
Expert Systems with Applications 38 (2011) 6657–6668
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A combinatory framework of Web 2.0 mashup tools, OWL-S and UDDI

G. Meditskos ⇑, N. Bassiliades
Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

a r t i c l e i n f o a b s t r a c t
Keywords:
Mashup tools
Semantic mashup discovery
OWL-S
UDDI
0957-4174/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.eswa.2010.11.072

⇑ Corresponding author.
E-mail addresses: gmeditsk@csd.auth.gr (G. Medits

Bassiliades).
1 http://www.oasis-open.org/committees/uddi-spec/
The increasing number of Web 2.0 applications, such as wikis or social networking sites, indicates a
movement to large-scale collaborative and social Web activities. Users can share information, add value
to Web applications by using them or aggregate data from different sources creating Web applications
(mashups) using specialized tools (mashup tools). However, Web 2.0 is not a new technology, but it
rather embraces a new philosophy, treating the Internet as a platform. Several issues related to the
Semantic Web vision, such as interoperability or machine understandable data semantics, are not tackled
by Web 2.0. In this paper, we present our effort to combine semantic Web services (SWS) discovery
frameworks, UDDI repositories and existing mashup tools in order to enhance the procedure of develop-
ing mashups with semantic mashup discovery capabilities. Towards this end, we introduce a social-
oriented extension of OWL-S advertisements, their mapping algorithm on UDDI repositories and a
semantic mashup discovery algorithm. Finally, we elaborate on the way our framework has been realized
using the Yahoo Pipes mashup tool.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The Web 2.0 paradigm is frequently used by those who question
the feasibility of Semantic Web as a tangible proof that Web can
live without ‘‘heavy’’ semantic technologies and complex frame-
works. Web 2.0 offers flexible and widely adopted applications,
such as wikis and social bookmarking sites, with tagging being
one of the main means for specifying metadata information. One
of the most exciting Web 2.0 applications are the mashup tools that
are used for creating mashups, applications that combine several
external data sources, such as Web services or RSS feeds. Mashup
tools give the opportunity to users to select and combine services,
creating a Web application with added value. However, although
these tools hide execution aspects from users, there is still an open
issue of determining which service is suitable to users’ needs, since
the selection is performed manually based on keyword-based
searches. We argue that semantic Web technologies, such as ontol-
ogies and the research that has been done on semantic Web ser-
vices (SWS) can help users to define better their requirements.

In this work we reuse the existing infrastructure of mashup
tools for combining and executing services on the Web and we en-
hance it with SWS discovery capabilities in UDDI1 repositories
using OWL-S advertisements. The general idea is to use a lightweight
and social-oriented version of OWL-S advertisements that we call
ll rights reserved.

kos), nbassili@csd.auth.gr (N.

.

SOOWL-S, in order to describe conceptually and abstractly mashups
in the Web 2.0 domain. In that way, we can exploit the research that
has been done on SWS frameworks and discovery algorithms in the
mashup tool domain, enabling mashup tool users to semantically fil-
ter out and publish mashups.

The contributions of our work can be summarized in the
following:

� We introduce the notion of SOOWL-S advertisements, a social-
oriented version of OWL-S advertisements that are used as
the ontology-based means for providing semantic descriptions
of mashups, viewing them abstractly as black boxes.
� We define an algorithm for mapping SOOWL-S advertisements

on UDDI databases, enabling the standard-based, collaborative
and distributed management of mashup semantic descriptions.
� We define a mashup matchmaking algorithm based on SOOWL-S

advertisements, allowing the semantic retrieval of mashup
descriptions from UDDI repositories.

The rest of the paper is structured as follows: in Section 2 we
describe the basic background related to SWS frameworks, UDDI
registries and mashup tools, and we state our motivation. In Sec-
tion 3 we present the architecture of our framework, showing
the way the current mashup tool architecture can be enhanced
with semantic mashup discovery capabilities. In Section 4 we de-
scribe the SOOWL-S advertisements and their mapping algorithms
to UDDI constructs. In Section 5 we introduce the notion of the
MashUDDI registry and we elaborate on the mashup matchmaking
algorithm that is employed. Section 6 presents a prototype

Profile

Information
Services E-commerce

Book
Information

Article
Information

Airplane
Ticket

Journal
RSS

(Profile Hierarchy)

(Profile Instances)
p1 p4p3p2

Domain
Ontologies

...
xmlns:book = "http://.../Books.owl#"
...
<book:BookInformation rdf:ID="p1">
 <profile:serviceName xml:lang="en">FindBook
 </profile:serviceName>
 <profile:textDescription xml:lang="en">

Returns the book title based on the ISBN.
 </profile:textDescription>
 <profile:hasInput rdf:resource=”&book;ISBN”/>
 <profile:hasOutput rdf:resource=”&book;Title”/>

</book:BookInformation>
...

RSS

Fig. 1. An example of an OWL-S Profile hierarchy with four advertisements.

6658 G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668
implementation of our framework in the Yahoo Pipes mashup tool.
Finally, in Sections 7 and 8, we review related work and we con-
clude, respectively.
2 http://lsdis.cs.uga.edu/projects/meteor-s/downloads/Lumina/.
2. Background and motivation

In this section we present the basic background related to SWS
frameworks, the UDDI standard and mashup tools, and we state
our motivation for combining them in a single framework.

2.1. Semantic web service frameworks

Web services have given new potentials in the domain of Busi-
ness-to-Business collaborations and Consumer-to-Business inter-
actions, enabling easy and standardized communication among
the involving parties (Tsalgatidou & Pilioura, 2002). However, as
it happens in every dynamic and heterogeneous environment
where many parties are involved, the selection of a Web service
is a difficult task, mainly due to the large number of services.

The SWS paradigm aims at making Web services machine-
understandable and use-apparent, utilizing Semantic Web technol-
ogies for service annotation and processing (Burstein et al., 2005;
Medjahed & Bouguettaya, 2005). The main idea is to apply reason-
ing techniques (Baader, 2003; Sirin, Parsia, Grau, Kalyanpur, &
Katz, 2007; Tsarkov & Horrocks, 2006) over ontology-based Web
service descriptions in order to perform automated Web service
discovery (semantic Web service discovery), composition (seman-
tic Web service composition) and invocation. Towards this goal,
many languages and frameworks have been proposed, such as
OWL-S (Martin et al., 2007), WSMO (et al., 2006), SAWSDL (Ko-
pecký, Vitvar, Bournez, & Farrell, 2007) and WSDL-S (Akkiraju
et al., 2005). The first two define a conceptual, ontology-based
framework under which Web services can be described and
manipulated. More specifically, OWL-S provides four upper OWL
ontologies, namely Service, Service Profile, Service Process and Ser-
vice Grounding. In brief, the Profile concept of the Service Profile
ontology, known also as the advertisement of a Web service, is used
as input to SWS discovery engines and provides the information
needed for an agent to discover a service based on semantic anno-
tations regarding functional, e.g. inputs and outputs, and non-func-
tional properties, e.g. price (O’Sullivan, Edmond, & ter Hofstede,
2002). The Service Process and Service Grounding provide informa-
tion for an agent to make use of a service. Fig. 1 depicts a Profile-
based annotation example using a custom subclass hierarchy of
the Profile concept (OWL-S 1.1 release, 2004).

WSMO defines four top level elements, namely Ontologies,
Goals, Web Services and Mediators. Ontologies provide the formal
terminology definitions, Goals are formal specifications of objec-
tives that a client aims to achieve by using Web services, Web Ser-
vices are formal descriptions needed for automated service
handling and usage and Mediators are the top level elements for
handling heterogeneity.

Finally, the SAWSDL and WSDL-S approaches are based on the
WSDL descriptions of Web services that annotate semantically
with ontological knowledge.
2.2. UDDI registries

Universal Description, Discovery and Integration (UDDI) (UD-
DI.org, 2000) constitutes a Web service standard for publishing
Web services. It is a platform-independent, XML-based registry
that allows businesses to publish their Web services and to locate
others via keyword search over various attributes, such as names
or tModels. It can be viewed actually as a meta-service for locating
Web services by enabling robust queries against rich metadata.

The importance of a standard-based registry (Dogac et al., 2005;
Dustdar & Treiber, 2005) able to store the semantic descriptions of
Web services has been quickly identified, leading to mapping ap-
proaches of SWS frameworks on the UDDI standard. In Srinivasan,
Paolucci, and Sycara, 2004; Herzog, Zugmann, Stollberg, and Roman,
2007 the mapping of OWL-S advertisements and WSMO elements
on UDDI tModels is discussed, respectively. Similar mappings have
been defined for SAWSDL2 and WSDL-S (Sivashanmugam, Verma,
Sheth, & Miller, 2003). In that way, algorithms for SWS discovery

static modules
Mashup Tool (Server)

Mashup Tool
Repository

invoke

G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668 6659
and composition can operate over the semantic service descriptions
that are stored in UDDI registries, allowing the integration of Web
services from heterogeneous environments.
meta-service modules

Web
Application
(front-end)

WWW
invoke

Fig. 2. The typical architecture of mashup tools.
2.3. Web 2.0 mashups and mashup tools

The development of mashup applications requires a lot of ef-
fort: the desirable services should be located and the APIs should
be implemented in order to realize the communication, especially
in the case of RESTful Web services that do not follow any standard
API, in contrast to SOAP Web services (Zur Muehlen, Nickerson, &
Swenson, 2005). The Representational State Transfer (REST) design
considers Web services as resources that are identified by their
URLs. Clients communicate with the service using remote calls that
describe the action that is to be performed. Thus, programmers
need to manually implement all the necessary steps to consume
the Web service. On the other hand, a SOAP Web service is easier
to be consumed, using existing tools that automate the procedure.
However, the REST approach is considered as a more lightweight
approach than SOAP.

Several tools have emerged, called mashup tools that assist the
end users to create mashups, such as the Dapper3 and the IBM Lotus
Mashups.4 Some other tools offer a graphical, component-based way
of wiring services together, such as the Yahoo Pipes5 and the Micro-
soft Popfly.6 In each mashup tool there is a set of preregistered ser-
vices, whose invocation has been implemented at design-time, and
users select and wire services together, creating complex Web appli-
cations (mashups). Furthermore, there is the possibility of creating
advanced mashups by calling dynamically external Web services.
For example, Yahoo Pipes provides a Web service module that acts
as a meta-service, allowing the invocation of external Web services
following the JSON7 data format.
2.4. Motivation

We are motivated by the fact that mashup tools and SWS frame-
works can serve complementary goals. Mashup tools offer the
infrastructure for combining and executing real-world Web ser-
vices. On the other hand, the SWS frameworks offer the standards
and algorithms for semantically annotating, discovering and com-
posing Web services. Therefore, mashup tools can serve as a platform
for applying and evaluating SWS frameworks and algorithms on real-
world Web services.

In this work, we target at the utilization of SWS frameworks for
semantic mashup discovery and publish in mashup tools. The main
idea is to enhance the procedure of selecting services in mashup
tools with semantic capabilities that are offered by the SWS frame-
works (service discovery). More specifically, there are three capa-
bilities for service selection in mashup tools.
2.4.1. Predefined services
Mashup tools provide a predefined set of simple services (mod-

ules) that are used by users during the development of mashups.
These services are listed in a taxonomy tree according to their
functionality. For example, there are RSS feed categories or services
that perform string transformations, such as string concatenations.
Users browse the categories and select or combine the services that
satisfy their requirements.
3 http://www.dapper.net.
4 http://www.ibm.com/software/lotus/mashups.
5 http://pipes.yahoo.com/.
6 http://www.popfly.com/.
7 http://www.json.org/.
2.4.2. Search
Mashup tools manage a directory where users publish their

mashups, providing a set of keywords that characterize them.
The search in such directories is performed with keywords, such
as the search for pipes field of Yahoo Pipes, returning relevant
mashups that can be reused in new applications. Note that there
is no interoperability among the mashups of different mashup
tools. Each mashup directory can be used only by the mashup tool
that have been created with.

2.4.3. Meta-services
Mashup tools are able to call external Web services that follow a

specific API using a meta-service module. For example, Yahoo Pipes
provides a meta-service for calling JSON Web services. The URL of
the Web service is provided as a parameter by the user who is
responsible for finding the suitable Web service from available
repositories.8

Our work targets at the introduction of semantic capabilities
during the last two service/mashup selection procedures, using
semantic service descriptions and discovery algorithms. More spe-
cifically, we describe a framework that uses the meta-service infra-
structure of mashup tools in order to help users to semantically
search for services. The meta-services communicate with special
UDDI repositories that we call MashUDDI’s that contain SOOWL-
S advertisements, a variation of the typical OWL-S model that al-
lows the collaborative semantic annotation of services in the
Web 2.0 environment. The meta-services can be also used to
semantically publish created mashups in a MashUDDI registry by
providing semantic annotations, as if they were Web services.
Furthermore, by organizing the services/mashups of mashup tools
into a UDDI registry we give great potentials, both for the easier
retrieval and management of services, and for the potential coop-
eration with other frameworks.
3. Semantically enhanced mashup tool architecture

A typical mashup tool architecture is depicted in Fig. 2 and in-
volves the mashup tool server and the Web application through
which the tool exposes its functionality. The mashup tool provides
a set of modules that users may select in order to develop their
mashups in a component-based way. In general, these modules
can be categorized into static and meta-service modules. The static
modules are bound to pre-registered services in the mashup tool
repository and the communication with the services has been
implemented at design-time. The meta-service modules are
parameterized modules, e.g. they are not bound to specific ser-
vices, that can communicate through a specific API with external
data sources, e.g. RSS feeds or Web services.

Our vision of introducing semantic mashup discovery capabili-
ties in mashup tools is depicted in Fig. 3. The mashup tool
8 http://www.programmableweb.com/mashuplist.

Mashup Tool
Repository

static modules

UDDI Repositories for
SOOWL-S (MashUDDIs)

WWW

discovery meta-service
modules

Mashup Tool (Server)

Web
Application
(front-end)

publish meta-service
modules

meta-service modules

publish

invoke

invoke

search

publish

search

publish

search

Mashup tool

Mashup tool

Fig. 3. Semantically enhanced mashup tool architecture.

6660 G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668
preserves the existing functionality of communicating with local
and external data sources, and it is enhanced with special discovery
and publish meta-service modules that communicate with seman-
tically extended UDDI repositories (MashUDDIs). These reposito-
ries, which are described in detail in Section 5, are distributed
UDDI databases that store SOOWL-S advertisements and they can
be used for the following activities.

� Publish SOOWL-S advertisements. Users should be able to seman-
tically publish their mashups in a MashUDDI registry. Thus, the
mashup tool should support a set of domain ontologies to play
the role of the controlled annotation vocabulary and it should
offer, through the Web interface, the necessary means to users
for selecting the annotation constructs. The annotation activity
follows the idea that each mashup can be considered as a black
box that performs a specific task, for which we can define
semantic annotations, as if it were a Web service.
� Search for SOOWL-S advertisements. Users should be able to

query a MashUDDI in order to retrieve service/mashup descrip-
tions following exactly the same procedure to publishing. For
that reason, the MashUDDI registry should employ a service
matchmaking mechanism in order to semantically retrieve the
advertisements that match users’ queries.

Note that we do not propose a new mashup tool architecture,
but a general framework under which existing mashup tools can
be enhanced with semantic capabilities. The advantage of such an
approach is that it does not require any change to the architecture
of mashup tools. Instead, it reuses the functionality that is already
provided by mashup tools through the meta-service modules. Note
also that the proposed framework enhances the interoperability
among different mashup tools, as far as mashup publishing and dis-
covery are concerned (Fig. 3). This is due to the UDDI-oriented nat-
ure of MashUDDIs that allows the distributed and standard-based
management of semantic mashup descriptions.

3.1. Abstract semantic service/mashup annotations

The mashup tool paradigm has some unique characteristics
that hamper the direct and unconditional utilization of SWS
frameworks:

3.1.1. Service implementation
Mashup tools do not impose any restriction on the Web services

they use: they can be either RESTful, which have their capabilities
described in Web pages, or SOAP-based, providing a WSDL docu-
ment. Moreover, few RESTful Web services have WSDL because
the main objective with REST is simplicity (WSDL facilitates signif-
icant tooling support) (Sheth, Gomadam, & Lathem, 2007). There-
fore, it is not so trivial to consider RESTful services in SWS
frameworks, since there is not always a standard API to be consid-
ered during service annotation.
3.1.2. Service representation
The SWS standards target at the automation of several activi-

ties, such as invocation and composition and thus, the semantic
descriptions are tightly-coupled with implementation aspects of
the services. However, in mashup tools there is the need only for
a conceptual description of services, since the invocation infra-
structure is pre-implemented and the ‘‘composition’’ is performed
manually by users.
3.1.3. Collaborative environment
In SWS frameworks the providers are responsible for the appro-

priate semantic annotations of their services. However, in the
mashup tool paradigm there is a more collaborative (social) nature
where many users can participate in the semantic annotation of
services. This is an important feature that should be taken into con-
sideration during the application of any service/mashup match-
making algorithm.

We follow the assumption that in order to make practical the
introduction of semantic service descriptions in mashup tools, a
conceptual model should be followed (Preist, 2004). By the word
‘‘conceptual’’ we mean that, since the development of mashups is
based on human intervention, the descriptions of services (a) can
be disengaged from any implementation aspect, and (b) should
be convenient, targeting at the average mashup tool user. These
requirements can be satisfied by following a conceptual approach
for service/mashup annotation, using only simple input, output
and non-functional properties. In that way, both RESTful and
SOAP-based (Fielding & Taylor, 2000) services can be annotated,
independently of the API that they follow. For example, an RSS feed
can be conceptually described in terms of an OWL-S advertisement
without any input and with an output ontological concept charac-
terizing the type of the information that it provides (Fig. 4). In that
way, we are free to annotate the feed according to our perception,
without being interested in the detailed mapping of the RSS/XML
syntax to the Profile instance. Bear in mind that our goal is to assist
mashup tool users by semantically filtering out services, preserving
the existing mashup tool architecture, rather than introducing an
automated mashup development procedure that would require a
strong dependence of mashup tools on SWS frameworks.

In the rest of the discussion we describe the various aspects in-
volved in a semantically enhanced mashup tool architecture, such
as the need to incorporate SOOWL-S descriptions, the mapping of
service/mashup SOOWL-S descriptions on MashUDDI registries
and the matchmaking procedure that should be followed.

Fig. 4. An example of an OWL-S advertisement for an RSS feed.

G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668 6661
4. Social-oriented OWL-S advertisements

The typical OWL-S annotation paradigm using advertisements,
that is, using the Service Profile ontology we mentioned in Section
2.1, is performed by defining annotations for the input/output
parameters and the non-functional properties of Web services.
These advertisements can be then mapped on UDDI constructs
(Srinivasan et al., 2004), using a set of predefined tModels, such
as input and output tModels that are used in a single UDDI cate-
gory bag. As far as functional parameters are concerned, the ap-
proach assumes that there is only a single annotation concept for
each input/output parameter, such as in the OWL-S advertisement
of Fig. 4 that is mapped on the UDDI businessService construct
of Fig. 5.

However, in the Web 2.0 domain, it would be more appropriate
to allow the definition of more than one annotation concepts for a
specific input or output parameter, creating concept groups that
would allow many users to participate in the annotation activity
of a Web service or, in our case, of a mashup. We refer to such kind
of advertisements as social-oriented OWL-S advertisements (SOOWL-
S). For example, the output parameter of the profile instance in
Fig. 4 could be annotated with one more concept, which might be-
long to a different ontology, as it is depicted in Fig. 6. Such a Profile
definition is a consistent OWL-S instance since the input/output
parameters of OWL-S are allowed to contain more than one
parameterType definition. In that way, the annotated feed would
have the {& jour;CS_ELS_CFP, & jour2;ELS_CFP} output concept
group for a single output parameter.

This SOOWL-S advertisement, however, cannot be mapped by
adding one more tModel entry in the mapping procedure of Srini-
vasan et al. (2004), since the service/mashup would then be
semantically incoherent, considered to contain one more output,
as it is depicted in Fig. 7.

4.1. Mapping SOOWL-S advertisements on UDDI

The uddiMapping procedure depicts the overall mapping algo-
rithm of an SOOWL-S advertisement on a UDDI businessSer-
Fig. 5. The typical UDDI mappin
vice construct. More specifically, for each advertisement, a UDDI
businessService instance is created (line 1) along with a cate-
goryBag instance (line 2).
g

Procedure uddiMapping(adv)
of an o
Input: An SOOWL-S advertisement adv

Result: The UDDI BusinessService mapping
1
 bs BusinessService(‘‘serviceKey’’,‘‘businessKey’’)

2
 cb CategoryBag()

3
 taxonomyMapping(adv,cb)

4
 nonFunctionalMapping(adv,cb)

5
 bs.addCategoryBag(cb)

6
 bts BindingTemplates()

7
 bt BindingTemplate(‘‘serviceKey’’,‘‘businessKey’’)

8
 bts.addBindingTemplate(bt)

9
 tmid TModelInstanceDetails()

10
 bt.addTModelInstanceDetails(tmid)

11
 inputMapping(adv, tmid)

12
 outputMapping(adv, tmid)

13
 bs.addBindingTemplates(bts)
These instances are used by four sub-procedures relevant to the
mapping of the taxonomy (line 3), non-functional (line 4), input
(line 11) and output (line 12) annotations that we describe in
the following sections. The mapping of the default Service Profile
properties, such as service name, description, etc., is trivial and
we omit it.

4.1.1. Taxonomy mapping
The advertisements are usually defined as direct instances of

the Profile concept of the OWL-S Service Profile ontology. How-
ever, there are cases where we want to categorize an advertise-
ment in terms of an existing profile taxonomy, which is actually
a subclass hierarchy of the Profile concept (OWL-S 1.1 release,
2004). For example, the advertisement of Fig. 4 is defined as an
instance of the class RSS that is assumed to be a subclass of the
utput parameter.

Fig. 6. Multiple annotations for a single output parameter.

Fig. 7. The typical UDDI mapping of multiple output annotations.

6662 G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668
Profile class, that is, RSS v Profile. Note that an SOOWL-S
advertisement is actually an OWL instance and therefore, it might
be defined in more than one taxonomy concept, a common ontol-
ogy modeling technique that is known as multiple instance class
membership. In that way we are able to classify advertisements in
terms of their domain, incorporating different user perspectives
in the Web 2.0 domain.
Procedure taxonomyMapping(adv, cb)
Input: An SOOWL-S advertisement adv and a category bag
cb

Result: Adds the taxonomy mapping of adv to the given
category bag
1
 foreach (t 2 directType(adv)) do

2
 kr KeyedReference()

3
 kr.tModelKey= TUUID

4
 kr.keyName= ‘‘Taxonomy concept’’

5
 kr.heyValue = t

6
 cb.add(kr)

7
 end
By allowing many users to participate in the annotation process
of an SOOWL-S advertisement, it is possible to result in more than
one taxonomy concept for the same advertisement. The mapping-
Taxonomy procedure adds an appropriate reference (line 2) for
each taxonomy concept to the category bag that is provided as
parameter (line 6), using the predefined tModel key ‘‘TUUID’’. Note
that we map only the direct instance class membership relation-
ships of an advertisement (line 1). The complete instance class
membership relationships are retrieved from the subsumption
hierarchy that is computed with reasoning (e.g. (Sirin et al.,
2007)) over the advertisement ontology. More specifically, the
directType method is defined as

directTypeðiÞ ¼ fCji 2 CEXTðCÞ ^ 9=DjD v C : i 2 CEXTðDÞg; ð1Þ

where i is an ontology instance (advertisement) and CEXT(C) de-
notes the class extension of the concept C, that is, the set of all of
its instances.
4.1.2. Non-functional property mapping
The non-functional properties are accessible by advertisements

through profile taxonomies and they can be used to annotate an
advertisement beyond its functional parameters. For example,
the profile_1 instance of Fig. 4 is defined in the RSS taxonomy
class and therefore, it inherits all its properties, such as the url

property which denotes the URL of the Web feed. For each non-
functional property of an SOOWL-S advertisement, the nonFunc-

tionalMapping procedure adds an appropriate reference (line
2) to the category bag (line 6) that is provided as parameter, using
the predefined tModel key ‘‘NFPUUID’’.
Procedure nonFunctionalMapping(adv, cb)
Input: An SOOWL-S advertisement adv and a category bag
cb

Result: Adds the non-functional property mappings of adv
to the given category bag
1
 foreach (nf 2 properties(adv)) do

2
 kr KeyedReference()

3
 kr.tModelKey= NFPUUID

4
 kr.keyName = nf.name()

5
 kr.heyValue = nf.value()

6
 cb.add(kr)

7
 end
4.1.3. Input/output parameter mapping
In the case of functional parameters, there is the need to group

together the concepts that annotate a particular input or output
parameter. Otherwise, it is impossible to identify the concepts that
annotate the same parameter, as we have explained for the exam-
ple in Fig. 7.

The mapping of the functional parameters of an SOOWL-S
advertisement on UDDI is depicted in the inputMapping and
outputMapping procedures. For each process:Input and pro-

cess:Output definition we create dynamically a complex tModel
that consists of one or more input (IUUID) and output (OUUID)
tModel entries, respectively, that are attached to the business
service instance using binding templates. In that way, the

G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668 6663
matchmaking algorithm that we describe in Section 5.2 is able to
perform based on more than one annotation concepts per each
functional parameter.

Fig. 8 presents the final businessService UDDI mapping of

the SOOWL-S RSS advertisement of Fig. 4 that has been extended
with more than one output annotation, as it is depicted in Fig. 6.
The taxonomy concepts and the non-functional properties are
mapped as references on a single category bag and they are iden-
tified by their tmodel keys. However, the multiple annotated out-
put parameter of the example is mapped on a dynamically
generated tModel with key ‘‘uuid:ccc. . .’’ that is referenced by a
tModelInstanceInfo construct. In that way, we are able to
annotate each service input and output parameter with many
ontological concepts that are grouped in a single tModel in order
to be specially treated by the mashup matchmaking algorithm.
Fig. 8. The UDDI mapping of the
5. MashUDDI: Mashup-oriented UDDI repositories

The MashUDDI registries play a key role in the framework of
Fig. 3. They are actually UDDI registries that have been augmented
with two capabilities:
1. They can store SOOWL-S advertisements by applying the

SOOWL-S mapping algorithm we have described in Section 4.1

2. They are able to semantically search for relevant SOOWL-S
advertisements to a specific query, applying a mashup match-
making algorithm.

A MashUDDI is actually a semantically extended UDDI reposi-
tory that provides the necessary infrastructure for storing (publish-
ing) and retrieving (discovering) SOOWL-S advertisements. The
SOOWL-S RSS advertisement.

6664 G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668
discovery can be performed based on keywords, exploiting the na-
tive UDDI interface, and on user requirements expressed in terms
of SOOWL-S queries. Furthermore, as the UDDI specification im-
poses, a UDDI registry exposes its interface via SOAP messages,
i.e. it is a Web service itself. Therefore, a MashUDDI can be viewed
as a Web service that can be consumed by a client, which, in our case,
could be a mashup discovery or publish meta-service module
(Fig. 3).

5.1. Publishing SOOWL-S in mashUDDI repositories

The publishing procedure of mashup advertisements involves
the submission of an SOOWL-S advertisement to a MashUDDI reg-
istry or modifying an existing advertisement. The former takes
place when the user submits the advertisement of a newly created
mashup. The latter is relevant to the social-oriented environment
of mashups and involves the participation of many users in the
annotation process of mashups. In both cases, an SOOWL-S adver-
tisement needs to be submitted to the MashUDDI registry in order
to be processed, transformed and stored in the form of UDDI con-
structs. We do not elaborate further on the publishing procedure
for the following two reasons:

� Since an SOOWL-S advertisement is actually an OWL-S ontol-
ogy, it can be easily created using existing APIs and tools, such
as the OWL-S API.9

� The mapping of an SOOWL-S advertisement on UDDI constructs
has been discussed thoroughly in Section 4.1.

In the following section we present in detail the mashup match-
making algorithm that a MashUDDI employs for the semantic dis-
covery of mashup advertisements.

5.2. The mashup matchmaking algorithm

In the typical Profile-based OWL-S Web service matchmaking
scenario, both queries and services are represented as OWL-S
advertisements and the goal is to find the set of the relevant adver-
tisements to the query. Following the same rationale, the goal of
the mashup matchmaking algorithm is to retrieve the set of
SOOWL-S mashup advertisements relevant to a query SOOWL-S
advertisement.

The mashup matchmaking algorithm, which is depicted in the
mashupMatchmaking procedure, is defined over the taxonomy, in-
put, output and non-functional annotations. The algorithm makes
use of two semantic operators, namely the semantic intersection
of two concept sets (e\) and the semantic intersection of two instance
sets (\

�
) that are defined as follows:

A e\B ¼ min
8x2A;8y2B

½dðx; yÞ�; ð2Þ

A\
�

B ¼
true if 9x 2 A;9y 2 B : x ¼ y _ owl : sameAsðx; yÞ;
false otherwise:

�
ð3Þ

More specifically, the semantic concept intersection returns the
minimum concept distance d(x,y) found among the concepts of
two sets A and B. Any concept distance measure can be used, pro-
vided that

� it is able to treat differently plugin and subsume matches (Pao-
lucci, Kawamura, Payne, & Sycara, 2002), and
� d(x,y) 2 [0..1], with 1 denoting absolute mismatch.

The instance intersection between two instance sets A and B re-
turns true if there are at least two instances x 2 A and y 2 B, such
9 http://projects.semwebcentral.org/projects/owl-s-api/.
that x and y are identical (=), in terms of identical URIs, or the same
(owl:sameAs). In the following we describe in detail the mashup
matchmaking algorithm that returns the similarity of a query
(query) and a mashup (adv) SOOWL-S advertisement as the
weighted mean value of their taxonomy and functional similarities
(line 26). The similarity is computed based on the operators (2) and
(3), on a concept similarity threshold a, and on three weights that
denote the user’s preferences regarding the importance of the tax-
onomy (wt) and functional similarities (wi and wo) in the weighted
mean sum.
5.2.1. Taxonomy matching
The taxonomy matching is defined over the sets with the direct

types of the two mashup descriptions (see Eq. (1)). For example,
the profile instance of Fig. 4 has directType(profile_1) = {RSS},
even if profile_1 2 CEXT(Profile), since RSS v Profile and
therefore, RSS is the direct type of profile_1.

The taxonomy algorithm stores in the taxSim variable the simi-
larity, that is, (1 � distance), computed by the concept intersection
operator over the direct type sets of the two advertisements (line
1). If the computed similarity is lower than the provided thershold
a (line 2), then the procedure terminates returning 0 that denotes
an absolute mismatch. Note that the mashupMatchmaking proce-
dure returns the similarity of two SOOWL-S advertisements and
not their distance.

5.2.2. Functional matching
The functional matching algorithm (lines 3 to 22) follows the

idea that each mashup input concept group should semantically

http://projects.semwebcentral.org/projects/owl-s-api/

G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668 6665
intersect at least one query input concept group (lines 3 to 12).
Similarly, each query output concept group should semantically
intersect at least one mashup output concept group (lines 13 to
22). In that way, the mashup matchmaking algorithm ensures that
(a) all the input concept groups of a matched SOOWL-S mashup
description (ICGadv) are satisfied by at least one query input con-
cept group (ICGquery), and (b) all the query output concept groups
(OCGquery) are satisfied by at least one output concept group (OC-
Gadv) of a matched SOOWL-S mashup description. Note that the
concept similarity threshold is also considered during the func-
tional matching (lines 9 and 19).

5.2.3. Non-functional matching
Finally, the algorithm checks the value sets of the common non-

functional properties of the two SOOWL-S advertisements (lines 23
to 25). More specifically, for each non-functional query property
value set, it checks the instance intersection with the correspond-
ing property value set of the mashup description. Therefore, a
mashup advertisement matches a query if the former satisfies, in
terms of the instance intersection operator, all the non-functional
query requirements. Note that:

� The non-functional matching algorithm ignores the values that
do not match between two advertisements.
� The instance intersection operator can be applied also in data-

type property value sets, performing exact match among the
datatype values, e.g. strings.

5.2.4. A simple example
In order to demonstrate the rationale behind the SOOWL-S

matchmaking algorithm, we present a simple example related to
the functional parameters of a mashup that returns the author
(output) of a book (input). Suppose that this mashup has been cre-
ated by combining an RSS feed of an online bookstore and a search
function over the RSS text. The annotation process is not necessary
to comply with the implementation aspects of the mashup. There-
fore, the mashup can be considered as a single service and the
annotation activity of more than one users could result in the input
concept group {uri1:Title, uri2:NovelTitle, . . .} and the out-
put concept group {uri1:Author, uri2:Writer, . . .}. In that
way, a query defined using the {uri2:BookTitle, . . .} input con-
cept group and the {uri1:Author, . . .} output concept group
would match the service, even if the Title, NovelTitle and
the BookTitle concepts (as well as the Author and Writer con-
cepts) do not lexicographically match. Assuming that (a)
uri2:NovelTitle v uri2:BookTitle, (b) the query and the
mashup have the same taxonomy concepts, and (c) we allow all
the hierarchically related concepts to be matched (a ’ 0), we have
from the mashupMatchmaking procedure (lines 8 and 18) that

furi2 : BookTitle; . . .g e\ furi1 : Title;uri2

: NovelTitle; . . .g– 0; and furi1 : Author;uri2

: Writer; . . .g e\ furi1 : Author; . . .g– 0

for the inputs and outputs, respectively. In that way, we are able to
match the two mashup descriptions, capturing different users’ per-
spectives during the annotation activity.

6. A prototype mashUDDI repository in Yahoo Pipes

We have implemented the framework of Fig. 3 in Yahoo Pipes,
defining a discovery meta-service module that communicates with
a MashUDDI repository. We used the JUDDI10 and UDDI4J11 li-
10 http://ws.apache.org/juddi/.
11 http://uddi4j.sourceforge.net/
braries in order to implement the MashUDDI registry and the Pellet
DL reasoner (Sirin et al., 2007) as the MashUDDI’s reasoning infra-
structure. Since there is not any real-world SOOWL-S dataset to con-
sider in our implementation, we stored a modified version of the
OWLS-TC version 2.2 advertisement collection.12 This collection fol-
lows the conventional SWS OWL-S profile model, using only single
concept annotations for each I/O parameter. For that reason, we pre-
processed the dataset, adding in each I/O parameter an arbitrary
number of annotation concepts up to 20, in the same rationale to
Fig. 6. The concepts were selected randomly from the set of the do-
main ontologies of the collection. In that way, we resulted in a syn-
thetic dataset of 1007 SOOWL-S profiles. The same procedure we
followed also for the 29 OWL-S query profiles of the collection.
6.1. Abstract mashup advertisements

The modified OWL-S advertisements of the OWLS-TC dataset
are compliant with the abstract nature of mashup advertisements.
More specifically, we assume that each mashup is semantically de-
scribed by an SOOWL-S advertisement that contains concept group
annotations, i.e. ontological concepts, about service inputs and out-
puts. For example, the input parameter of a service that returns the
price of books can be annotated with an ontology concept Book
and the output can be annotated with an ontology concept Price.
These advertisements are stored in our MashUDDI, following the
algorithm of we have presented in Section 4.1. Similarly, a mashup
request (query) is formed by defining ontological concepts for the
inputs and outputs of the desirable mashup. In that way, the mash-
up discovery procedure applies the matchmaking algorithm of Sec-
tion 5.2 on mashups’ and queries’ input and output annotations in
order to determine ‘‘similar’’ advertisements.
6.2. Realizing the discovery meta-service module

We used the JSON-based meta-service module of Yahoo Pipes in
order to communicate with our MashUDDI. Fig. 9 depicts the work-
flow of the overall pipe. The Item Builder module is used in order to
create a single item data source by assigning values to the inputs
and outputs attributes. The values are the URIs of the ontological
concepts that we use to annotate the input and output parameters
of the desirable service. The Web Service module is the provided
meta-service module of Yahoo Pipes. It takes as parameter the
URL of our RESTful JSON-enabled Web service and the path to
the item list. Finally, we used the Truncate module in order to ob-
tain only the first two matched services.

In this simple example, we searched for services in our Mash-
UDDI that consume information annotated semantically with the
Book concept and produce information annotated semantically
with the Price concept. The pipe returned two results with the
URI and the matching score of each service. In that way, a user
can select a returned URI and use it as input to a normal meta-ser-
vice module in order to invoke the service.

The absolute match (1.0) denotes that the returned services
have semantically the same input/output annotations to the re-
quired ones: the annotation concepts have either the same concept
URIs or they are equivalent in terms of OWL concept equivalence
(Eq. (2)). As a concept distance measure d we have implemented
the simple edge-based distance that computes the distance of two
concepts based on the number of edges found on the shortest path
between them in the ontology, and we set a = 1 in order to retrieve
only exact matched mashups.

Bear in mind that the absolute match does not necessarily mean
that the returned services satisfy the desirable functionality: two
12 http://projects.semwebcentral.org/projects/owls-tc/.

http://ws.apache.org/juddi/
http://uddi4j.sourceforge.net/
http://projects.semwebcentral.org/projects/owls-tc/

Fig. 9. A Yahoo Pipe workflow based on a discovery meta-service module.

6666 G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668
services may have the same input/output annotations (signature
match) but they may have a totally different functionality (specifi-
cation match) (Zaremski & Wing, 1995). However, our intention is
to offer the functionality to users to search semantically for mash-
ups in mashup tools, making a lightweight use of SWS frameworks.
In native SWS frameworks, automation is at first place and a more
sophisticated semantic service representation is needed, e.g. pre-
conditions, effects or even further negotiation among the involved
parties in order to determine the actual service functionality. How-
ever, such sophisticated approaches would affect negatively the
usability of mashup tools for the average users.

Similarly to the discovery meta-service module, a publish meta-
service module can be defined in order to create annotations about
mashups and to store them in the MashUDDI. For example, the
pipe of Fig. 9 is actually a mashup itself that can also be semanti-
cally annotated. Based on an ontology relevant to matchmaking
algorithms, we could use two concepts, e.g. ServiceInput and
ServiceOutput, to annotate the pipe input, and one concept,
e.g. MatchedService, to annotate the pipe output. This is an
example of the advantage of a conceptual approach, since we are
able to create abstract annotations without following the imple-
mentation aspects of the created mashups.

We want to mention here that a keyword-based search for
mashups is still possible in a MashUDDI, using the native UDDI
API. For example, we could define a query using the ‘‘book’’ and
‘‘price’’ keywords. However, we argue that with the semantic ap-
proach we are able to define the service requirements more accu-
rately, describing the desirable services at a conceptual input/
output level and allowing the incorporation of semantics, defining,
for example, that we are interested in ‘‘books’’ and not in some
general ‘‘booking’’ service.
6.3. Experimental results

Fig. 10 depicts the query response time for each one of the 29
SOOWL-S query profiles on a desktop PC with 3.2 GHz processor,
1 GB RAM and JAVA EE 5 SDK. As we expected, the query response
time depends on the number of I/O parameters (process:Input,
process:Output) and the size of the I/O concept groups of the
query and mashup advertisements, that is, the number of the pro-
cess:parameterType definitions. For example, query 15 defines
two concept groups (it has one input and one output parameter),
each containing a single concept. On the other hand, query 11 de-
fines four concept groups (it has three input and one output
parameter), each containing 3 or 4 concepts. For that reason, the
response time of query 11 is greater than of query 15. However,
the time overhead that is introduced by the extra number of anno-
tation concepts does not affect heavily the performance.

Note that due to the modifications we have made in the initial
OWLS-TC profile collection, introducing additional concepts, the
query relevance sets that are provided by the collection do not fit
in our experiments. Bear in mind that due to the lack of any
SOOWL-S collection suitable for our mashup matchmaking algo-
rithm and UDDI mapping procedure, we generated a synthetic
one which is far away from a real-world collection. Therefore,
the collection can only be used for an algorithmic evaluation of
our framework.
7. Related work

Web 2.0 mashups have already attracted the interest of Seman-
tic Web researchers. SA-REST (Sheth et al., 2007) is an effort to de-
velop a standard for adding semantic annotations into Web pages
where RESTful services are described. It is a developer-oriented,
low-level approach, dealing mostly with data mediation issues,
whereas we follow a user-oriented direction, supporting mashup
tool users with semantic capabilities, based on existing standards,
independently of implementation issues.

SWAF (Oren et al., 2007) extends the Ruby on Rails framework
for dynamic Web application development using the Ruby dy-
namic language. It is based only on RDF metadata and uses the
ActiveRDF library in order to create Ruby classes, objects and attri-
butes. Like SA-REST, SWAF focuses mainly on experienced develop-
ers, helping them to build their Web applications, whereas we

660

670

680

690

700

710

720

730

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Ti
m

e
(m

se
c)

Fig. 10. Query response times for the 29 SOOWL-S queries.

G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668 6667
target at the average mashup tool user and we provide a simple
framework for the semantic discovery of mashups in mashup tools.

SBWS (Battle & Benson, 2008) is a tool for integrating Web ser-
vices and Semantic Web. The goal is to provide a SPARQL endpoint
to Web services based on the WSDL or WADL services’ documents,
using, however, only RDF metadata. In the case of SOAP services, it
follows the paradigm of the SWS matchmaking algorithms, incor-
porating single concept annotations. In the case of RESTful services,
a semantically enhanced WADL document is needed, as a substi-
tute of WSDL. Our work follows a single, conceptual approach for
any Web service API based on SOOWL-S advertisements and on
the UDDI standard.

Semantic Web Pipes (Morbidoni, Phuoc, Polleres, Samwald, &
Tummarello, 2008) is a tool for building RDF-based mashups. It
works by fetching RDF models on the Web, operating on them,
and producing an output which is itself accessible via a stable
URL. Therefore, it is a mashup tool built from scratch able to pro-
cess RDF annotations. With our framework we want to reuse the
existing infrastructure of mashup tools and it mainly targets at
the mashup discovery domain.

Apart from service-related approaches, there are general ap-
proaches for embedding semantics into Web pages. Microformats
(Khare, 2006) and RDFa13 add lightweight semantic markup into
HTML tags. GRDDL14 is a technique for declaring and applying trans-
formations to XML in order to extract RDF. hGRDDL (Adida, 2008) is
a GRDDL-oriented method, preserving the correlation between the
semantic annotations and the structure of the HTML Web page.
Actually, (Sheth et al., 2007) is based on RDFa and GRDDL in order
to annotate the Web pages of Web services.

A great advantage of our framework is that, since it is based on
the OWL-S ontology, already existing OWL-S matchmaking algo-
rithms, such as Klusch, Fries, and Sycara (2006), Kourtesis and Par-
askakis (2008), Meditskos and Bassiliades (2007), Srinivasan et al.
(2004), can be also used for mashup discovery, provided that they
implement the modifications described in Sections 4.1 and 5.2 for
the UDDI mapping and matchmaking procedures for SOOWL-S. In
that way, we can take full advantage of already tested algorithms.

To the best of our knowledge, we consider our framework as the
first approach of combining existing SWS and Web service stan-
dards, such as the OWL-S ontology and the UDDI, with the existing
infrastructure of mashup tools. This attempt has led to the intro-
duction of the SOOWL-S mashup advertisement that allows the
conceptual and collaborative mashup annotation, regardless of
the implementation API that is followed.
8. Conclusions

In this paper we presented a combination of existing frame-
works for introducing semantic mashup discovery capabilities in
13 http://www.w3.org/TR/xhtml-rdfa-primer/.
14 http://www.w3.org/TR/grddl/.
mashup tools. Our approach is based on the definition of
SOOWL-S advertisements for the conceptual description of mash-
ups, using special mapping and matchmaking algorithms for UDDI
registries, i.e. MashUDDI repositories. Our framework is defined
upon the existing infrastructure of mashup tools without needing
to alter any implemented technology.

We exemplified on our framework using SOOWL-S advertise-
ments for discovering mashups in the Yahoo Pipes mashup tool.
We followed a rather conceptual/abstract direction for service
annotation, using only the intuitive OWL-S functional parameters
that characterize a Web service, i.e. inputs/outputs, targeting at
the average mashup tool user. In fact, any framework for semantic
service annotation can be used that follows a conceptual approach,
such as the WSMO Discovery Framework (Keller, Lara, Lausen, &
Fensel, 2006; Li, Du, & Tian, 2007).

A limitation of the ontology-based approach is that the user
must be familiar with the domain ontologies that are used by a
specific mashup tool in order to formulate semantic service re-
quests. For example, we were familiar with the domain ontologies
of the OWLS-TC service collection and we used directly the Book

and Price concepts to semantically search for book-price mash-
ups in Fig. 9. Otherwise, we should have firstly identified the do-
main ontology concepts that fit to our requirements. To
overcome such a limitation, the framework can be extended with
the ability of mapping text to ontology concepts (Bhagdev, Chap-
man, Ciravegna, Lanfranchi, & Petrelli, 2008) in order to enable
the use of simple keywords to formulate semantic requests. In that
way, our framework can enhance the traditional keyword-based
searching of mashup tools with semantic results.

In the future we want to evaluate our framework on different
SWS standards in order to investigate the factors that might affect
the usability of a semantically-enabled mashup tool for the average
mashup tool user. Furthermore, we plan to make extensive exper-
iments with different SWS discovery algorithms in order to deter-
mine the actual advantage of a semantically-enabled mashup tool
in terms of recall and precision, compared to the traditional key-
word-based search. Such an evaluation is not possible with the
current version of OWLS-TC, since it lacks sufficient textual
descriptions.
References

Adida, B. (2008). hGRDDL: Bridging microformats and RDFa. Web Semant., 6(1),
54–60.

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma, K.
(2005). Web service semantics-WSDL-S. Available online http://www.w3.org/
Submission/WSDL-S/.

Baader, F. (2003). The description logic handbook: Theory. Implementation and
applications. Cambridge University Press.

Battle, R., & Benson, E. (2008). Bridging the semantic Web and Web 2.0 with
representational state transfer (REST). Web Semant., 6(1), 61–69.

Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D. (2008). Hybrid
search: Effectively combining keywords and ontology-based searches. In:
Hauswirth, M., Koubarakis, M., Bechhofer, S. (Eds.), Proceedings of the 5th
European semantic web conference, LNCS. Berlin, Heidelberg.

http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/grddl/

6668 G. Meditskos, N. Bassiliades / Expert Systems with Applications 38 (2011) 6657–6668
Burstein, M., Bussler, C., Finin, T., Huhns, M., Paolucci, M., Sheth, A., et al. (2005). A
semantic Web services architecture. IEEE Internet Comput., 9(5), 72–81.

Dogac, A., Kabak, Y., Laleci, G. B., Mattocks, C., Najmi, F., & Pollock, J. (2005).
Enhancing ebXML registries to make them OWL aware. Distributed and Parallel
Databases, 18(1), 9–36.

Dustdar, S., & Treiber, M. (2005). A view based analysis on Web service registries.
Distributed and Parallel Databases, 18(2), 147–171.

Fensel, D., Lausen, H., Polleres, A., Bruijn, J. D., Stollberg, M., & Roman, D., et al. (Eds.).
. Enabling semantic web services: The web service modeling ontology. Heidelberg:
Springer-Verlag.

Fielding, R. T., & Taylor, R. N. (2000). Principled design of the modern Web
architecture. In ICSE ’00: Proceedings of the 22nd international conference on
software engineering (pp. 07–416). New York, NY, USA: ACM.

Herzog, R., Zugmann, P., Stollberg, M., Roman, D.: D10 v0.1 WSMO registry (2007).
Available online http://http://www.wsmo.org/2004/d10/v0.1/.

Keller, U., Lara, R., Lausen, H., & Fensel, D. (2006). Semantic web service discovery in
the WSMO framework. Idea Publishing Group.

Khare, R. (2006). Microformats: The next (small) thing on the semantic Web? IEEE
Internet Comput., 10(1), 68–75.

Klusch, M., Fries, B., & Sycara, K. (2006). Automated semantic Web service discovery
with OWLS-MX. In AAMAS ’06: Proceedings of the fifth international joint
conference on autonomous agents and multiagent systems (pp. 915–922). New
York, NY, USA: ACM.

Kopecký, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). SAWSDL: Semantic
annotations for WSDL and XML schema. IEEE Internet Comput., 11(6), 60–67.

Kourtesis, D., & Paraskakis, I. (2008). Combining SAWSDL, OWL-DL and UDDI
for semantically enhanced Web service discovery. In S. Bechhofer, M.
Hauswirth, J. Hoffmann, & M. Koubarakis (Eds.), 5th European semantic Web
conference (ESWC), lecture notes in computer science (pp. 614–628). Springer. Vol.
5021.

Li, H., Du, X., Tian, X. (2007). A WSMO-based semantic Web services discovery
framework in heterogeneous ontologies environment. In KSEM, pp. 617–622.

Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K., et al.
(2007). Bringing semantics to Web services with OWL-S. World Wide Web,
10(3), 243–277.

Meditskos, G., & Bassiliades, N. (2007). Object-oriented similarity measures for
semantic Web service matchmaking. In ECOWS ’07: Proceedings of the fifth
European conference on Web services (pp. 57–66). Washington, DC, USA: IEEE
Computer Society.

Medjahed, B., & Bouguettaya, A. (2005). A dynamic foundational architecture for
semantic Web services. Distributed and Parallel Databases, 17(2), 179–206.
Morbidoni, C., Phuoc, D. L., Polleres, A., Samwald, M., & Tummarello, G. (2008).
Previewing semantic Web pipes. In S. Bechhofer, M. Hauswirth, J. Hoffmann, &
M. Koubarakis (Eds.), ESWC, Lecture notes in computer science (pp. 843–848).
Springer. Vol. 5021.

Oren, E., Haller, A., Mesnage, C., Hauswirth, M., Heitmann, B., & Decker, S. (2007). A
flexible integration framework for semantic Web 2.0 applications. IEEE Softw.,
24(5), 64–71.

O’Sullivan, J., Edmond, D., & ter Hofstede, A. H. M. (2002). What’s in a service?
towards accurate description of non-functional services properties. Distributed
and Parallel Databases, 12(2/3), 117–133.

OWL-S 1.1 release: Examples (2004). Available online http://http://www.daml.org/
services/owl-s/1.1/examples.html.

Paolucci, M., Kawamura, T., Payne, T. R., & Sycara, K. P. (2002). Semantic matching of
Web services capabilities. In ISWC ’02: Proceedings of the First international
semantic Web conference on the semantic Web (pp. 333–347). London, UK:
Springer-Verlag.

Preist, C. (2004). A conceptual architecture for semantic Web services. In
International Semantic Web Conference (ISWC), pp. 395–409.

Sheth, A., Gomadam, K., & Lathem, J. (2007). SA-REST: Semantically interoperable
and easier-to-use services and mashups. IEEE Internet Comput., 11(6), 91–94.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical
OWL-DL reasoner. Web Semant., 5(2), 51–53.

Sivashanmugam, K., Verma, K., Sheth, A. P., & Miller, J. A. (2003). Adding semantics
to Web services standards. In L. J. Zhang (Ed.), ICWS (pp. 395–401). CSREA Press.

Srinivasan, N., Paolucci, M., & Sycara, K. P. (2004). An efficient algorithm for OWL-S
based semantic search in UDDI. In J. Cardoso & A. P. Sheth (Eds.), SWSWPC,
Lecture notes in computer science (pp. 96–110). Springer. Vol. 3387.

Tsalgatidou, A., & Pilioura, T. (2002). An overview of standards and related
technology in Web services. Distributed and Parallel Databases, 12(2–3),
135–162.

Tsarkov, D., & Horrocks, I. (2006). FaCT++ description logic reasoner: System
description. In Proceedings of the international joint conference on automated
reasoning (IJCAR 2006), Lecture Notes in Artificial Intelligence (pp. 292–297).
Springer. Vol. 4130.

UDDI.org: UDDI technical white paper.(2000). Technical Report.
Zaremski, A. M., & Wing, J. M. (1995). Specification matching of software

components. In SIGSOFT ’95: Proceedings of the 3rd ACM SIGSOFT symposium on
foundations of software engineering (pp. 6–17). New York, NY, USA: ACM.

Zur Muehlen, M., Nickerson, J. V., & Swenson, K. D. (2005). Developing Web services
choreography standards: The case of REST vs. SOAP. Decision Support System,
40(1), 9–29.

http://http://www.wsmo.org/2004/d10/v0.1/
http://http://www.daml.org/services/owl-s/1.1/examples.html
http://http://www.daml.org/services/owl-s/1.1/examples.html

	A combinatory framework of Web 2.0 mashup tools, OWL-S and UDDI
	Introduction
	Background and motivation
	Semantic web service frameworks
	UDDI registries
	Web 2.0 mashups and mashup tools
	Motivation
	Predefined services
	Search
	Meta-services

	Semantically enhanced mashup tool architecture
	Abstract semantic service/mashup annotations
	Service implementation
	Service representation
	Collaborative environment

	Social-oriented OWL-S advertisements
	Mapping SOOWL-S advertisements on UDDI
	Taxonomy mapping
	Non-functional property mapping
	Input/output parameter mapping

	MashUDDI: Mashup-oriented UDDI repositories
	Publishing SOOWL-S in mashUDDI repositories
	The mashup matchmaking algorithm
	Taxonomy matching
	Functional matching
	Non-functional matching
	A simple example

	A prototype mashUDDI repository in Yahoo Pipes
	Abstract mashup advertisements
	Realizing the discovery meta-service module
	Experimental results

	Related work
	Conclusions
	References

