences due to mistakes 
either at the ontology level or at the instance level, such as names of seats in an airplane (de 
Bruijn et al., 2005). Although in Classical Logic the UNA does not hold by default, there is the 
possibility of expressing the UNA for a set of individual, for example the owl:AllDifferent OWL 
construct, whereas in Datalog different names always identify different objects. However, the 
native UNA behavior of rule engines seems more practical especially in cases with large number 
of instances. 
 

Reasoning with Incomplete Information 

The open nature of the Semantic Web requires also the ability to reason with incomplete 
information, that is, the ability to state something about a resource without providing the 
complete information. For example, it is useful to say that George has at least two friends, 
without stating who they are or the exact number of his friends. This case can be defined in 
OWL stating that George ∈ ≥2 friendOf (cardinality restrictions). However, in Datalog such 
relationships can not be stated since the relationships can be expressed only over named 
individuals that exist in the KB (CWA). Even if two arbitrary individuals are generated to play 
the role of the two friends of George, this would incorrectly affect the total number of his friends 
due to the UNA.  

The same holds in the case of a concept definition where local property range constraints 
are provided. For example, in the Classical paradigm we can state that the parents of a person are 
also instances of the class Person as Person  ∀parent.Person (universal quantifiers). In Datalog 
such constraint can be represented as 
 
← Person(x) ∧ parent(x, y) ∧ ¬Person(y). 
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However, the two modeling paradigms have a conceptually different intention. In 
Classical Logic, the notion of constraint allows performing additional inferences. Thus, the 
statement parent(George, Peter) is valid in the Classical paradigm, inferring also that 
Person(Peter), whereas in Datalog is not valid. In Datalog, the notion of constraints is more 
similar to the notion of the database constraints in order to restrict the value into a specific type. 
Furthermore, the above restriction can be modeled in Datalog as 
 
Person(y) ← Person(x) ∧ parent(x, y). 
 

Such a rule requires that every person has a known parent, and thus can only be applied 
on named individuals that exist in the KB. Therefore, OWL offers more inferencing capabilities, 
while Datalog has native support for capturing application inconsistencies.    
 

Reasoning Complexity  

The size of the web is overwhelming and one of the most important requirements in real world 
ontology applications is the ability of reasoning over large number of instances (ABox 
reasoning). The Tableaux-based algorithms, on which the DL reasoning paradigm is based, 
provide efficient and optimized TBox reasoning, that is the computation of the subsumption 
hierarchy, but they do not provide efficient ABox reasoning and consequently, query answering 
capabilities. For example, the reasoning in OWL DL is NEXPTIME-complete (Horrocks & 
Patel-Schneider, 2003). Although there are many efforts towards the development of efficient 
reasoning algorithms (Haarslev & Moller, 1999; Horrocks et al., 2004a; Hitzler & Vrandecic, 
2005), efficient ABox reasoning is still an open issue.  

In contrast to the increased complexity of the Classical Logic, the polynomial-time 
reasoning complexity of the Datalog paradigm is very attractive. However, a direct comparison 
of the reasoning complexity of the two paradigms seems unfair. The DL reasoning paradigm has 
increased inferencing capabilities, enabling it to reason over the incomplete information of the 
open environment of the Semantic Web. On the other hand, the polynomial reasoning time of 
Datalog is achieved when the query answering is performed against a fixed program, that is, over 
unchanged instances. Otherwise, the complexity becomes exponential. The same holds for more 
expressive Datalog versions, such as the Datalog¬∨ with negation as failure in the body and 
disjunction in the head of rules, where complexity goes beyond polynomial time (Eiter, Gottlob 
& Mannila, 1997). Therefore, the reasoning complexity is proportional to the expressivity we 
want to incorporate during modeling. 
 

CONCLUSIONS 

The advantages that stem from the rule-based representation paradigm, such as the flexible and 
declarative way of specifying knowledge or the simplicity it offers during transfer of knowledge 
between different parties, have been quickly identified and rules have become an inextricable 
part of many real-world applications. The importance of rules has motivated many 
standardization organizations to work on the recommendation of a common rule standard, such 
as the RuleML (RuleML, 2008), W3C (W3C, 2008) and the OASIS (OASIS, 2008) initiatives. It 
is worth to mention the OMG Production Rule Representation (OMG, 2008) that works towards 
the specification of a standard for platform-independent expression of production rules. 



                                                                                                  Rule-based OWL Reasoning     24

In this chapter we addressed the basic principles behind the utilization of rules in order to 
handle OWL ontological information. Such utilization is based on two approaches. Firstly, rules 
can be considered as alternatives to the OWL language, mapping a subset of DL into the LP 
paradigm. Secondly, rules can be combined with the OWL language, enhancing the semantics. 
Such combinations can be either hybrid, based on the inferencing capabilities of a DL 
component and a rule engine to run the rules, or homogeneous, where rule and ontology 
predicates are treated homogeneously as a single logic language with new semantics. 
 The chapter is mainly focused on presenting the practical aspects of the utilization of rule 
engines towards the development of entailment-based OWL reasoning (EBOR) systems for 
handling the OWL language. In fact, this is the first step towards the development of a 
homogeneous system for building rules on top of ontologies, as well as ontologies on top of 
rules. Towards this end, we presented the notion of RDF and OWL entailment rules and a 
classification of the EBOR paradigm into extended and native, according to the nature of the 
underlying rule engine. We presented three extended (OWLJessKB, F-OWL and O-DEVICE) 
and four native (Jena2, Bossam, OWLIM and BaseVISor) EBOR systems, describing (a) the 
distinctive implementation aspects of each system, (b) their rule languages, presenting the way 
the RDF/OWL entailments are implemented, and (c) the query languages they use in order to 
retrieve ontological resources. F-OWL and O-DEVICE are motivated by the similarities that 
exist between OWL and the object-oriented paradigm, whereas the other approaches follow a 
triple-based functionality. Furthermore, F-OWL uses a Prolog-like and Jena2 can use a backward 
chaining inference engine, whereas the other approaches follow the production rule paradigm 
where the inferred triples are computed and stored a priori in the KB. 
 We presented also a comparison regarding the DL and the rule-based reasoning 
paradigms. Since OWL is based on the DL formalism, existing sound and complete DL 
reasoning systems can be used for reasoning on ontologies. However, they have some 
limitations, such as inefficient ABox reasoning capabilities or the inability to handle complex 
and large rule programs, since they are not rule engines. Thus, although the rule-based reasoning 
paradigm offers less expressivity, it is closer to real-world application domains, such as database 
applications where there is the need for type constraints rather than high inferencing capabilities. 
Nevertheless, each modeling paradigm has its own weaknesses and strengths, depending on the 
application domain it is applied. 
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KEY TERMS AND THEIR DEFINITION 

1. Rule Engine: A computer program able to derive answers from a knowledge base based 
on a set of rules. 

2. Semantic Web: The extension of the current Web where information is given well-
defined meaning, enabling computers and people to work in better cooperation. 

3. Ontology: A specification of a shared conceptualization using a formal language. 
4. Web Ontology Language (OWL): The W3C recommendation for creating and sharing 

ontologies on the Web. 
5. Rule-based OWL Reasoning: The process of reasoning about OWL ontologies based on a 

rule engine. 
6. Description Logic Reasoning: The process of reasoning about OWL ontologies based on 

Description Logic algorithms (e.g. tableaux-based algorithms). 
7. Entailment Rule: An inference rule that defines the information that should be derived 

based on existing ontological knowledge. 
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LIST OF ACRONYMS 

CWA: Closed-World Assumption 
DL: Description Logic 
DLP: Description Logic Programs 
EBOR: Entailment-based OWL Reasoning 
E-EBOR: Extended Entailment-based OWL Reasoning 
LHS: Left-Hand Side 
LP: Logic Programming 
N-EBOR: Native Entailment-based OWL Reasoning 
OID: Object ID 
OWA: Open-World Assumption 
RHS: Right-Hand Side 
SWRL: Semantic Web Rule Language 
UNA: Unique Name Assumption 
 


