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Abstract

In this paper, we define a framework, namely CLIPS-OWL, for enabling
the CLIPS production rule engine to represent the extensional results of DL
reasoning on OWL ontologies in the form of Object-Oriented (OO) mod-
els. The purpose of this transformation is to allow CLIPS to use these OO
models as static query models that are able to answer extensional ontology
queries directly by the RETE reasoning engine during the development of
custom CLIPS production rule programs, without interfacing at runtime the
external DL reasoner. In that way, any CLIPS-based application may en-
hance its functionality by incorporating ontological knowledge without mod-
ifying the architecture of the CLIPS rule engine. CLIPS-OWL has been
implemented using the Pellet DL reasoner and the CLIPS Object-Oriented
Language (COOL).

Key words: production rules, ontologies, object-oriented model, CLIPS,
OWL

1. Introduction

Data integration and transformation are issues that concern many users
that wish to utilize Web data or to combine heterogeneous systems, since
data are stored on the Web under different formats and each application can
only handle a specific format [1][2][3]. To enable a specific tool to manipulate
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or just use data coming from various sources, a transformation phase must
take place in order for the source information to be mapped to the format
expected by the application.

The Semantic Web initiative1 works on standards, technologies and tools
in order to give to the information on the Web a well-defined meaning, en-
abling computers and people to work in better cooperation. Ontologies can
be considered as a primary key towards this goal since they provide a con-
trolled vocabulary of concepts, each with an explicitly defined and machine
processable semantics [4]. The Web Ontology Language (OWL) [5][6] is the
W3C recommendation for creating and sharing ontologies on the Web based
on the Description Logic (DL) knowledge representation formalism [7]. It
provides the means for ontology definition and specifies formal semantics
that OWL ontology reasoners [8][9] use in order to derive new information,
such as the OWL DL reasoners [10][11][12] that implement DL algorithms
[13][14].

Rule-based systems have been extensively used in several applications and
domains, such as e-commerce, personalization, businesses and academia. In
the last years, the ability of manipulating and/or using semantically anno-
tated information in rule systems has been considered as of great importance
for both businesses and the successful proliferation of Semantic Web tech-
nologies, since it enables the already existing and well-known infrastructure
of rule engines to gain access in the new evolution of Semantic Web.

In this paper, we present an approach that transforms the extensional
knowledge that is derived from OWL DL reasoning into the OO model that
is supported by the CLIPS production rule engine (COOL language) [15].
The idea of our framework, namely CLIPS-OWL, is to allow CLIPS to access
this knowledge by querying the local OO KB that is generated after applying
our transformation procedure on top of the DL reasoner and not by querying
directly the external DL reasoning module, an architecture that would require
considerable amount of changes in the initial architecture of CLIPS.

The motivation/contribution of our work, which is described in detail in
section 2.5, can be summarized in the following:

• We enable the highly efficient and robust CLIPS production rule engine
to import and query extensional OWL ontological knowledge, based on
the inferencing capabilities of DL reasoners [10][11][12].

1http://www.w3.org/2001/sw/
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• CLIPS-OWL can be easily embedded in already existing CLIPS-based
environments since it is based on the native CLIPS capabilities without
interfacing physically the DL reasoner.

It should be noted that CLIPS-OWL incorporates the extensional results
of DL reasoning in CLIPS production rule programs based on the closed-
world assumption (CWA), that is, only explicitly stated knowledge can be
queried, and the unique name assumption (UNA), that is, all the objects of
the OO model are different from each other [16].

CLIPS-OWL is suitable in application domains where ontologies are used
as static models for sharing knowledge among heterogeneous environments.
An example of such an application domain, in which CLIPS-OWL is already
applied, is the domain of Software Antipatterns [17]. Antipatterns provide
information on commonly occurring solutions to problems that generate neg-
ative consequences during software development. The antipatterns can be
documented, stating how they are related with other antipatterns through
special attributes, such as causes, symptoms and consequences. In order to
enable the sharing of this knowledge, antipatterns can be documented in
terms of an OWL ontology. However, the process of detecting which antipat-
terns exist in a software project is a challenging task which requires expert
knowledge. Based on an antipattern ontology, CLIPS-OWL is used in order
to enable a set of object-oriented CLIPS production rules to run and retrieve
antipatterns relevant to some initial symptoms.

The rest of the paper is structured as follows: in section 2 we present
the background and the motivation of our work. In section 3 we describe
in detail the functions that transform the results of DL reasoning into the
OO model of CLIPS. In section 4 we present an example of a rule-based
application that uses the results of CLIPS-OWL. Finally, in sections 5 and
6, we present related work and we conclude, respectively.

2. Background and Motivation

2.1. The Web Ontology Language

The Web Ontology Language (OWL) is the W3C recommendation for
defining and sharing ontologies in the Web and its theoretical background
is based on the Description Logic (DL) [7] knowledge representation formal-
ism, a subset of predicate logic. The modeling in OWL is performed using
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concepts, properties and instances. The first two constitute the terminolog-
ical knowledge of the ontology (schema), whereas the latter constitutes the
extensional knowledge [18].

The concepts in OWL represent sets of instances and by default, they
are subsumed by the built-in concept owl:Thing. The set-oriented nature of
OWL accounts for a great degree of expressiveness during concept definition,
enabling the utilization of semantics relevant to sets, such as intersection.

The properties in OWL are classified in two categories: object properties
and datatype properties. The former take as values instances, whereas the
latter take data values, for example, integers, strings, etc. The properties are
defined in terms of domain and range restrictions. The former denotes the
concept(s) where instances should belong in order to use the property and
the latter denotes the concept(s) or the datatype where the values should
belong. Furthermore, a property maybe given special characteristic, such as
symmetric, transitive, inverse and others.

The instances in OWL may belong to one or more concepts (instance
concept membership) and may define more than one value in their properties.
The instance concept membership set is computed after reasoning based on
the subclass transitivity (class subsumption), as well as, based on the complex
class constructors that are defined, such as intersection, union, equivalence
and property restrictions.

Furthermore, two or more instances in OWL may be defined as identical
(owl:sameAs property), although they have different IDs. This means that
the instances have the same instance concept membership sets and the same
values in their properties. It should be noted that OWL does not follow the
unique name assumption (UNA) and therefore, instances with different IDs
may refer to the same resource.

2.2. OWL DL reasoning

A DL reasoner is employed in order to infer any implicit relationship
that stems from the asserted axioms of an ontology. At the level of the
terminological knowledge, the reasoning procedure is called TBox reasoning,
whereas at the extensional level is called ABox reasoning. Based on a set of
ontology axioms, the basic reasoning procedures of a DL reasoner are:

• Computation of the subsumption hierarchy. This involves the
computation of the subclass relationships among the concepts of the
ontology. The reasoner also checks the ontology for inconsistencies.
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• Realization. This is the computation of the instance concept mem-
bership sets, that is, the complete set of concepts where the instances
belong and the instance property values.

2.3. The CLIPS Production Rule Engine and the COOL Language

CLIPS [15] is a RETE-based production rule engine written in C that was
developed in 1985 by NASA’s Johnson Space Center and it has undergone
continual refinement and improvement ever since. One of the most interest-
ing capabilities of CLIPS is that it integrates the production rule paradigm
with the OO model, which can be defined using the COOL (CLIPS Object-
Oriented Language) language. In that way, classes, attributes and objects
can be matched on the production rule conditions (LHS), as well as to be
altered on rules actions (RHS).

The semantics of CLIPS are the usual production rule semantics: rules
whose condition is successfully matched against the current data are triggered
and placed in the conflict set. The conflict resolution mechanism selects a
single rule for firing its action, which may alter the data. Rule condition
matching is performed incrementally, through the RETE algorithm.

2.3.1. COOL syntax and semantics

The COOL language of CLIPS provides the necessary constructs in order
to define classes with attributes and the corresponding data model, that is,
the objects and their attribute values.

Classes and attributes. The classes in COOL are regarded as types of objects
and may define attributes. Usually, the classes of a domain are organized in
terms of a class hierarchy using subclass relationships, where each class may
have more than one direct superclasses (multiple direct inheritance). In that
way, each class inherits also the attributes of all of its (direct or indirect)
superclasses. Furthermore, subclass cycles are forbidden and therefore, two
classes cannot share a mutual subclass relationship.

The attributes in COOL can take either a single value and they are called
slots, or they can take more than one value and they are called multislots.
For each attribute, a number of constraints may be defined, such as the valid
type of the values that can take. The basic syntax for defining classes in
COOL is shown below.

(defclass <name>
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(is-a <superclass-name>+)

(<slot>* <constraint>*)

(<multislot>* <constraint>*))

A class is defined by specifying the name, one or more superclasses2,
and zero, one or more attribute definitions with type constraints. We will
be interested in the type, allowed-classes, allowed-values and range

constraints only. The first one is used in order to restrict the type of data type
attributes, such as strings, integers, etc. The second one denotes the class
type of the objects that an attribute can take, using the INSTANCE-NAME value
as a type constraint. The third one allows the attribute to be restricted to
a specific set of values, for example {yes no}. Finally, the range constraint
allows a numeric range to be specified for an attribute. As an example, we
present the definition of the classes Human and Man with three properties age,
married and hasParent. The former takes a single integer value, the second
can take only the values yes or no and the latter takes object values of the
class Human.

(defclass Human

(is-a USER)

(slot age (type INTEGER)(range 1 100))

(slot married (type STRING)(allowed-values yes no))

(multislot hasParent

(type INSTANCE-NAME)(allowed-classes Human)))

(defclass Man

(is-a Human))

Objects. An object in COOL is declared using a class as the direct class type.
Based on the subclass hierarchy, the object inherits also the class types of the
superclasses. In that way, the objects can use the attributes of their direct
class types, as well as the attributes that are inherited from the superclasses.

An object is defined by specifying the name inside brackets, which is
actually the object ID, the class type and any attribute value, using the
following syntax:

2The built-in USER class of COOL must be the root class of the class hierarchy.
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(make-instance [<name>] of <class>

[(<attribute> <values>)]*)

For example, an object of the class Man above is defined as it follows:

(make-instance [george] of Man

(age 28)

(married no)

(hasParent [Peter] [Mary]))

In that way, [george] is an object of the classes Man and Human.

2.4. Approaches for Using Ontologies with Rules

In this section, we briefly overview the approaches, both practical and
theoretical, for the utilization of ontological knowledge in rule engines. More
details can be found in the surveys [19], [20] and [21].

Interfacing external ontology reasoners with rule engines. In this scenario,
the rule engine calls an external OWL reasoner, e.g. a DL reasoner, when-
ever is needed (“on the fly”). The hybrid approaches can be classified into
bidirectional and unidirectional. In unidirectional frameworks, the informa-
tion flows only from the ontology reasoner to the rule engine and thus, the
ontology knowledge remains unmodified [22][23][24]. In bidirectional frame-
works, the ontology predicates can be used both in the body and in the head
of rules and thus, the ontology knowledge may be modified [25][26][27].

Mapping ontology reasoners on the data model of rule engines. In this case,
the results of the external OWL reasoner are mapped on the data model
that the rule engine supports, e.g. on triple-based facts [28][29]. In that way,
the rule engine can operate without calling further the ontology reasoner
(one-time mapping), since all the ontological knowledge exists in its KB.

Strong coupling of ontologies and rules. In this approach, also known as ho-
mogeneous, there is no external OWL reasoning module. The ontology se-
mantics are partially mapped on a rule formalism [30][31], e.g. Datalog or
pd∗ entailment rules [32], that coexist in the rule base with rule predicates,
enhancing the expressivity [33]. Therefore, a new reasoner is needed, able to
handle the new homogeneous language that emerges [34][35][36][37][38].
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2.5. CLIPS-OWL: The Basic Idea

CLIPS-OWL follows the approach of the one-time mapping of the re-
sults of DL reasoners. To give an example, consider the ontology in Table
1 that defines the class Department, the class Chair as subclass of the class
Professor and the object property isHeadOf with domain and range restric-
tions the classes Chair and Department, respectively. Furthermore, there is
the instance csd that belongs to the class Department and the instance nick
of the class Chair with the property value csd in the property isHeadOf.

Table 1: Ontology example.

OWL Axioms (DL Syntax)

Chair ⊑ Professor

⊤ ⊑ ∀isHeadOf−.Chair
⊤ ⊑ ∀isHeadOf.Department
csd : Department
⟨nick, csd⟩ : isHeadOf

Table 2: The extensional knowledge of the ontology in Table 1.

Instance Concept Membership Property→Value

csd {Department}
nick {Chair, Professor} isHeadOf→csd

By using a DL reasoner, it can be inferred that the instance nick belongs
also to the concept Professor, due to the subclass relationship between the
concepts Chair and Professor. The complete extensional knowledge of the
ontology is depicted in Table 2. With CLIPS-OWL, our intention is to rep-
resent such extensional knowledge in terms of OO relationships in COOL.
This involves the definition of an appropriate schema and data model in
COOL, so that, for example, a query for the class types of the object nick
should return both the classes Chair and Professor and a query for the
isHeadOf attribute values of the object nick should return the object csd.
Intuitively, the instance concept membership relationships should be repre-
sented in terms of object class type declarations and the instance property
values should be represented as object attribute values. Below, we present
the COOL model that CLIPS-OWL generates for the example.
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(defclass Department (is-a owl:Thing))

(defclass Professor (is-a owl:Thing))

(defclass Chair (is-a Professor)

(multislot isHeadOf

(type INSTANCE-NAME) (allowed-classes Department)))

(make-instance [csd] of Department)

(make-instance [nick] of Chair (isHeadOf [csd]))

In the following, we elaborate on some of the main characteristics of
CLIPS-OWL.

2.5.1. Powerful rule-based applications

The main functionality of CLIPS-OWL is to allow decision-making rule-
based applications in CLIPS to run on top of ontological knowledge. It could
be argued that such rule programs can be also developed using existing sys-
tems, such as RACER or Pellet that provide the infrastructure to run a
set of rules on top of ontological knowledge. This argument is true, but it
should be noted that the intention behind CLIPS-OWL is not to substitute
or outperform existing implementations. CLIPS-OWL is an engine-specific
framework, allowing CLIPS to be used as a production rule engine in order to
develop rule-based applications on top of OWL ontologies. We consider this
capability quite challenging, since CLIPS is a highly efficient general-purpose
production rule engine with many years of development, having been widely
used throughout the government, industry and academia. Therefore, we ar-
gue that it is a more powerful production rule engine with more capabilities
compared to the rule engine implementations of, for example, RACER and
Pellet that are mainly used for defining ontological relationships and not for
building large and complex rule-based applications using traditional produc-
tion rule engine features (conflict resolution strategies, message dispatching,
salience, modules and many others).

2.5.2. Practical implementation

We have chosen to implement a mapping-oriented architecture in CLIPS
for the following three reasons. Firstly, in a hybrid architecture, the rule
engine is able to perform queries to the external reasoner only about the
resources that exist in the KB, since they have to be matched by the rules.
Therefore, the development of a rule program in a hybrid architecture re-
quires the definition of a common vocabulary that would exist both in the
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rule engine and in the ontology. In mapping-oriented architectures, such as
in CLIPS-OWL, the complete ontological knowledge is accessible and can be
used by the rules, making more practical and straightforward the develop-
ment of rule-based applications that use ontological knowledge.

Secondly, the implementation of a hybrid architecture using an existing
general-purpose rule engine, such as CLIPS, is a very complex task compared
to a rule engine that has been developed for this specific task. Any effort
to embed the results of the external ontology reasoner calls directly into
the RETE algorithm of CLIPS requires a great amount of changes to the
initial infrastructure of CLIPS, resulting in a completely different architecture
with unspecified side effects. Such an attempt might throw away decades of
development on the efficient and robust RETE-based CLIPS rule engine.

Finally, the development of a protocol for the notification of the rule
engine about potential changes to the ontological knowledge will have to be
too complex, especially in a RETE-based production rule engine, since the
RETE algorithm maintains intermediate caches in order to implement an
incremental pattern-matching activity [19].

3. CLIPS-OWL Transformation Functions

Before defining the transformation procedure, it is important to clarify the
way CLIPS-OWL handles two fundamental OWL characteristics that are not
met in a typical OO environment and require special treatment: the concept
equivalent semantics and the multiple instance concept memberships.

3.1. Concept Equivalence

A DL reasoner may infer that two or more ontology concepts are equiv-
alent, having a mutual subclass relationship. At the extensional level, this
means that the equivalent concepts have the same set of instances. This situ-
ation cannot be modeled in COOL, since subclass cycles are not allowed. To
overcome this restriction, CLIPS-OWL follows an indirect way for preserving
the concept equivalent semantics at the extensional level, by arbitrarily se-
lecting a concept from the equivalent concept set as the delegator of each con-
cept in the set. The idea is that (a) the delegator concept becomes subclass
of all of its equivalent concepts in the COOL model, (b) the non-delegator
concepts are defined as subclasses of owl:Thing and (c) every object class
type declaration of the classes in the equivalent concept is transformed to
a class type declaration only to delegators. In that way, all the equivalent
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classes share the same objects in COOL: the delegator class has all objects
as direct objects, whereas the rest of the classes in the equivalent concept set
have the delegator class as a direct subclass, therefore the delegator class’
objects are their (indirect) objects, as well.

To exemplify, consider that a DL reasoner has inferred the three equiv-
alent concepts C, D and E that have the same set of instances, let {i1, i2}.
Assuming that CLIPS-OWL selects the concept C as the delegator of the
equivalent concept set {C,D,E}, the class C would be defined in COOL
as subclass of D and E. Furthermore, the corresponding objects of the in-
stances i1 and i2 would be both defined in class C in COOL (the delegator).
Therefore, a query in COOL for the objects of the classes C, D or E will
return the same results, as the equivalent semantics of OWL impose for the
corresponding concepts.

3.2. Multiple Instance Concept Membership

An instance in OWL may belong to multiple, hierarchically unrelated
concepts at the same time. For example, an instance i may belong to the
concepts C and D that do not have any subclass relationship. This also
involves multiple domain restrictions of properties, where an instance that
use such a property should belong to all the domain concepts. Taking into
consideration that in an OO environment, such as in COOL, an object can
be instantiated with a single class type, the direct transformation of each in-
stance concept membership to an object class type declaration is impossible.

To overcome this limitation, the transformation procedure of CLIPS-
OWL generates a system class for each multiple instance concept membership
set that plays the role of the single class type that each object requires. The
system classes are defined as subclasses of the most specific classes of the
multiple instance concept membership set and the objects are instantiated
with this system generated class type. To exemplify, a system class will be
generated in CLIPS for the classes C and D, let T , and the object i will
be instantiated with the class type T . In that way, a query to the common
objects of the classes C and D will return the object i.

3.3. Transformation Procedure

The transformation procedure is defined on top of the reasoning results
of the DL reasoner, which are the subsumption hierarchy, the domain/range
property restrictions and the extensional knowledge. These results constitute
the input knowledge of CLIPS-OWL.
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Assuming that TBoxR and ABoxR are the TBox and ABox DL reasoning
results, respectively, and that COOLsch and COOLdata are the COOL OO
schema and objects that are to be generated, respectively, the transformation
is defined with two functions:

fsch : TBoxR → COOLsch

fdata : ABoxR → COOLdata

In the rest of the discussion, we represent the TBox results as a tuple of
the form

TBoxR ≡ ⟨CNR, HR, PNR, DOMR, OBJR, DATR⟩,

where CNR is the set with the named ontology concepts, PNR is the set of
the ontology properties, HR is the set of the direct subclass relationships3

between the concepts (represented with the symbol ≪), DOMR is the set of
property domain relationships , OBJR is the set of object property range re-
lationships and DATR is the set of the datatype property range relationships.
The sets HR, DOMR, OBJR and DATR are defined as follows.

HR ≡ {(x, y) | x ∈ CNR ∧ y ∈ CNR ∧ x ≪ y}

DOMR ≡ {(x, y) | x ∈ PNR ∧ y ∈ CNR ∧ ⊤ ⊑ ∀x.−y}
OBJR ≡ {(x, y) | x ∈ PNR ∧ y ∈ CNR ∧ ⊤ ⊑ ∀x.y}

DATR ≡ {(x, y) | x ∈ PNR ∧ y ∈ DATRDF
4 ∧ ⊤ ⊑ ∀x.y}

Regarding the ABox results, they are represented as a tuple of the form

ABoxR ≡ ⟨INR, IR, ObjVR, DatVR⟩,

where INR is the set with the names (IDs) of the ontology individuals, IR is
the set with the direct instance class memberships, ObjVR is the set with the
object property values of instances and DatVR is the set with the datatype
values of instances. The sets IR, ObjVR and DatVR are defined as follows.

IR ≡ {(x, y) | x ∈ INR ∧ y ∈ CNR ∧ x : y}

3The direct subclass relationship between two concepts x,y is defined as x ≪ y ≡ x ⊑
y∧@z(x ⊑ z∧ z ⊑ y∧ z ̸= x∧ z ̸= y), where ⊑ is the DL symbol for concept subsumption.

4DATRDF are the allowed RDF Datatypes in OWL
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ObjVR ≡ {(x, p, y) | x ∈ INR ∧ y ∈ INR ∧ ⟨x, y⟩ : p ∧ (∃c, (p, c) ∈ OBJR)}
DatVR ≡ {(x, p, y) | x ∈ INR∧y ∈ V ALDAT

5∧⟨x, y⟩ : p∧(∃c, (p, c) ∈ DATR)}.
The COOL schema is represented as a set of tuples of the form ⟨c, Sc, P c⟩,

where c is a class name, Sc is the set of the direct superclasses of c (represented
using the notation ≪o) and P c is the set with the slot type definitions of c.
More specifically,

COOLsch ≡ {⟨c, Sc, P c⟩ | ∀s ∈ Sc, c ≪o s ∧ ∀p ∈ P c, p ∈ classSlots(c)}

The COOL objects are represented as a set of tuples of the form ⟨i, ci, PVi⟩,
where i is an object, ci is the class type of i and PV i is the set of the slot
values tuples of i of the form ⟨p, v⟩. More specifically,

COOLdata ≡ {⟨i, ci, PV i⟩ | i instanceOf ci ∧ ∀⟨p, v⟩ ∈ PV i, v ∈ i.p}

The function fsch transforms the TBox results into a COOL schema of
class definitions that incorporate class slot declarations and slot types. The
fdata transforms the ABox results into COOL objects with appropriate slot
values. It should be noted that fsch is an injective function, since each on-
tology concept is mapped on a unique COOL class. However, it is not a
bijective function, since some COOL classes are generated that do not map
any named ontology concept (non-surjective function). On the other hand,
the fdata is a bijective function, since ontology instances are mapped on an
one-to-one correspondence (see the B).

The transformation procedure involves two phases:

1. Premapping phase. The input to CLIPS-OWL is preprocessed in order
to identify the delegators (section 3.3.1), to handle multiple domain
and range restrictions (section 3.3.2), as well as, multiple instance class
memberships (section 3.3.3).

2. Mapping phase. The results of premapping are mapped on the COOL
model (section 3.3.4).

3.3.1. Delegator Management

The premapping phase starts by assigning delegators based on the func-
tion fDsch

, which is defined as

fDsch
: TBoxR → TBoxD,

5V ALDAT is the set with the allowed values for the DATRDF Datatypes
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where TBoxD ≡ ⟨CND, HD, PND, DOMD, OBJD, DATD⟩. The purpose of
this function is to determine the delegator of each named equivalent concept
set and to define appropriate hierarchical relationships and domain/range
property restrictions that refer only to delegators. The original sets of the
concept names, properties and datatype property ranges are not modified,
therefore, CND = CNR, PND = PNR and DATD = DATR.

The delegators are defined in terms of the set DEL that contains pairs
of the form (x, y), meaning that y is the delegator of x. More specifically,

DEL ≡ {(x, y) | x ∈ CND∧
y = first(sort({c | (x, c) ∈ HR ∧ (c, x) ∈ HR} ∪ {x}))}.

The delegator concept y of x is the first element of the sorted collection6

of all the equivalent concepts of x (concepts that have mutual subclass re-
lationship with x). In that way, always the same concept is selected as the
delegator for a specific equivalent concept set. If x does not have equivalent
concepts, then it is the delegator of itself.

As we have described in section 3.1, the delegator becomes subclass of all
of its equivalent concepts and the non-delegator concepts become subclasses
of owl:Thing (⊤). Furthermore, each subclass relationship should refer only
to delegators. In that way, the HD set is defined as

HD ≡ {(x, y) | (y, x) ∈ DEL} ∪ {(y,⊤) | (y, x) ∈ DEL} ∪ {(x, y)|x ∈ CND∧
y ∈ CND ∧ (∃a, (a, x) ∈ DEL) ∧ (∃b, (b, y) ∈ DEL) ∧ (a, b) ∈ HR}

Furthermore, the domain restrictions of properties and the range restric-
tions of object properties should refer now only to delegators. Therefore, the
DOMD and OBJD sets are defined as

DOMD ≡ {(x, y) | x ∈ PND ∧ y ∈ CND ∧ (∃a, (a, y) ∈ DEL∧
(x, a) ∈ DOMR)}

OBJD ≡ {(x, y) | x ∈ PND ∧ y ∈ CND ∧ (∃a, (a, y) ∈ DEL∧
(x, a) ∈ OBJR)}

6The collection is lexicographically sorted based on concept names.
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3.3.2. Multiple Domain/Range Restrictions

An ontology property may be inferred to have multiple domain and/or
range restrictions. In the case of multiple domain restrictions, an instance
should belong to all the domain concepts in order to use the property. In the
case of multiple range restrictions, the property value should belong to all
the range concepts7. In order to handle these situations, the transformation
procedure creates system generated concepts that play the role of the single
property domains and ranges (see section 3.2).

The transformation function fMsch
takes as input the TBoxD tuple and

generates the TBoxM tuple, that is,

fMsch
: TBoxD → TBoxM ,

where TBoxM ≡ ⟨CNM , HM , PNM , DOMM , OBJM , DATM⟩. The sets PND

and DATD do not participate in the transformation procedure and therefore,
PNM = PND and DATM = DATD.

Initially, the set DOMMC is computed that contains pairs of the form
(x,MC), where x is a property and MC is the set with its domain(s):

DOMMC ≡ {(x,MC) | x ∈ PNM ∧MC ≡ {c | (x, c) ∈ DOMD}}.

Based on the DOMMC set, the set DOMM of TBoxM is defined as the
set that contains pairs of the form (x, y), where x is a property and y is its
domain(s). In the case that x has multiple domains, a system concept is
generated to play the role of the unique domain concept. More specifically,

DOMM ≡ {(x, y) | ∃y, (x, {y}) ∈ DOMMC} ∪ {(x, y) |
∃MC, (x,MC) ∈ DOMMC ∧ |MC| > 1 ∧ y = classGen(MC)}.

classGen(C) is a function that generates a unique concept name that
functionally depends on the set of concepts C. Notice that the name is
not random, i.e. for the same set of concepts C always the same name
will be generated. Furthermore, if concepts that are hierarchically related
exist in C, only the most specific ones remain8. It should be noted that

7It is assumed that a datatype property can have only a single datatype restriction.
8After that elimination, a possible function definition could be classGen(C) =

return(concatenate(sort(C))).
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∀(x, y) ∈ DOMM , @(x, z), y ̸= z, that is, all properties have single domain
restrictions in DOMM .

The same rational holds for the OBJM set, which is based on the set
OBJMC that contains pairs of the form (x,MC), where x is a property and
MC is the set with its range(s).

OBJMC ≡ {(x,MC) | x ∈ PNM ∧MC ≡ {c | (x, c) ∈ OBJD}}.

OBJM ≡ {(x, y) | ∃y, (x, {y}) ∈ OBJMC} ∪ {(x, y) |
∃MC, (x,MC) ∈ OBJMC ∧ |MC| > 1 ∧ y = classGen(MC)}.

It should be noted that ∀(x, y) ∈ OBJM ,@(x, z), y ̸= z, that is, all prop-
erties have single range restrictions in OBJM .

Due to the system generated concepts, the sets CNM and HM should
contain the new concepts and the new hierarchical relationships, respectively.
The set CNM contains the new concepts that are generated due to the mul-
tiple domain and range restrictions:

CNM ≡ CND ∪ {c | ∃x, (x, c) ∈ DOMM} ∪ {c | ∃x, (x, c) ∈ OBJM},

The set HM defines the hierarchical relationships between the system gen-
erated concepts and their superclasses, that is, the system generated concepts
are subclasses of the corresponding concepts for which they are generated:

HM ≡HD ∪ {(x, y) | x ∈ CNM \ CND ∧ y ∈ CND∧
∃w, ∃MC, (w,MC) ∈ DOMMC ∪OBJMC ∧ |MC| > 1∧
x = classGen(MC) ∧ y ∈ MC}

3.3.3. Instance Management

The instance concept memberships should refer only to delegator con-
cepts. The function fDdata

is responsible for this task, where

fDdata
: ABoxR → ABoxD,

generating a tuple ABoxD ≡ ⟨IND, ID, ObjVD, DatVD⟩, where IND = INR,
ObjVD = ObjVR, DatVD = DatVR. This function ensures that each reference
to a non-delegator concept in IR is substituted with its delegator, that is

ID ≡ {(x, y) | x ∈ IND ∧ y ∈ CND ∧ (∃a, (a, y) ∈ DEL ∧ (x, a) ∈ IR)}.
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In order to handle multiple instance concept memberships, the transfor-
mation procedure is based on the function fMdata

that is defined as

fMdata
: ABoxD → ABoxM .

This function generates a tuple ABoxM ≡ ⟨INM , IM , ObjVM , DatVM⟩,
where INM = IND, ObjVM = ObjVD and DatVM = DatVD. The set IM is
determined by substituting each multiple instance concept membership with
a single system generated concept, following a procedure similar to section
3.3.2. More specifically, the set IMC is determined that contains pairs of
the form (x,MC), where x is an instance and MC is the set of its concept
memberships.

IMC ≡ {(x,MC) | x ∈ INM ∧MC ≡ {c | (x, c) ∈ ID}}.

Then, the set IM is computed that contains pairs of the form (x, y), where
x is an instance and y is its concept membership. In case the instance have
more than one concept memberships, that is, |MC| > 1, then a system
concept is generated to play the role of the single concept membership.

IM ≡ {(x, y) | ∃y, (x, {y}) ∈ IMC} ∪ {(x, y) | ∃MC, (x,MX) ∈ IMC∧
|MC| > 1 ∧ y = classGen(MC)}

It should be noted that ∀(x, y) ∈ IM ,@(x, z), y ̸= z, that is, all instances
have a single concept membership in IM . Furthermore, the function fMdata

may generate new system concepts in order to handle multiple instance con-
cept memberships. For that reason, in practice, both the CNM and HM sets
are updated in order to incorporate also the new concepts.

3.3.4. Mapping Phase

The mapping of the TBoxM tuple on the COOLsch set is performed by
the function fCOOLsch

, which is defined as

fCOOLsch
: TBoxM → COOLsch.

COOLsch is a set that contains tuples of the form ⟨c, Sc, P c⟩ that are
presented in section 3.3 and it is defined as

COOLsch ≡ {⟨c, Sc, P c⟩ | c ∈ CNM ∧ Sc = {s|(c, s) ∈ HM}∧
P c = {⟨p, t⟩ | (p, c) ∈ DOMM ∧ (p, t) ∈ OBJM ∪DATM}}.
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More specifically, every class c in COOL exists in the set CNM , the super-
classes of c are determined based on the set HM and the slot type definitions
of c are determined based on the DOMM , OBJM and DATM sets.

The mapping of the ABoxM tuple on the COOLdata set is performed by
the function fCOOLdata

, which is defined as

fCOOLdata
: ABoxM → COOLdata.

COOLdata is a set that contains tuples of the form ⟨i, ci, PV i⟩ that are
presented in section 3.3 and it is defined as

COOLdata ≡ {⟨i, ci, PV i⟩ | i ∈ INM ∧ (i, ci) ∈ IM∧
PV i = {⟨p, v⟩ | (i, p, v) ∈ ObjVM ∪DatVM}}

More specifically, every instance i in COOL exists in the set INM , the
class type of i is determined based on the set IM and the property values of
i are determined based on the sets ObjVM and DatVM .

Based on the transformation functions that are presented in this section,
the overall procedures for generating the COOL schema and objects consist
of two function compositions of the form

COOLsch = fsch(TBoxR) = fCOOLsch
(fMsch

(fDsch
(TBoxR)))

COOLdata = fdata(ABoxR) = fCOOLdata
(fMdata

(fDdata
(ABoxR)))

Generating the COOL code. The generation of the actual COOL code based
on the COOLsch and COOLdata sets is straightforward. For each tuple
⟨c, Sc, P c⟩ ∈ COOLsch, a defclass construct is generated with name c,
is-a constraint the set Sc, and for each ⟨p, t⟩ ∈ P c, a multislot declara-
tion is defined. The dtMap function maps an OWL datatype on a COOL
datatype, according to Table 3. For each tuple ⟨i, ci, PV i⟩ ∈ COOLdata, a
make-instance construct is defined with name [i], of constraint the class ci,
and for each ⟨p, v⟩ ∈ PV i, the value v is inserted into the slot p (Procedure
1)9.

9The to instances function is used in order to insert square brackets ([,]) in each value
of the set, as the COOL object notation requires.
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Procedure 1: codeGenerator(COOLsch, COOLdata)

foreach ⟨c, Sc, P c⟩ ∈ COOLsch do
if Sc = owl:Thing then

write((defclass c is-a USER)
else write((defclass c is-a Sc)
foreach ⟨p, t⟩ ∈ P c do

if objectProperty(p) then
write((multislot p (type INSTANCE-NAME)

write((allowed-classes t)))
else write((multislot p dtMap(t)))

write())
foreach ⟨i, ci, PV i⟩ ∈ COOLdata do

write((make-instance [i] of ci)
PV Si = ∅
foreach ⟨p, v⟩ ∈ PV i do

if ⟨p, V ⟩ ∈ PV Si then
PV Si = PV Si \ ⟨p, V ⟩ ∪ ⟨p, V ∪ {v}⟩

else
PV Si = PV Si ∪ ⟨p, {v}⟩

foreach ⟨p, V ⟩ ∈ PV Si do
write((p to instances(V )))

write())

Table 3: Basic mappings of OWL datatypes on COOL slot constraints

OWL datatype COOL data type

xsd:int (type INTEGER)

xsd:float (type FLOAT)

xsd:short (type INTEGER) (range -32768 32767)

xsd:boolean (type SYMBOL) (allowed-values true false)

xsd:string (type STRING)

xsd:nonNegativeInteger (type INTEGER) (range 0 ?VARIABLE)

xsd:integer (type INTEGER)

xsd:anyURI (type STRING)

xsd:positiveInteger (type INTEGER) (range 1 ?VARIABLE)

xsd:nonPositiveInteger (type INTEGER) (range ?VARIABLE 0)
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Table 4: Ontology example with university regulations.

# OWL Axioms (DL Syntax)

u1 FullProfessor ⊑ FacultyMember

u2 NonTeachingFullProfessor ≡ FullProfessor ⊓ ¬teaches.Course
u3 AdvancedCourse ⊔ BasicCourse ≡ Course

u4 AdvancedCourse ⊓ BasicCourse ≡ ⊥
u5 mary : FullProfessor ⊓ ∀teaches.AdvancedCourse
u6 paul : Student
u7 john : FullProfessor
u8 ai : AdvancedCourse
u9 kr : Topic
u10 lp : Topic
u11 ⟨john, ai⟩ : teaches

4. Using CLIPS-OWL for Developing a Production Rule Program

Let the ontology of Table 4 that models the university domain, describing
courses, professors and students. The goal is to develop a production rule
program in CLIPS that derives facts of the form (mayDoThesis x y) that
denote with which professor (y) a student (x) is eligible to do a thesis, based
on the knowledge that is modeled in the ontology. Therefore, we use the on-
tological knowledge as the basis for developing a rule-based decision-making
application in CLIPS. The ontology axioms model the following relationships:

u1: A FullProfessor is also a FacultyMember

u2: A NonTeachingFullPRofessor is a FullProfessor that does not teaches
a course

u3: The instance set of the concept Course is the union of the instances of
the concepts AdvancedCourse and BasicCourse

u4: The concepts AdvancedCourse and BasicCourse are disjoint

u5: mary is a FullProfessor and teaches only advanced courses.

u6: paul is a Student

u7: john is a FullProfessor

u8: ai (artificial intelligence) is an AdvancedCourse

u9: kr (knowledge representation) is a Topic

u10: lp (logic programming) is a Topic

u11: john teaches ai
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4.1. Transforming the Ontology Example

By applying a DL reasoner on the ontology example, we have for the
TBoxR results that:

CNR ≡ {owl:Thing, FullProfessor, FacultyMember, AdvancedCourse,
NonTeachingFullProfessor, BasicCourse, Course, Student, Topic}

HR ≡ {(owl:Thing, owl:Thing), (FullProfessor, FacultyMember),
(NonTeachingFullProfessor, FullProfessor),

(AdvancedCourse, Course), (BasicCourse, Course),

(FacultyMember, owl:Thing), (Student, owl:Thing),

(Topic, owl:Thing), (Course, owl:Thing)}

DOMR ≡ OBJR ≡ {(teaches, owl:Thing)}, DATR = ∅.

For the ABoxR results, we have that

INR ≡ {mary, paul, john, ai, kr, lp}

IR ≡ {(mary, FullProfessor), (paul, Student), (john, FullProfessor),
(ai, AdvancedCourse), (kr, Topic), (lp, Topic)}

ObjVR = {(john, teaches, ai)}, DatVR = ∅.

The ontology example does not contain any named equivalent concept
set, nor multiple domain, range or instance class membership relationships.
Therefore, TBoxR = TBoxM and ABoxR = ABoxM . In that way, the
COOLsch set is finally defined as

COOLsch ≡ {⟨owl:Thing,∅, {⟨teaches, owl:Thing⟩}⟩,
⟨FullProfessor, {FacultyMember},∅⟩,
⟨AdvancedCourse, {Course},∅⟩,
⟨NonTeachingFullProfessor, {FullProfessor},∅⟩,
⟨BasicCourse, {Course},∅⟩,
⟨FacultyMember, {owl:Thing},∅⟩,
⟨Course, {owl:Thing},∅⟩
⟨Student, {owl:Thing},∅⟩
⟨Topic, {owl:Thing},∅⟩}
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The COOLdata set is defined as

COOLdata ≡ {⟨mary, FullProfessor,∅⟩, ⟨paul, Student,∅⟩,
⟨john, FullProfessor, {⟨teaches, ai⟩}⟩,
⟨ai, AdvancedCourse,∅⟩, ⟨kr, Topic,∅⟩, ⟨lp, Topic,∅⟩}

By applying the code generator procedure using the COOLsch and COOLdata

sets, we have the following COOL code:

(defclass owl:Thing (is-a USER)

(multislot teaches

(type INSTANCE-NAME)(allowed-classes owl:Thing)))

(defclass FacultyMember (is-a owl:Thing))

(defclass Course (is-a owl:Thing))

(defclass AdvancedCourse (is-a Course))

(defclass NonTeachingFullProfessor (is-a owl:Thing))

(defclass FullProfessor (is-a FacultyMember))

(defclass Topic (is-a owl:Thing))

(defclass Student (is-a owl:Thing))

(defclass BasicCourse (is-a Course))

(make-instance [ai] of AdvancedCourse)

(make-instance [lp] of Topic)

(make-instance [john] of FullProfessor (teaches [ai]))

(make-instance [paul] of Student)

(make-instance [kr] of Topic)

(make-instance [mary] of FullProfessor)

Before describing the rule program, we give a short overview of the way
the objects and facts can be matched in the condition of CLIPS production
rules.

4.2. CLIPS Production Rules

A production rule in CLIPS is defined using the defrule construct that
consists of conditions and actions separated with the symbol =>. The con-
ditions can match both facts and objects, whereas the actions define the
actions that should be taken upon the satisfaction of all the conditions. The
facts consist of a symbol followed by a sequence of zero or more fields sep-
arated by spaces and delimited by an opening parenthesis on the left and a
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closing parenthesis on the right. The first field of an ordered fact specifies
a relation that applied to the remaining fields in the ordered fact, for ex-
ample, (father-of jack bill). An example of a fact-based CLIPS rule is
presented below.

(defrule test-rule1

(refrigerator light on)

(refrigerator door open)

=>

(assert (refrigerator food spoiled)))

Objects of user-defined classes in COOL can be pattern-matched on the
left-hand side of rules using object patterns of the form

<object-pattern> ::= (object <attribute-constraint>*)

<attribute-constraint> ::= (is-a <constraint>) |

(name <constraint>) |

(<slot-name> <constraint>*)

The is-a constraint is used for specifying class constraints and it also en-
compasses subclasses of the matching classes. The name constraint is used for
specifying a specific object on which to pattern-match. Constraints are also
used in slots/multislots in order to restrict certain type of values. Both in
fact and object patterns, it is possible to use variables in order to be matched
with certain values. A single-value variable is denoted as ?x, whereas a multi-
value variable is denoted as $?x. An example rule that prints all the objects
of the class Person is presented below.

(defrule test-rule2

(object (is-a Person)

(name ?x))

=>

(printout t ?x crlf))

4.3. Example Rule Program

For the example rule program, we use the following facts and rules in
CLIPS:

(mayDoThesis ?x ?y) “Student ?x can do a thesis with professor ?y”
(curr ?x ?y) “Student ?x has topic ?y in his/her curriculum”
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(expert ?x ?y) “Professor ?x is an expert on topic ?y”
(exam ?x ?y) “Student ?x passed the exam on topic ?y”
(subject ?x ?y) “Course ?x covers topic ?y”

(defrule mayDoThesis

(object (is-a Student)(name ?x))

(object (is-a Topic)(name ?z))

(object (is-a FacultyMember)(name ?y)

(teaches $? ?c $?))

(object (is-a AdvancedCourse)(name ?c))

(curr ?x ?z)

(expert ?y ?z)

=>

(assert (mayDoThesis ?x ?y)))

(defrule curr

(object (is-a Student)(name ?x))

(object (is-a Topic)(name ?z))

(object (is-a Course)(name ?y))

(exam ?x ?y)

(subject ?y ?z)

=>

(assert (curr ?x ?z)))

More specifically, the curr rule asserts a fact (curr ?x ?z) if ?x passed
the exam in course ?y that covers topic ?z. The mayDoThesis rule asserts
a fact (mayDoThesis ?x ?y) if ?x has topic ?z in the curriculum, ?y is an
expert on ?z, and ?y is a faculty member that teaches at least one advanced
course. By loading the facts

(subject [ai] [kr]),

(subject [ai] [lp]),

(expert [mary] [lp]),

(expert [john] [kr]),

(exam [paul] [ai]),

and running the production rules, we result in the addition of the fact
(mayDoThesis [paul] [john]) in the KB. More specifically, the curr rule
is activated and asserts the facts (curr [paul] [kr]) and (curr [paul]
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[lp]). Then, the mayDoThesis rule is activated, since fact (expert [john]

[kr]) exists and fact (curr [paul] [kr]) has been added by the curr rule.
Note the way object patterns are used in order to restrict the objects to be-
long to certain classes or to have certain attribute values. For example, the
maydothesis rule matches objects of the class FacultyMember that teach at
least one advanced course ?c, using multifield wildcards that produce every
possible match combination.

4.4. Memory Consumption and Rule Activation Time

In order to test the efficiency of the OO representation against the trivial
fact-based representation of the DL reasoner’s semantics, we generated the
COOL model and the set of the plain CLIPS facts of the UOBM DL ontology
[39] (20 departments, UOBM-1) after Pellet DL reasoning. The COOL model
was generated by the CLIPS-OWL library, whereas the CLIPS facts were
extracted directly from Pellet. Table 5 depicts the memory requirements of
CLIPS for loading each model, observing that CLIPS requires considerably
less memory to load the OO model than the corresponding fact-based model.

Furthermore, the benchmark defines 13 extensional queries, that is, queries
about instances. We expressed these queries in terms of object and fact pat-
tern constraints in CLIPS production rules and we used these rules in order
to test the rule activation performance, i.e. to test the query response capa-
bilities of each data model. For example, the query 11 that retrieves all the
objects of the class Person who like at least one similar thing to the head
of the University0, is defined in the fact and in the COOL models as:

(defrule query11-fact

(triple ?x rdf:type Person)

(triple ?x like ?y)

(triple ?z rdf:type Chair)

(triple ?z isHeadOf University0)

(triple ?z like ?y))

=>

(printout t ?x crlf))

(defrule query11-cool

(object

(is-a Person)

(name ?x)
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(like $? ?y $?))

(object

(is-a Chair)

(name ?z)

(isHeadOf $? [University0] $?)

(like $? ?y $?))

=>

(printout t ?x crlf))

Figure 1 depicts the rule activation time of each rule in the two models.
In all queries, the OO constraints were checked faster that the corresponding
fact-based, showing the efficiency of the OO representation that encapsulates
all the related knowledge about a resource in a single object definition.

Table 5: Memory requirements and the number of classes, objects and facts.

COOL Model Fact Model

CLIPS memory 29 MB 75 MB
Number of classes 646 -
Number of objects 25,460 -

Number of facts - 517,490
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Figure 1: Rule activation times.
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5. Related Work

The similarities between OWL and OO modeling have been considered
in many works. OntoJava [40] converts RDF Schema and RuleML into Java
classes: every RDF class is mapped on a Java class, every RDF property on
a class attribute and every RDF instance on a Java object. However, this
mapping is not based on an RDF reasoner, but it tries to capture semantics
using OO principles. Therefore, OntoJava is not able to perform, for example,
sophisticated instance classification based on complex class expressions. In
CLIPS-OWL, a richer mapping of OWL semantics on the COOL model is
defined using a DL reasoner for handling the ontology semantics.

In [41], an approach is presented for mapping OWL on Java. Like On-
toJava, it does not use a DL reasoner to infer the semantic relationships,
but it uses directly OO principles. To this end, some OWL semantics are
not handled, such as the inverse functional properties. Furthermore, the ap-
proach does not define a mapping of OWL instances on Java objects, but
it deals only with concepts and roles. There are other similar approaches,
such as the RDFReactor [42]. The major difference of such approaches to
ours is that their goal is to enable the use of the ontological knowledge in
OO programming, for example in Java, without being interested in complete
and sophisticated OWL reasoning. The OO principles are not enough for
complete ontology reasoning and a dedicated ontology reasoner should be
used, as CLIPS-OWL does with the use of a DL reasoner.

The authors in [43] take advantage of a mapping of ALC− (ALC without
intersection, allowing complex concepts built with at most one construct of
ALC) on UML for performing class consistency. Furthermore, a mapping
of UML on DLRifd and ALCQI is presented for allowing reasoning tools
developed for DLs to reason on UML class diagrams. In our work, the gen-
erated COOL model is not used for consistency checking, but it serves as a
query model for developing rule-based applications in CLIPS. The work in
[43] has quite interesting potentials, however it has different motivations and
application scenarios compared to ours.

In [44] a hybrid framework is presented where part of the domain exists in
OWL and the other part in an OO model. This approach does not actually
transform OWL into the OO model, but it rather defines an interface through
which the two models can cooperate. This involves the manual separation of
the domain into two KBs, based on some criteria that are presented in the
paper. A major difference of this approach compared to ours is the hybrid
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nature. In section 2.4.3 we explain why such a hybrid architecture is very
difficult to be implemented/embedded in an already existing RETE-based
environment, such as CLIPS.

ActiveRDF [45] is an RDF mapping approach to the OO model in Ruby.
The purpose of this mapping is to generate an API in order to manipulate
and query RDF ontologies. However, the high expressivity of OWL requires a
more sophisticated mapping than RDF, that we achieve by utilizing an OWL
DL reasoner. We are not interested in the dynamic modification of the gen-
erated OO model, since we use the COOL model only as query infrastructure
in CLIPS and not as an API.

SWCLOS [46] is an OWL reasoner developed on top of the Common
Lisp Object System (CLOS) that allows LISP programmers to develop OO
systems. SWCLOS maps ontologies on the OO model of CLOS and performs
inferencing using entailment rules [32] and not a DL reasoner. Therefore, it
is a homogenous approach, targeting mainly at (partial) ontology reasoning,
in contrast to CLIPS-OWL that defines a mapping to the COOL language.

To the best of our knowledge, the only effort so far that allows CLIPS to
use OWL knowledge is realized in O-DEVICE [47]. It is actually an OWL
reasoner using the OO capabilities of CLIPS. The system applies entailment
rules for OWL reasoning, and thus, it is a homogeneous system targeting
mainly at OWL reasoning, just like SWCLOS. Although O-DEVICE is de-
fined on top of CLIPS, the mapping and the generated OO model are differ-
ent from the corresponding ones of CLIPS-OWL. This happens since the OO
model in O-DEVICE is created taking into consideration entailment rules for
OWL reasoning, whereas in CLIPS-OWL, the OWL semantics are derived
directly from the DL reasoner. For example, O-DEVICE requires the defini-
tion of meta-objects, which are special objects necessary to store concept and
role information. For that reason, O-DEVICE loads RDF and OWL meta-
models. This approach is also followed by SWCLOS. In CLIPS-OWL there
are no meta-models and meta-objects, resulting in a simpler COOL model.
Also, CLIPS-OWL maps a richer set of OWL semantics than O-DEVICE,
since it uses a DL reasoner for OWL reasoning instead of applying a limited
OWL entailment rule set, such as O-DEVICE follows.

There is also an effort to map OWL ontologies on the Business Object
Model (BOM) in JRules BRMS [19], using an intermediate Jena model. This
is an one-time-mapping approach, just like CLIPS-OWL, allowing JRules
production rules to use ontological knowledge. This is currently an ongo-
ing work, without providing a detailed description about the transformation
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procedure.
SWRLJessTab [29] maps SWRL rules to Jess rules and OWL entailed

facts from the Racer reasoner to simple triple-based Jess facts. Jess rules op-
erate over Jess’s KB and the inferred information is translated back to Racer
in order to perform DL reasoning again. DL-Florid [25] is a combination
of DL and F-Logic [48], where the latter is used as an ontology representa-
tion language only, following a frame-based syntax. The knowledge is finally
translated into F-Logic facts (or XSB facts in F-OWL [49]). CLIPS-OWL
is based totally on OO principles, using the OO model for physically repre-
senting ontology relationships and not triple-based facts.

Some examples of hybrid unidirectional approaches are the [50][26][22][51].
AL-log [50] is a combination of ALC DL and positive Datalog, where only
concepts can only be used as constraints in rule bodies. A query is examined
by using backward chaining and a DL reasoner in order to prove the DL
constraints at runtime. DL-log [26] combines disjunctive Datalog with ALC,
extending AL-log to property constraints in rule bodies. In [22], XSB is in-
terfaced with Pellet and only DL constraints of the form X : C are used in
the rule bodies that are checked by the reasoner. In [51], a hybrid framework
combines a rule language with a constraint language, following the typical
hybrid architecture. These approaches utilize the DL reasoner “on the fly”,
without mapping the ontologies.

Note again that CLIPS-OWL has different application domains to the
approaches that perform a tight integration of rules and ontologies, such as
KAON2 [52], SWRL [53] and other homogeneous systems [54]. The goal of
such approaches is to enable the efficient and decidable integration of rules
and ontologies in order to express richer ontological relations. Our intention is
not to manipulate ontologies with rules but to use the results of a DL reasoner
in CLIPS-based applications in the form of COOL-based query models.

6. Conclusions and Future Work

There are different approaches that allow the already existing and well-
known infrastructure of rule engines to gain access in the OWL ontological
representation of information. We argue that there is not a single approach
suitable for every problem, and the suitability depends on the application
domain and user requirements.

In this paper, we presented CLIPS-OWL, a framework for transforming
the results of OWL DL reasoners into the OO model that is supported by

29



CLIPS (COOL), allowing production rules to use the native infrastructure
of the rule engine for answering queries related to OWL ontology instances.
Our approach has been motivated by three main factors:

1. to allow the development of practical CLIPS rule programs able to
query extensional OWL knowledge, based on the native CLIPS capa-
bilities, preserving the existing architecture of CLIPS that has been
proven highly stable and robust throughout the years of its use,

2. to exploit the ontology inferencing capabilities of the DL reasoning
paradigm for handling OWL semantics, and

3. to achieve a more compact and efficient representation of ontology ax-
ioms in the rule engine through the use of OO principles, than having
to explicitly store them in the form of facts, resulting in better query
response performance in CLIPS.

CLIPS-OWL is implemented in Java using the Pellet DL reasoner and it
is available as an open-source library. Currently, we are implementing our
mapping algorithms in other OO rule engines, such as the forward-chaining
inference rule engine of Drools10 that allows the existence of a Java OO model
(beans). CLIPS-OWL is being used in the domain of Software AntiPatterns
[17], which represent software project management knowledge. We plan also
to use CLIPS-OWL in the domain of Semantic Web Services in order to
implement a knowledge-based Web service discovery framework using the
capabilities of CLIPS.
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A. Complete Mapping Example

In this section we present a mapping example that depicts every aspect
of the transformation procedure. The ontology is depicted in Table 6 and
refers to the university domain. More specifically, the following relationships
are modeled:

a1: A chair is also a professor
a2: A person who is the head of a department is also a chair
a3: A person is a man or a woman
a4: All persons are individuals and vice versa
a5: A department is also an organization
a6: All organizations are institutes and vice versa
a7: The domain of the property isHeadOf is the concept Individual
a8: The domain of the property isHeadOf is the concept Professor
a9: The range of the property isHeadOf is the concept Organization
a10: The instance csd belongs to the Department concept
a11: The instance nick belongs to the Person concept
a12: nick is the head of the computer science department

A.1. Reasoning Results

After the DL reasoning procedure, we have the following TBoxR results.

CNR ≡ {owl:Thing, Chair, Professor, Person, Department, Man, Woman,
Individual, Organization, Institute}

HR ≡ {(owl:Thing, owl:Thing), (Chair, Professor), (Chair, Person),
(Person, Individual), (Department, Organization),

(Man, Person), (Woman, Person), (Individual, Person),

(Organization, Institute), (Institute, Organization)

(Professor, owl:Thing)}
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Table 6: An ontology describing the university domain.

# OWL Axioms (DL Syntax)

a1 Chair ⊑ Professor

a2 Chair ≡ Person ⊓ ∃isHeadOf.Department
a3 Person ≡ Man ⊔ Woman

a4 Person ≡ Individual

a5 Department ⊑ Organization

a6 Organization ≡ Institute

a7 ⊤ ⊑ ∀isHeadOf−.Individual
a8 ⊤ ⊑ ∀isHeadOf−.Professor
a9 ⊤ ⊑ ∀isHeadOf.Organization
a10 csd : Department
a11 nick : Person
a12 ⟨nick,csd⟩ : isHeadOf

DOMR ≡ {(isHeadOf, Individual), (isHeadOf, Professor),
(isHeadOf, Person)}

OBJR ≡ {(isHeadOf, Organization), (isHeadOf, Institute)}

DATR ≡ ∅

Regarding the ABoxR results, we have the following.

INR ≡ {csd, nick}

IR ≡ {(csd, Department), (csd, Organization), (csd, Institute),
(nick, Person), (nick, Individual), (nick, Chair), (nick, Professor)}

ObjVR ≡ {(nick, isHeadOf, csd)}

DatVR ≡ ∅

A.2. Defining the Delegators

In our example, there are two equivalent concept sets among named
classes: {Person, Individual} and {Organization, Institute}. Assuming
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that the concepts Individual and Institute are selected as the delegators,
respectively, the set DEL is defined as

DEL ≡ {(Person, Individual), (Individual, Individual), (Organization,
Insitute), (Institute, Institute), (Professor, Professor),

(Chair, Chair), (Man, Man), (Woman, Woman), (Department, Department),

(owl:Thing, owl:Thing)}

In section 3.3.1 we described that all the non-delegator concepts should
become superclasses of their delegator and subclasses of owl:Thing. Fur-
thermore, every subclass relationship should refer only to delegators. Based
on the set DEL, the HD set is defined as

HD ≡ {(owl:Thing, owl:Thing), (Chair, Professor), (Chair, Individual),
(Individual, Person), (Department, Institute), (Man, Individual),

(Woman, Individual), (Institute, Organization), (Professor,

owl:Thing), (Person, owl:Thing), (Organization, owl:Thing)}

Furthermore, the domain restrictions of properties and the range restric-
tions of object properties should refer now only to delegators. The sets
DOMD and OBJD are defined as follows.

DOMD ≡ {(isHeadOf, Individual), (isHeadOf, Professor)}

OBJD ≡ {(isHeadOf, Institute)}

A.3. Multiple Domain/Range Restrictions

The isHeadOf property has two domain restrictions and therefore

DOMMC ≡ {(isHeadOf), {Individual, Professor}}

Since the property has multiple domain restrictions, a system concept
should be generated. The Individual and Professor concepts are not hier-
archically related, therefore, the classGen function would generate a system
concept, e.g. IndividualProfessor, as subclass of the two concepts that
will be added to the CNM and HM sets. In that way, the DOMM , OBJM ,
CNM and HM sets are defined as follows.

DOMM ≡ {(isHeadOf, IndividualProfessor)}
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OBJM ≡ {(isHeadOf, Institute)}

CNM ≡ CND ∪ {IndividualProfessor}

HM ≡HD ∪ {(IndividualProfessor, Individual), (IndividualProfessor,
Professor)}

A.4. Instance Management

The instance concept memberships should refer only to delegator con-
cepts. Therefore, the ID set is defined as

ID ≡ {(csd, Department), (csd, Institute), (nick, Individual), (nick,
Chair), (nick, Professor)}

In order to handle the multiple instance concept memberships, the set
IMC is defined as

IMC ≡ {(csd, {Department, Institute}), (nick, {Individual, Chair,
Professor})}

The csd instance belongs to the Department and Institute concepts.
However, Department is subclass of Institute in HM , and therefore, only
the Department concept will be considered as the single concept membership
in IM , without generating a new concept. Similarly, Chair is subclass of
Individual and Professor, and therefore, there is no need to generate a
system concept. The IM set is defined as

IM ≡ {(csd, Department), (nick, Chair)}

A.5. Mapping Phase

Based on the CNM , HM , DOMM , OBJM and DATM ≡ ∅ sets, the
COOLsch set is defined as
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COOLsch ≡ {⟨owl:Thing, {owl:Thing},∅⟩,
⟨Chair, {IndividualProfessor},∅⟩,
⟨Individual, {Person},∅⟩,
⟨Department, {Institute},∅⟩,
⟨Man, {Individual},∅⟩,
⟨Woman, {Individual},∅⟩,
⟨Institute, {Organization},∅⟩
⟨Professor, {owl:Thing},∅⟩
⟨Organization, {owl:Thing},∅⟩
⟨Person, {owl:Thing},∅⟩
⟨IndividualProfessor, {Individual, Professor},

⟨isHeadOf, Institute⟩}⟩
}

Based on the INM ,IM , ObjVM and DatVM ≡ ∅ sets, the COOLdata set
is defined as

COOLdata ≡ {⟨csd, Department,∅⟩, ⟨nick, Chair, {⟨isHeadOf, csd⟩}⟩}

Based on the codeGenerator procedure and the COOLsch, COOLdata

sets, the generated COOL code is the following.

(defclass owl:Thing (is-a USER))

(defclass Person (is-a owl:Thing))

(defclass Professor (is-a owl:Thing))

(defclass Organization (is-a owl:Thing))

(defclass Individual (is-a Person))

(defclass Institute (is-a Organization))

(defclass Man (is-a Individual))

(defclass Woman (is-a Individual))

(defclass IndividualProfessor (is-a Individual Professor)

(multislot isHeadOf

(type INSTANCE-NAME)(allowed-classes Institute)))

(defclass Chair (is-a IndividualProfessor))

(defclass Department (is-a Institute))
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(make-instance [csd] of Department)

(make-instance [nick] of Chair (isHeadOf [csd]))

B. Proofs

In this section we present the proofs for the correctness of our transforma-
tion procedure, regarding the assumption that the ABox reasoning results,
that is, the instance concept memberships and instance property values, are
preserved in the generated COOL model.

B.1. Instance Concept Memberships

We will prove that the instance concept memberships of an ontology are
preserved in the generated COOL model, that is, if an instance belongs to a
set of concepts in the ontology, then the corresponding object belongs to the
corresponding classes in COOL. More formally, we will prove that ∀i, c (i, c) ∈
HR ⊢ ∃i′, c′⟨i′, ci′ , PV i′⟩ ∈ COOLdata ∧ ⟨c′, Sc′ , P c′⟩ ∈ COOLsch ∧ i′ =
fCOOLdata

(fMdata
(fDdata

(i))) ∧ c′ = fCOOLsch
(fMsch

(fDsch
(c))) ∧ i′ ∈ EXT (c′),

where EXT (c) is the set of all the objects (direct and indirect) of class C in
COOL.

B.1.1. Single Instance Concept Membership

Let an instance i belong to a single ontology concept c in the reasoning
results, that is, i ∈ INR ∧ c ∈ CNR ∧ (i, c) ∈ IR ∧ @c′(c′ ̸= c ∧ (i, c′) ∈ IR)).
Since c ∈ CNR ∧ CNR = CND ∧ CND ⊆ CNM ⊢ c ∈ CNM . According to
the definition of COOLsch, we have that ∀c ∈ CNM ,∃co ∈ COOLsch : co =
⟨c, Sc, P c⟩. Therefore, an ontology concept in CNR is mapped on a single
class in COOL that is represented by co. Note that there might be classes
in COOL that are not mapped by any ontology concept, due to the system
generated concepts that are generated by the transformation procedure.

Regarding the instance, we have that i ∈ INR ∧ INR = IND ∧ IND =
INM ⊢ i ∈ INM . According to the definition of COOLdata, we have that
∀i ∈ INM , ∃io ∈ COOLdata : io = ⟨i, c′i, PV i⟩ ∧ (i, c′i) ∈ IM and therefore,
c′i ∈ CNM , based on the definition of CNM . Furthermore, COOLsch is
defined in such a way, so as ∀c′i ∈ CNM ,∃c′io ∈ COOLsch : c′io = ⟨c′i, Sc′i , P c′i⟩.
Therefore, the ontology instance i is mapped on a single object io of the class
c′io in COOL.

In section 3.3.1 we analyzed the procedure of assigning delegators. Each
concept has a delegator, that is, ∀c, ∃a(c, a) ∈ DEL. Furthermore, we ex-
plained that every object is forced to belong to delegator concepts in the ID
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set. Therefore, (i, c) ∈ IR ∧ (c, a) ∈ DEL ⊢ (i, a) ∈ ID. Since i is assumed
to belong to a single concept, then (i, {a}) ∈ IMC and (i, a) ∈ IM . However,
since (i, a) ∈ IM , (i, c′i) ∈ IM and i is an instance of a single concept in IM ,
then we can conclude that a = c′i and ao = c′io . Therefore, io is an object of
the class ao in COOL. In order to prove that io is an object of the class co,
we should prove that ao is a direct or indirect subclass of co.

From the definition of the set HD, we have that (c, a) ∈ DEL ⊢ (a, c) ∈
HD. The set HM defines that HD ⊆ HM and therefore, (a, c) ∈ HM . There-
fore, if ao = ⟨a, Sa, P a⟩, then c ∈ Sa in COOLsch, which means that ao is a
subclass of co in COOL. Therefore, io is an object of the class co in COOL,
in accordance to the initial assumption that i is an instance of the concept c
in the ontology.

B.1.2. Multiple Instance Concept Memberships

Let an instance i belong to multiple ontology concepts in the reasoning
results, that is, ∃i∃c1∃c2...∃cN(i ∈ INR ∧ c1 ∈ CNR ∧ c2 ∈ CNR ∧ ... ∧ cN ∈
CNR ∧ (i, c1) ∈ IR ∧ (i, c2) ∈ IR ∧ ... ∧ (i, cN) ∈ IR), N > 1. It holds that
∀k, ck ∈ CNR ∧ CNR = CND ∧ CND ⊆ CNM ⊢ ck ∈ CNM . Based on the
definition of COOLsch, we have that ∀ck ∈ CNM ,∃cko ∈ COOLsch : cko =
⟨ck, Sck, P ck⟩. Therefore, the concept ck is mapped on a single class cko in
COOL.

Regarding the instance, we have that i ∈ INR ∧ INR = IND ∧ IND =
INM ⊢ i ∈ INM . According to the definition of COOLdata we have that
∀i ∈ INM ,∃io ∈ Io : io = ⟨i, c′i, PV i⟩ ∧ (i, c′i) ∈ IM and, if (i, c′i) ∈ IM , then
c′i ∈ CNM , based on the definition of CNM . Furthermore, the set COOLsch is
defined in such a way, so as ∀c′i ∈ CNM ,∃c′io ∈ COOLsch : c′io = ⟨c′i, Sc′i , P c′i⟩.
Therefore the ontology instance i is mapped on a single object io of the class
c′io in COOL.

Furthermore, based on the definition of the set ID, we have that ∀k(i, ck) ∈
IR ∧ (ck, ak) ∈ DEL ⊢ (i, ak) ∈ ID, since ∀k, ∃ak(ck, ak) ∈ DEL. Since i
belongs to multiple concepts, we have that (i, {a1, a2, ..., aN}) ∈ IMC and
(i, classGen(a1, a2, ..., aN)) ∈ IM . Let ai = classGen(a1, a2, ..., aN), that is,
(i, ai) ∈ IM . According to the definition ofHM , it holds that ∀k(ai, ak) ∈ HM .
Since (i, ai) ∈ IM , (i, c′i) ∈ IM and i is an instance of a single concept in IM ,
we conclude that ai = c′i and therefore, aio = c′io . Thus, io is an object of
the class aio in COOL. In order to prove that io is an object of all the ako
classes, we should prove that aio is a direct or indirect subclass of that classes
in COOL.
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According to the definition of HD, we have that ∀k(ck, ak) ∈ DEL ⊢
(ak, ck) ∈ HD. However, HD ⊆ HM and therefore, ∀k(ak, ck) ∈ HM . Fur-
thermore, we have shown previously that ∀k(ai, ak) ∈ HM . Therefore, it
also holds that ∀k(ai, ck) ∈ HM (transitive relationship). Thus, if aio =
⟨ai, Sai , P ai⟩, we have from the set COOLsch that ∀k, ck ∈ S, which means
that ∀k, aio ≪o c

k
o . Therefore, the class aio is subclass of all the cko classes in

COOL and io is an object of all these classes, due to the class subsumption
relationships in the OO environment of COOL.

B.2. Instance Property Values

We will prove that the property values of an ontology instance are pre-
served in the COOL model, that is, a query for the slot values of an object in
COOL returns the same values that the corresponding instance has in the on-
tology. More formally, we will prove that ∀x, p, y(x, p, y) ∈ ObjVR∪DatVR ⊢
∃cx, PV x⟨x, cx, PV x⟩ ∈ COOLdata ∧ ⟨p, y⟩ ∈ PV x.

The transformation procedure does not modify the property-value sets.
Therefore, ObjVM = ObjVD = ObjVR, DatVM = DatVD = DatVR and
(x, p, y) ∈ ObjVR ∪ DatVR → (x, p, y) ∈ ObjVM ∪ DatVM . Moreover, x ∈
INR ∧ INR = IND ∧ IND = INM ⊢ x ∈ INM . According to the definition
of COOLdata, ∀x ∈ INM , ∃ixo ∈ COOLdata : i

x
o = ⟨x, cx, PV x⟩ ∧ (x, cx) ∈ IM .

The set PV i is defined as PV i = {⟨p, v⟩ | (i, p, v) ∈ ObjVM ∪ DatVm}.
Therefore, ∃cx, PV x⟨c, cx, PV x⟩ ∈ COOLdata ∧ ⟨p, y⟩ ∈ PV x.
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