
Knowledge-Based Systems 24 (2011) 406–419
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Visualizing Semantic Web proofs of defeasible logic in the DR-DEVICE system

Efstratios Kontopoulos a,⇑, Nick Bassiliades a, Grigoris Antoniou b

a Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
b Institute of Computer Science, FO.R.T.H., P.O. Box 1385, GR-71110 Heraklion, Greece

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 May 2010
Received in revised form 14 November 2010
Accepted 3 December 2010
Available online 9 December 2010

Keywords:
Semantic Web
Defeasible logic
Explanations
Proof visualization
Rule base
0950-7051/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.knosys.2010.12.001

⇑ Corresponding author. Tel.: +30 2310998433; fax
E-mail addresses: skontopo@csd.auth.gr (E. Konto

(N. Bassiliades), antoniou@ics.forth.gr (G. Antoniou).
The Semantic Web aims at improving the current Web, by augmenting its content with semantics and
encouraging the cooperation among human users and machines. Since the basic Semantic Web infra-
structure is reaching sufficient maturity, research efforts are shifting towards logic, proof and trust and
rule-based systems inevitably concentrate most of the attention. Nevertheless, in order for human users
to trust system answers, they have to be presented with adequate explanations that justify the derived
results. And, even more importantly, these explanations have to be presented in a user-comprehensible
format. Consequently, the focus in this work is on humans and the research area called proof visualization
that features three main approaches: tree-based, graphical and logical/textual. Since each of the
approaches presents advantages and disadvantages, this article proposes a fourth, hybrid visualization
approach that combines the pros of all three approaches and attempts to leverage the respective cons.
The article also presents a software tool that implements the proposed hybrid approach. The tool is called
VProofH and visualizes defeasible logic proofs, offering multiple representations that adapt to user needs.
Extensive scalability and user evaluation tests prove the software tool’s usability.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The Semantic Web (SW) [10] represents an initiative to improve
the current Web, by augmenting web content with semantics, thus,
encouraging cooperation among human and software agents. Its
basic infrastructure (content representation, ontologies) has
acquired sufficient maturity and research efforts are now shifting
towards logic, proof and trust, as is demonstrated by various pieces
of work (e.g. [35,45,46,22]). Consequently, rule-based systems are
gradually gaining popularity, but this development raises the
question: can users indeed trust system answers?

While in some cases a system answer is evident and easily
justifiable, in most other cases users cannot be confident in the
answer, unless they can understand the reasons that led the
system to produce such a result. Thus, in order for an answering
system to gain the trust of a user: (a) it must be able to provide
explanations for the generated results, and (b) the explanations
have to be presented efficiently in a user-comprehensible format
[49,25].

Traditionally, research on explanations was tightly coupled
with the development of knowledge-based and expert systems
[51,32], although the term ‘‘explanation’’ has also been associated
ll rights reserved.

: +30 2310998419.
poulos), nbassili@csd.auth.gr
with various other disciplines, like cognitive sciences, linguistics
and teaching [44].

With the recent emergence of the Semantic Web, the need for
explanation facilities is now more vital than ever. Answers
produced from SW systems are typically the result of a reasoning
process. Therefore the justification can be given as a derivation of
the conclusion with the sources of information for each inference
step. The series of explanations forms the inference proof and is
generated by the reasoning engine that has the capability of taking
any particular answer and tracing back through the inference steps
used, looking at their antecedents and determining all of the
sources used to arrive at an answer.

According to Berners-Lee et al. [11], there are two types of
proofs: machine-processible (mechanical) and human-oriented
(proof-as-picture). In order for an inference process/service to be
considered trustworthy, the mechanical proof type should be gen-
erated together with the corresponding system results. It should
also be provided in a sharable, portable and, preferably, distributed
format, which will allow its use by various, heterogeneous applica-
tions. On the other hand, a human-oriented (a.k.a. visual) proof
presentation (proof-as-picture) would be more suitable for human
consumption, so that the user can inspect the proof and retrace and
verify the derivation of answers himself. This research area is
called proof (trace) visualization and is specifically addressed to
human users and not to machines/agents, for which processing
proof files is not as demanding as to their human counterparts.

http://dx.doi.org/10.1016/j.knosys.2010.12.001
mailto:skontopo@csd.auth.gr
mailto:nbassili@csd.auth.gr
mailto:antoniou@ics.forth.gr
http://dx.doi.org/10.1016/j.knosys.2010.12.001
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419 407
McGuinness [34] identifies three main user categories that can
be benefited by a proof trace:

1. Human users or agents, as mentioned above, needing to decide if
they can trust the inference processes used to retrieve
information.

2. Application developers (authors of reasoners, search engines,
database systems), who wish to defend the credibility of their
systems

3. Authors of hybrid solutions programs (ontology builders who are
merging or extending ontologies, developers combining dat-
abases or knowledge-based systems), who need to verify how
answers were derived and might integrate.

Three major proof presentation approaches are encountered in
practice:

1. Tree Proof Representation (TPR), which better matches the con-
cept of proof trees.

2. Graphical Proof Representation (GPR) that enriches user-
friendliness, by utilizing various graphical elements and visual
aids.

3. Logical Proof Representation (LPR), a textual, logic-based
representation.

As presented later, these approaches offer certain advantages
and disadvantages. The paper proposes a fourth, novel hybrid ap-
proach for proof visualization that combines benefits from all rep-
resentations, offering multiple simultaneous execution trace
views. Also, a software tool called VProofH is presented here that
visualizes defeasible logic proofs, offering various representation/
visualization approaches that adapt to user needs. Consequently,
VProofH is aimed at all three user categories described above, as
well as other types of users who can potentially be benefited by
explanation and proof visualizations.

Defeasible logic [36] is a non-monotonic, rule-based approach
for reasoning with incomplete and inconsistent information and
is considered as a prominent tool for the SW. This is also confirmed
by various recently developed non-monotonic systems [18], like
DR-DEVICE [6], DR-Prolog [12], SweetJess [23] and SPINdle [31].
VProofH visualizes proofs generated by the DR-DEVICE defeasible
logic reasoner, although it can, potentially, be modified for visual-
izing defeasible logic proofs produced by other defeasible logic
inference engines as well.

The tool applies the DRVgraph defeasible logic rule base visual-
ization framework [28,30], but for visually representing defeasible
logic proofs instead. Proofs of specific conclusions are quite differ-
ent from complete rule bases, in the sense that they use parts of
the rule base and contain constants in place of variables. The proofs
are based on the Proof XML Schema (PXS), which extends the
defeasible logic proof schema proposed in [7], while the derived
proof graphs are visually stratified, by adapting the visual stratifi-
cation algorithm for defeasible rule bases presented in [29] to
defeasible logic proofs.

The rest of this article consists of the following: Section 2 gives
an insight into the basic concepts of defeasible logics and details
regarding its proof theory. Section 3 reports on the three dominant
proof representation approaches (TPR, GPR and LPR) and offers a
list of popular software tools that apply these approaches, followed
by a qualitative comparison. Section 4 presents our hybrid proof
visualization approach, focusing on its fundamental principles
and the VProofH system that deploys this approach. Sections 5
and 6 describe the scalability testing and user evaluation per-
formed on the tool, while the paper is concluded with the last sec-
tion that contains the final remarks, as well as directions for future
improvements.
2. Defeasible logics

Defeasible logics are mostly suitable in modeling situations,
where there exist rules and exceptions that are expressed via con-
flicting rules. A superiority relation is used to preserve consistency
and resolve these contradictions among rules.
2.1. Basic concepts

A defeasible theory D (a knowledge base in defeasible logic, or a
defeasible logic program) is formally represented by a triple
(F, R, >), where F is a set of literals (facts), R is a set of rules and >
is a superiority relation on R. Rules are represented as r: A(r) C(r),
where r is a unique rule label, A(r) is the rule body (antecedent),
which consists of a finite set of literals, an arrow that denotes
the logical implication operation and is a placeholder for concrete
arrows introduced below and the rule head (consequent) C(r),
which is a single literal.

There are three kinds of rules in defeasible logic, each repre-
sented by a different arrow:

� Strict rules, denoted by A(r) ? C(r), which represent rules in the
deductive sense.
� Defeasible rules, denoted by AðrÞ ) CðrÞ, which represent

rules that can be defeated by stronger contradicting
evidence.
� Defeaters, denoted by AðrÞ,CðrÞ, which are used in defeating

defeasible rules.

The superiority relation is an acyclic, binary relation on R that
imposes a partial ordering among R elements. More specifically,
given two rules r1 and r2, if r1 > r2, then r1 is considered superior
to r2 and r2 is inferior to r1. The superiority relation is used in
resolving conflicts among competing rules (e.g. rules with comple-
mentary heads).

Additionally, another important element in defeasible logic is
the notion of conflicting literals. In various applications, literals
are often considered to be conflicting and at most one of a certain
set should be derived. For example, in a price negotiation applica-
tion, where offers are made by potential buyer(s), only one offer
should eventually be concluded. Thus, if possible alternative offers
are determined by rules, whose conditions may or may not be
mutually exclusive, only one of the rules should ultimately prevail.
In this case, the conflict set is: Cðofferðx; yÞÞ ¼ f:offerðx; yÞg[
fofferðx; zÞ j z–yg. The conflict set for the literal offer(x, y) contains
the negation of the literal along with all the other offers that are
different from offer(x, y).

Finally, since defeasible logics deal with potential conflicts and
inconsistencies, they feature classical negation and they also deal
with negation-as-failure (NAF), which is typical for non-monotonic
logic programming systems. Although NAF is often excluded from
the object language of defeasible logics, it can be easily simulated
when necessary [3].
2.2. Proof theory

A conclusion in D is a tagged literal and may have one of the fol-
lowing forms [2]:

� +Dq, meaning that q is definitely provable in D.
� +oq, meaning that q is defeasibly provable in D.
� �Dq, meaning that q has proved to be not definitely provable

in D.
� �oq, meaning that q has proved to be not defeasibly provable

in D.



Fig. 1. TPR proof visualization.

Fig. 2. GPR proof visualization.

408 E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419
In order to prove +Dq, a proof for q consisting of facts and strict
rules needs to be established. Whenever a literal is definitely
provable, it is also defeasibly provable. In that case, the defeasible
proof coincides with the definite proof for q. Otherwise, in order to
prove +oq in D, an applicable strict or defeasible rule supporting q
must exist. In addition, it should also be ensured that the specified
proof is not overridden by contradicting evidence. Therefore, it has
to be guaranteed that the negation of q is not definitely provable in
D. Successively, every rule that is not known to be inapplicable and
has head �q has to be considered. For each such rule s, it is re-
quired that there is a counterattacking rule t with head q that is
applicable at this point and s is inferior to t.

In order to prove �Dq in D, q must not be a fact and every strict
rule supporting q must be known to be inapplicable. If it is proved
that �Dq, then it is also proved that �oq. Otherwise, in order to
prove that �oq, it must firstly be ensured that �Dq. Additionally,
one of the following conditions must hold: (i) None of the rules
with head q can be applied, (ii) It is proved that �D�q, and (iii)
There is an applicable rule r with head �q, such that no possibly
applicable rule s with head q is superior to r.

2.3. Example

This section presents an example regarding the inference and
proof processes of defeasible logics, which will serve as a running
example throughout the paper. Assume that a user submits the fol-
lowing defeasible theory D (presented in simple logical notation)
to a defeasible logic reasoner and wants to find out why the con-
clusion :payBonusðjohnÞ is defeasibly derived.

f1: employee(john)

f2: overtime(john)

r1 : employeeðXÞ;overtimeðXÞ ) payOvertimeðXÞ
r2 : employeeðXÞ;overtimeðXÞ;newEmployeeðXÞ
) :payOvertimeðXÞ

r3 : employeeðXÞ ) payBonusðXÞ
r4 : employeeðXÞ;payOvertimeðXÞ ) :payBonusðXÞ
r4 > r3

The final conclusion is þ@:payBonusðjohnÞ, which was derived
by rule r4, whose body literals were also defeasibly proved due
to the existence of fact f1 and a defeasible proof due to rule r1. Rule
r1 generates +opayOvertime(john), since its body literals are defea-
sibly proved via the existence of facts f1 and f2. Furthermore, the
opposite conclusion payBonus(john) was not proved, since r3 was
attacked by superior rule r4. Rule r2 is blocked, because one of its
body literals cannot be proved.

3. Current approaches

This section offers a deeper insight into the representation ap-
proaches outlined in the introduction (TPR, GPR and LPR), as well
as the respective tools.

3.1. TPR: Tree proof representation

Explanations that adopt TPR take the form of a tree, a data
structure most users are familiar with. In TPR, the (top-down or
bottom-up) path from root to leaf represents the various inference
steps, after which the final conclusion is derived. Naturally, each
distinct node in the path represents an individual inference step.

Fig. 1 illustrates a TPR-based proof visualization for the sample
proof of þ@:payBonusðjohnÞ in Section 2.3. In this representation,
tree nodes alternate between proofs of literals and rule labels.
Because of the structural similarities and hierarchical nature
met in trees and XML, TPR is considered highly suitable for visual-
izing XML-based explanations, like those based on PML [46] and
PXS [7].

TPR is popular among Prolog systems. For instance, SWI-Prolog
[50] includes a tree-based graphical debugger, which provides a vi-
sual trace of a program. The user can select any node in the tree, in
order to examine the context of that node. Graphical debugging is
enabled via the guitracer command, which launches the graphical
front-end of the application. The debugger window consists of
various panes that display current bindings at run-time, diagram-
matic traces of the call history as well as highlighted source code
listings.

The Visual Prolog Development Environment [14] also contains a
similar tree-based debugger that can follow program execution
and observe the program state. The debugger is activated through
the GUI menu and can execute multiple tasks, like: display mem-
ory and stack views, show trap points and backtrack points, display
class and object facts along with their values, perform step into,
step over and visualize fail and exit.

The Execution Tree Viewer, the tool for graphic visualization of a
running Prolog IV program, is another paradigm [17]. The software
offers a full view of an execution tree, a view of a proof, rapid ac-
cess to a given point in the execution tree and help in rerunning
the execution up to a given point. The main window of the soft-
ware displays the execution tree of a program that comprises an
AND/OR tree with graphical information about the level of each
AND node. The tree is intended to be seen as a three dimensional
tree display in perspective and consists of two types of nodes: call
nodes, represented as colored call-boxes that include the predicate
name, and rule nodes, represented as small, white rule-boxes that
match the call to the head of a rule.
3.2. GPR: Graphical proof representation

GPR proofs are displayed as directed graphs, where nodes may
represent premises and conclusions of rules, while rules can be
represented either as edges or as nodes. The flow of the graph fol-
lows the (premises) ? (conclusions) course. Enhancing the graph
with further types of edges and/or connections can result in dis-
playing more complex logics, e.g. Nute’s d-graphs [38]. Fig. 2 illus-
trates a GPR-based proof visualization for þ@:payBonusðjohnÞ from
Section 2.3.



Table 1
Qualitative comparison of proof visualization approaches.

TPR GPR LPR

Interaction
Zoom & Pan No Yes No
Collapse/expand Yes No No
Animations No Yes No

Performance
Scalability High Low High
Information overload Low High Medium

Clarity
Interrelationships Low High Low
Readability/Comprehensibility High Medium Medium
Perception & Cognition Medium High Medium

Defeasible logic specifics
Rule type support Low High Medium
Rule superiority representation Low High Low
Support for blocked rules Low High Medium

Fig. 3. (a) Common approaches typically feature a variety of isolated representa-
tions. (b) Our hybrid approach features three intercommunicating representations.

E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419 409
A GPR example is ProbeIt! [43], a general-purpose visualization
tool for visualizing both logical proofs generated by inference en-
gines as well as workflow execution traces. The explanations are
rendered as directed acyclic graphs (DAGs), but are encoded via
the Proof Markup Language (PML) [46], an OWL-based language
for representing justifications of computationally derived results.
Probe-It! consists of three primary views to accommodate the
visualization of different kinds of provenance information: results,
justifications, and provenance, which refer to final and intermedi-
ate data, descriptions of the generation process (i.e., execution
traces) and information about the sources, respectively.

Another GPR-based tool presented in [5], is dedicated to visual-
izing proofs produced from inference performed on defeasible logic
rule bases by DR-Prolog [12]. The tool applies our DRVgraph
visualization framework [28], which visualizes defeasible logic rule
sets as directed acyclic graphs that feature distinct node and
connection types. However, the specific tool applies DRVgraph
for a fundamentally different purpose, which involves visualizing
defeasible logic proofs instead (see Section 4.4 for a deeper insight
into the differences among the two approaches). A further
interesting feature is the tool’s verbalization module that verbal-
izes explanations and makes clear which rule(s) support which
conclusion(s), as well as other defeasible logic specifics, like supe-
riority relationships.

3.3. LPR: Logical proof representation

LPR proofs offer a textual proof representation, based on some
type of logic formalism. Often an LPR-based trace of the program
execution can provide a sufficient basis, on which to build an
explanation facility and generate explanations in a user-under-
standable language. For instance, the proof of þ@:payBonusðjohnÞ
from Section 2.3 could be presented in a CLIPS-like [20] trace fash-
ion in the following form:

==> f1: employee(john)

==> f2: overtime(john)

FIRE r1: f1, f2

==> f3: payOvertime(john)

FIRE r4: f1, f3

==> f4 : :payBonusðjohnÞ

All facts, even derived ones, receive IDs, which are used in jus-
tifying rule activations and derivations of conclusions. Prolog and
expert systems typically apply LPR in representing inference expla-
nations. Justifications stem from AND/OR trees created during rea-
soning that allow the system to explain its conclusions and
reasoning process.

An example with historical value is MYCIN [19], a well-known
system for providing consultation in establishing the proper diag-
nosis and therapy for patients with infectious disease problems.
The system presents justifications for the derived conclusions in
a natural-language format, accompanied with certainty factors
for each derivation. However, MYCINs explanation facilities dis-
played the drawback of containing implicit knowledge regarding
the diagnostic tasks and this knowledge was inaccessible to the
explanation system. An improved version of the software, called
NEOMYCIN [47], promised to make this implicit knowledge explicit
and show the impact that this reconfiguration of knowledge has on
generating explanations.

A drastically different approach is presented in [8], where the
authors attack the explanation issue through an agent-based archi-
tecture, promising knowledge reusability, modularity and high
quality explanations. The justifications generated by the agents
are text-based, following a MYCIN-like format (see above) and
revolve around ‘‘why’’ questions. Interestingly, the explanations
also contain hyperlinks that enhance the understandability and
interaction of the generated text. Hyperlinks in the generated
HTML change automatically as the system’s knowledge about
new terms increases. As its authors suggest, the specific architec-
ture is open and scalable and, thus, new services, such as ‘‘why
not’’, ‘‘what if’’, etc. could be imported in the future.

A more modern and Semantic Web-related paradigm is a frame-
work for developing knowledge-centric Clinical Decision Support
Systems (CDSSs) [27]. The framework performs knowledge model-
ing through a synergy between multiple ontologies (domain ontol-
ogy, Clinical Practice Guidelines-CPG ontology, patient ontology)
and consists of three modules: rule-authoring, execution and justi-
fication trace sub-module. The latter generates a text-based justifi-
cation trace of the rule execution, to assist medical practitioners in
understanding the rationale behind the inferred recommendations.
The justification trace initiates with the derived facts (an inferred
patient recommendation) and generates facts, which serve as pre-
mises for deriving the patient recommendation, recursively.

3.4. Comparison

Table 1 displays a qualitative comparison of the TPR, GPR and
LPR proof presentation approaches. The inclusion of certain classes
of features (interaction, performance, clarity), as well as the
respective members (e.g. scalability, comprehensibility, etc.) is
based on relevant surveys (e.g. [26,9], while the final class of defea-
sible logic features is based on our personal experience and intui-
tion on using and teaching defeasible logic concepts and comprises
an essential comparison coefficient. The qualitative assessment
regarding each characteristic (i.e. ‘‘Yes’’/‘‘No’’, ‘‘High’’/‘‘Medium’’/
’’Low’’, etc.) is based on inherent properties of the approaches as
well as traits of the corresponding tools implementing these



Fig. 4. VProofH main window.

410 E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419
approaches. It is possible that there are exceptions in the literature
(e.g. an LPR that offers zoom & pan functionality), but the table
aims at describing the characteristics of the majority of the tools
implementing the three approaches).

As expected, TPR and LPR perform better as far as scalability and
information overload are concerned, while GPR offers superior
interaction. Regarding clarity, TPR and LPR generate a more
comprehensible representation, since users are overall more famil-
iarized with tree and logic-based representations, contrary to
application-specific graph-based representations, generated by
GPR. On the other hand, GPR can display more clearly all the
underlying interrelationships among the various elements (e.g. dif-
ferent rule types, superiority relations, etc. – see Section 2.1 and
Fig. 4, since it offers a greater variety of interconnections. On the
contrary, TPRs connections among tree nodes simply denote an
‘‘implies’’ correlation.

Finally, as for representing defeasible logics specifics, like supe-
riority relationships and rule types (see Section 2.1), GPR seems
considerably more efficient, since it can feature a variety of node
types. It is also important to note that the size of a defeasible logic
rule base is not the only important factor regarding complexity.
Contrary to monotonic logic rule bases, a conclusion derived from
a defeasible logic rule base is not always evident to justify, even if
the rule base is relatively small, due to multiple unforeseen rule
attacks and counter-attacks. Nevertheless, GPR by itself is not
sufficient for representing defeasible logic proofs, since the com-
prehensibility as well as the performance superiority offered by
the other two approaches are nontrivial features that should not
be absent in a proof visualization tool.

Conclusively, although the elimination of the corresponding
drawbacks is not completely plausible, the proposed hybrid ap-
proach (described subsequently) ensures the combination of the
dominant advantages from each representation, aiming at an over-
all superior representation.
4. Our approach: Hybrid proof visualization

Although the tools described above offer a user-centred view of
a proof trace, they also display the disadvantage of relying on a
specific representation approach, which requires a degree of
adjustment to the tool. This fact potentially aggravates the learning
curve and confuses the user. Besides the disadvantages presented
previously (Section 3.4), this is a further drawback that the pro-
posed hybrid approach attempts to eliminate, by combining all
three aforementioned representations and bringing together TPR,
GPR and LPR into a single visualization.

Nevertheless, as a feature, the combination of all approaches is
not adequate in itself. An additional but equally important quality
is the interaction and interoperability between the different repre-
sentations. Thus, contrary to other approaches (Fig. 3(a)), like, e.g.
IWBrowse [35], which offers a variety of isolated representations
(natural-language-like, graphical, KIF-based [24], our hybrid ap-
proach presents the user with the interplay of three simultaneous
complementary representations. The use of multiple simultaneous
visualizations is a great way to help users explore, discover and
reason and, possibly, confirm their intuitions [40].

More specifically, a proof visualization via the hybrid approach
consists always of three parts, one for each of the three represen-
tations. The TPR and GPR parts are highly interactive, allowing
the user to traverse the proof tree and graph respectively, while
user-intervention (e.g. selection of a specific tree or graph node)
in one of the two representations is reflected on the other repre-
sentation as well. LPR is by nature less interactive, since it is
text-based, but it is not static either, since user-triggered modifica-
tions in TPR and GPR are reflected in LPR as well. The overall
functionality of the proposed hybrid approach is illustrated in
Fig. 3(b).

4.1. VProofH – Overview

VProofH is a software tool for visualizing defeasible logic proofs
that adopts the hybrid approach. The main window of the tool’s
GUI is displayed in Fig. 4.

The figure illustrates all available proof representations: On the
top-left is the TPR, on the right is the corresponding GPR and on the
bottom-left is a POSL-based LPR for each selected tree/graph ele-
ment, so that it is not necessary for users to remember the details
for each rule. Finally, a status bar at the bottom displays useful
information in the form of messages.

The overall functionality of the software is displayed in Fig. 5. A
proof file is loaded through the GUI and is parsed by the Proof Par-



<RuleML rdf_import="http://.../ex1.rdf" rdf_export="export.rdf" rdf_export_classes="payBonus"> 
......... 

 <Implies ruletype="defeasiblerule"> 
  <oid><Ind uri="http://.../ex1.ruleml#r4"> r4</Ind></oid> 
  <head> 
   <Neg> 
    <Atom> 
     <op><Rel>payBonus</Rel></op> 
     <slot><Ind>employee</Ind><Var>x</Var></slot> 
    </Atom> 
   </Neg> 
  </head> 
  <body> 
   <And> 
    <Atom> 
     <op><Rel uri="ex:employee"/></op> 
     <slot><Ind uri="ex:name"/><Var>x</Var></slot> 
    </Atom> 
    <Atom> 
     <op><Rel>payOvertime</Rel></op> 
     <slot><Ind>employee</Ind><Var>x</Var></slot> 
    </Atom> 
   </And> 
  </body> 
  <superior><Ind uri="http://.../ex1.ruleml#r3"/></superior> 
 </Implies> 

......... 
</RuleML> 

Fig. 6. Rule base fragment in the DR-RuleML syntax.

Fig. 5. VProofH overall functionality.

E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419 411
ser Module (PPM), which generates the TPR and LPR (see Section
4.3). The TPR is then fed to the Tree Parser Module (TPM), which
analyzes the proof tree structure and generates the GPR (see
Section 4.4). All three representations are eventually presented to
the user via the GUI.
4.2. Proof XML Schema (PXS)

As mentioned, VProofH visualizes proofs generated by DR-DE-
VICE [6]. The rule language of DR-DEVICE, called DR-RuleML, is
an OO RuleML [15] (v. 0.91) extension that deals with defeasible
logic and the system’s CLIPS implementation. The choice of OO
RuleML coincides with the philosophy behind the reasoning en-
gine; DR-DEVICE literals follow an object-oriented structure,
where the predicate name is a class name and the arguments are
named slots (or attributes). The engine employs an OO RDF data
model, where properties are treated as normal encapsulated attri-
butes of resource objects. The predicate name of an atomic propo-
sition corresponds to the type of an RDF resource and the slot
arguments to resource properties. Fig. 6 demonstrates a fragment
(rule r4) from the sample rule base in Section 2.3.
The Proof XML Schema (PXS) for DR-DEVICE proof trace
explanations is a further extension to RuleML that is built on-top
of DR-RuleML and comprises an extended version of previous work
of ours [7]. The top-level element of the proof schema is the
Grounds element that consists of multiple rule conclusions, proved
and non-proved. As outlined in Section 2.2, conclusion proofs can
either be definite or defeasible and are encapsulated inside
schema elements Definitely_Proved and Defeasibly_Proved,
respectively.

Definitely proved literals consist of the literal itself, encapsu-
lated by a Literal element, as well as the definite proof tree, con-
tained in a Definite_Proof element that explains why the literal is
definitely provable. A literal is definitely proved if there is a strict
clause (i.e. a strict rule or a fact), whose body literals are also def-
initely proved. The literal can be a positive atom or its negation, or
even a reference to an RDF resource (notice that DR-DEVICE uses
RDF resources as facts and its conclusions are also materialized
as RDF resources).

On the other hand, defeasible proofs are more complex and re-
quire a supportive rule (contained inside a supportive_rule ele-
ment) that can either be a strict or defeasible rule, whose body
literals are defeasibly proved. The explanation for the supportive



Fig. 7. High-level hierarchical overview of PXS (recursive elements are not
expanded further).

412 E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419
rule can be found inside the defeasible_body_grounds element,
which is a sibling element to supportive_rule and, in turn, consists
of further Definitely_Proved and Defeasibly_Proved elements.

The defeasible conclusion must not be strongly attacked, i.e. its
negation must not be definitely proved. Rules that defeasibly
attack the current one must all be blocked, so that the defeasible
conclusion of this rule prevails. A defeasible rule (or a defeater)
is blocked, either when its body literals are not defeasibly proved
(enclosed inside a not_defeasible_body_grounds element), or when
<Grounds> 
 <Defeasibly_Proved> 
  <Literal><Neg><Atom> 
   <op><Rel>payBonus</Rel></op> 
   <slot><Ind>employee</Ind><Ind>john</
  </Atom></Neg></Literal> 
  <Defeasible_Proof> 
   <supportive_rule> 
    <Defeasible_rule ruletype="defe
     <oid><Ind uri="http://.../e
     ..................   
    </Defeasible_rule> 
   </supportive_rule> 
   <defeasible_body_grounds> 
    <Definitely_Proved> 
     <Literal><Atom> 
      <op><Rel uri="ex:employ
      <slot><Ind uri="ex:name
      <slot><Ind uri="ex:over
      <slot><Ind uri="ex:newE
     </Atom></Literal> 
     <Definite_Proof>...........
    </Definitely_Proved> 
    <Defeasibly_Proved> 
     <Literal><Atom> 

<op><Rel>payOvertime</R
      <slot><Ind>employee</In
     </Atom></Literal> 
     <Defeasible_Proof>.........
    </Defeasibly_Proved> 
   </defeasible_body_grounds> 
   <not_strongly_attacked/> 
   <defeasible_attackers_blocked>......
  </Defeasible_Proof> 
 </Defeasibly_Proved> 
</Grounds> 

Fig. 8. Proof docum
it is attacked by a superior defeasible rule (enclosed inside an
Attacked_by_Superior element), whose body literals are defeasibly
proved. A strict rule is blocked, if its body literals are not definitely
proved (indicated by a not_definite_body_grounds element). Final-
ly, inferior defeasible rules are considered as blocked.

Not proved conclusions follow a similar structure, i.e. the sup-
portive rule that could not prove something must be included
along with the reason why this happened. In the case of a defeasi-
ble non-proof (element Blocked_Defeasible_rule nested inside a
defeasible_attackers_blocked element), reasons include either the
non-proof of (some of) the body literals or a definitely proved ne-
gated literal or an undefeated defeasible attacker. A defeasible at-
tacker can be a defeasible rule or a defeater, whose body literals
are proved and whose possible attackers have been blocked. Notice
that, in order for a conclusion to be not defeasibly provable, it also
must be not definitely provable (Section 2.2), similarly to the
blocked strict rule case. Fig. 7 displays a high level hierarchical
overview of the basic PXS elements.

Overall, the aim is to provide portable and sharable proofs,
where all references inside justifications can be also represented
by URIs. Thus, rules can either be in-lined in the proof tree or there
can be an external reference to rules in another RuleML document.
Similarly, proofs for body literals can either be encapsulated in the
proof tree of the rule head or can be referenced from another doc-
ument location. Fig. 8 displays a proof document fragment, repre-
sented in the syntax of the DR-RuleML PXS extension.
4.3. Proof Parser Module (PPM)

As seen previously, PXS is highly recursive, therefore, PPM fol-
lows this standard, being a top-down PXS parser, consisting of sev-
eral recursive procedures. The respective functions for retrieving a
defeasible proof for a literal are listed below. The corresponding
functions for the other types of (non)proofs are similar and are
omitted here due to space limitations.
Ind></slot> 

asiblerule"> 
x1.ruleml#r4">r4</Ind></oid> 

    

ee"/></op> 
"/><Ind>john</Ind></slot> 
time"/><Ind>true</Ind></slot> 
mployee"/><Ind>false</Ind></slot> 

.......</Definite_Proof> 

el></op> 
d><Ind>john</Ind></slot> 

.........</Defeasible_Proof> 

............</defeasible_attackers_blocked> 

ent fragment.



E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419 413
Algorithm parseProof
Input: Tree structure (t)
Output: Updated tree structure (t0)

1. n  getXpath(‘‘//Defeasibly_Proved/Grounds’’)
2. if n – £ then /⁄ (the proof is defeasible) ⁄/
3. t0  parseDefeasiblyProved(n, t)
4. else /⁄ n = £ (the proof is definite) ⁄/
5. t0  parseDefinitelyProved(getXpath(‘‘//

Definitely_Proved/Grounds’’), t)
6. return t0

Function parseDefeasiblyProved
Input: Current XML tree node (n), Tree structure (t)
Output: Updated tree structure (t0)

1. t insert(getXpath(‘‘//‘‘+n+’’/Literal/Atom’’), t)
2. p getXpath(‘‘./Defeasible_Proof’’)
3. if p – £ then
4. t0  parseDefeasibleProof(p, t)
5. else /⁄ p = £

⁄/
6. t0  parseDefiniteProof(getXpath(‘‘//‘‘+n+’’/

Definite_Proof’’), t)
7. return t0

Function parseDefeasibleProof
Input: Current XML tree node (n), Tree structure (t)
Output: Updated tree structure (t0)
1. t insert(getXpath(‘‘//‘‘+n+’’/supportive_rule/
Defeasible_rule’’))

2. g getXpath(‘‘//‘‘+n+’’/defeasible_body_grounds/
Defeasibly_Proved’’)

3. if g – £ then
4. t0  parseDefeasiblyProved(g, t)
5. else /⁄ g = £

⁄/
6. t0  parseDefinitelyProved(getXpath(

‘‘//‘‘+n+’’/defeasible_body_grounds/Definitely_Proved’’), t)
7. t0  parseBlocked(getXpath(‘‘//‘‘+n+’’/Blocked’’), t0)
8. return t0

Function parseBlocked
Input: Current XML tree node (n), Tree structure (t)
Output: Updated tree structure (t)

1. r getXpath(‘‘//‘‘+n+’’/Blocked_Defeasible_rule’’)
2. if r – £ then
3. t0  insert(getXpath(‘‘//‘‘+n+’’/Defeasible_rule’’))
4. t0  parseDefeasiblyProved(getXpath(

‘‘//‘‘+n+’’/defeasible_body_grounds/
Defeasibly_Proved’’), t0)

5. else /⁄ r = £
⁄/

6. t0  insert(getXpath(‘‘//‘‘+n+’’/Strict_rule’’))
7. t0  parseDefinitelyProved(getXpath(

‘‘//‘‘+n+’’/definite_body_grounds/Definitely_Proved’’), t0)
8. return t0
1 Available at: http://lpis.csd.auth.gr/systems/drvgraph/index.html.
Function getXpath accepts as argument an XPath expression,
which is evaluated and returns the result node(s). Furthermore,
insert is a function for appending a new node into the tree struc-
ture. The flow of the algorithm gradually investigates each
‘‘layer’’ of (defeasible or definite) proof, which in turn consists
of further, ‘‘nested’’ proof layers and so on. For each definite
proof, the concluded literal as well as the proof itself is retrieved,
while for each defeasible proof, it is necessary to retrieve the
supportive rule as well (see also previous subsection). Addition-
ally, the parsing algorithm detects all (defeasible or strict)
blocked rules, namely the rules, whose prerequisites could not
be proved or those (defeasible) rules that were attacked by supe-
rior defeasible rules.
As can be observed, certain pseudo-code parts are unavoidably
similar, since all functions refer to top-down tree navigation during
parsing. Thus, since trees are self-similar structures, processing of
different nodes in different levels should also be performed by sim-
ilar procedures. On the other hand, different levels in the tree rep-
resent nodes with dissimilar semantics and should be treated
differently by the parser.

The proof trace is visualized in a TPR similar to Fig. 1, but with
extra features for capturing defeasible logic characteristics. These
features include node coloring, for indicating the proof status
(green = definitely proved, yellow = defeasibly proved, red = not
proved) and custom node font size, for indicating rule superiority
(among two rule nodes at the same level, the node with the nota-
bly biggest font size represents the superior rule). Both features are
illustrated in Fig. 4.

4.4. Tree Parser Module (TPM)

The TPM is fed with the tree structure (TPR) created by the
proof parser (PPM) and generates a corresponding GPR. Similarly
to the tool presented in [5], VProofH also deploys the DRVgraph rule
visualization schema proposed in [28], but a newer version of it,
based on Piccolo2D [41]. Piccolo2D is a toolkit that supports the
development of 2D structured graphics programs and especially
Zoom-able User Interfaces (ZUIs). DRVgraph provides a ‘‘graphical
language’’ (like e.g. in [42] for rendering defeasible logic rule bases
as digraphs and is more thoroughly presented subsequently. A
VProofH GPR example is displayed in Fig. 4.

The parsing of the TPR by TPM is rather straightforward: tree
nodes are transformed into DRVgraph elements, which are then
placed into layers in the graph, according to an algorithm that
visually stratifies graphs consisting of DRVgraph elements. The
algorithm shares some basic similarities with the one presented
in previous work of ours [29], where a prior algorithm is pre-
sented for visual stratification of defeasible logic rule sets (and
not proofs). More specifically, the proof graph also consists of
DRVgraph elements, but its structure is quite different from a
static rule base, simply because it must intuitively represent a
single run of the rule base on a specific conclusion instance. This
means that (a) many of the elements of the rule base might not
be included, since they do not contribute to the specific proof,
and (b) the class and slot patterns of the DRVgraph elements
(see next subsection) do not contain variables, but constants,
since the proof refers to a specific conclusion and not a general
rule base.

According to the algorithm, graph elements are placed in strata
(i.e. columns), with the first stratum located on the utmost left and
the graph following a left-to-right orientation to the flow of infor-
mation. Since each tree node holds information regarding the other
nodes it is connected to as well as the type of the connection (e.g.
derivation), drawing the connections in the graph does not present
a challenge for TPM.

4.5. The GPR of VProofH – DRVgraph

DRVgraph1 [28,30] is a defeasible logic rule base visualization
framework based on Nute’s defeasible logic graphs (d-graphs) [38].
However, the framework adopts a variety of additional features that
enhance the expressive power of the graph. DRVgraph is based on di-
rected graphs (digraphs) for visually representing defeasible logic
rules. In an attempt to leverage the inability of (directed) graphs to
associate data of a variety of types with the nodes and edges in

http://lpis.csd.auth.gr/systems/drvgraph/index.html


Fig. 9. DRVgraph representation of a rule.

414 E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419
the graph, the use of distinct node and connection types is proposed.
Thus, a graph in the DRVgraph framework consists of the following
elements:

� Class Boxes: They serve as containers and are populated with
one or more class patterns. Since the proof schema is based
on OO RuleML, each class box corresponds to a class and is
labeled with the respective class name.
� Class Patterns: They express conditions on (filtered) instance

subsets of a specific class. Each class pattern consists of two
adjacent atomic formula boxes, with the upper one represent-
ing a positive and the lower one representing a negated
atomic formula. Positive atomic formulas represent subsets
of objects of the class that have been proven to satisfy the
condition of the class pattern, while negative atomic formulas
represent objects that have been proven to NOT satisfy the
condition.
� Slot Patterns: They express queries via named slots (rather than

positional arguments) on class instances. Each slot pattern is
identified by a slot name and can also contain condition pat-
terns. The argument list of each slot pattern is divided in two
parts, separated by ‘‘|’’; on the left all the variables are placed
and on the right all the corresponding expressions and condi-
tions, regarding the variables on the left. In the case of constant
values, only the left-hand side is utilized;
� Rule Circles: They represent rules and are identified by the rule

label.
� Edges: There exist five types of connections in the graph: three

for the rule type (strict rule, defeasible rule, defeater), one for
the superiority relationship, and one simple arrow connection
type for connecting the class patterns of rule bodies to the rule
circles. This results in the different graph elements being repre-
sented more distinctively.

More details regarding DRVgraph can be found in [28,30]. As al-
ready stated, although the DRVgraph framework was initially de-
signed for visualizing defeasible logic rule bases, in this work, as
well as in the work by Avguleas et al. [5], it is determined that
the framework is also suitable for representing defeasible logic
proofs as well, without posing the need to modify the fundamental
structure of its elements. What are fundamentally different in this
paper are the placement and the content of the elements, since
they need to represent proofs of specific conclusions, rather than
universally quantified rules.

An example of the above is seen in Fig. 9, where rule r1 from
Section 2.3 is displayed, following the DRVgraph scheme. The ‘‘em-
ployee’’ class box contains two class patterns applied on the em-
ployee class, each of which contains one slot pattern. The
‘‘payOvertime’’ class box corresponds to the payOvertime class
(i.e. all people who pay FPOS) and contains a single class pattern.
As can be observed, the argument list of each slot pattern is divided
in two parts, separated by ‘‘|’’; on the left all the variables are
placed and on the right all the corresponding expressions and con-
ditions, regarding the variables on the left. In the case of constant
values, only the left-hand side is utilized; thus, the second class
pattern of the ‘‘employee’’ class box in Fig. 9, for example, refers
to all overtime employees. This way the content of the slot argu-
ments is clearly depicted and easily comprehended. A sample of
the DRVgraph representation from within the VProofH tool is illus-
trated in Fig. 4 – right-hand side panel in the main window of the
software.

4.6. The LPR of VProofH – POSL and d-POSL

VProofH’s LPR uses POSL (positional-slotted language) [16] an
ASCII language that integrates Prolog’s positional and F-logic’s
slotted syntaxes for representing knowledge (facts and rules) in
the Semantic Web. POSL is primarily designed for human con-
sumption, since it is faster to write and easier to read than any
XML-based syntax, with a variety of POSL-based applications
already beginning to emerge (e.g. [21,13]. In essence, VProofH

utilizes an extension to POSL, called d-POSL, which handles the spe-
cifics of defeasible logics and comprises a further novel contribu-
tion included in this work.

POSL adopts a Prolog-like syntax that offers the option of con-
structing atoms in a positional and/or slotted fashion. Thus, an
atom in POSL has the following form:

p(r1 ? f1; r2 ? f2; . . . ; rL ? fL; e1, e2, . . . , eM; rL+1 ? fL+1;
rL+2 ? fL+2; . . . ; rN ? fN)

For example, rule ‘‘The discount for a customer buying a prod-
uct is 5% if the customer is premium and the product is regular’’
can be expressed in positional POSL as:

discount(?customer, ?product, percent5):-

premium(?customer), regular(?product).

and in slotted POSL as:

discount(cust->?customer; prod->?product;

rebate->percent5):-

premium(cust->?customer), regular(prod->?product).

Variables in POSL are denoted with a preceding ‘‘?’’. A deeper in-
sight into POSL, its unification scheme, the underlying webizing
process (i.e. the introduction of URIs as names in a system to scale
it to the Web – orthogonal to the positional/slotted distinction),
and its typing conventions along with examples is found in (Boley,
2004).

d-POSL maintains all the critical components of POSL, extending
the language with elements that are essential in defeasible
logics:

� Rule type: Similarly to d-Prolog [37], binary infix functors are
introduced (‘‘:-’’, ‘‘:=’’, ‘‘:�’’) to denote the rule type (‘‘strict’’,
‘‘defeasible’’, ‘‘defeater’’, respectively)
� Rule label: d-POSL employs a mechanism for applying rule labels

that satisfy the need to express superiorities among rules in
defeasible logic.
� Conflicting literals: Conflicting literals in d-POSL are represented

as headless rules (actually, integrity constraints), whose bodies
consist of conflicting literal pairs as well as the conditions
between the corresponding arguments that ensure that the lit-
erals are not unifiable.
� Negation & negation-as-failure: Since defeasible logics

require both types of negation (see Section 2.1), d-POSL repre-
sents classical negation as :=NOT and negation-as-failure as
�/NAF.



E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419 415
For example, the rule base in Section 2.3 would become:

employee(name->john; overtime->‘‘true’’).

r1: payOvertime(name->X) := employee(name->X;

overtime->‘‘true’’).

r2 : :payOvertimeðname- > XÞ :¼
employee(name->X; overtime->‘‘true’’;

newEmployee->‘‘true’’).

r3: payBonus(name- >X) := employee(name->X).

r4 : :payBonusðname- > XÞ :¼
employee(name->X), payOvertime(name->X).

r4 > r3.
An EBNF specification of d-POSL grammar is given in the
Appendix.

5. Scalability testing

In order to determine VProofH’s scalability regarding the size of
the proof, DTScale was used, a tool that accompanies Deimos, a
query answering defeasible logic system [33]. DTScale was used
for generating scalable defeasible logic theories for testing, which
were then translated to DR-RuleML and loaded into DR-DEVICE.
The latter performed inference and produced the results, also
generating the respective PXS-compliant proof files that were
loaded into VProofH and the respective CPU loading times were
measured.

VProofH’s performance was then compared to that of a similar
tool, which is the system presented in [5], also mentioned before,
in Section 3.2. To the best of our knowledge, the specific applica-
tion is the only software that visualizes defeasible logic proofs
along with the proposed VProofH. Nevertheless, the two systems
differ significantly, as far as the underlying reasoning engine is
concerned. The other tool is designed for use with the DR-Prolog
defeasible reasoner [12], while VProofH works with proofs gener-
ated by the DR-DEVICE defeasible reasoning engine [6]. DR-Prolog
operates in a backward chaining fashion and produces non-prov-
ability proof chains due to the unsatisfaction of rule conditions,
while DR-DEVICE works in a forward chaining fashion and cannot
produce non-provability proof chains based on unsatisfiability,
but only non-provability proof chains that are based on rule
Table 2
Order and size of proof graphs.

Theory Rules Atoms P

Chain(r) r r + 1 0
Levels(r) 4r + 5 2r + 3 r
Teams(r) 4

Pr
i¼04i 4

Pr�1
i¼0 4i 2

Tree(r, k)a Pr�1
i¼0 ki ðkþ 1Þ

Pr�1
i¼0 ki 0

DAG(r, k)b rk + 1 r(k + 1) 0

a A tree(r, k) theory features a k-branching tree of depth r, where every literal occurs
b A drag(r, k) theory features a k-branching tree of depth r, here every literal occurs k

Table 3
Scalability comparison. Time is measured in seconds.

System VProofH

RB size 10 100 500 100
Chain .036 .172 .773 1.9
Levels .075 .349 1.796 5.4
Teams 5.880 11.413 – –
Tree (k = 2) .398 1.221 6.119 17.8
DAG (k = 2) .067 .211 1.156 3.0
conflicts. The advantage is that proofs can be produced faster.
Furthermore, the most cumbersome feature of defeasible logic
typically is rule conflicts and not unsatisfiability (which also ex-
ists in classical deductive logic); therefore, users usually have
most trouble understanding rule conflicts when tracing rule exe-
cution. Consequently, while the input data (formal proof repre-
sentations) is produced by different systems, which are based
on different reasoning techniques (forward vs. backward chain-
ing), the only common point among the two visualizing tools is
the graph-based visual representation schema (DRVgraph – see
Section 4.5).

In order to perform the comparison, PXS proof files were trans-
lated into DR-Prolog proofs [12] and were then loaded into the
other system. The latter was chosen for the comparison, since it
is functionally very similar to VProofH: both systems visualize
defeasible logic proofs, both proof formats are RuleML-based and
both tools utilize the DRVgraph framework (see Section 4.4). Nev-
ertheless, VProofH comprises a more advanced solution, as it fea-
tures a variety of representation approaches, contrary to the
other tool’s sole GPR-based visualization. The tests were performed
on a P4 PC (3.2 GHz) with 2 GBs main memory.

DTScale can generate various types of theories, for exploring the
numerous aspects of defeasible logic operational semantics. For
example, chain theories of size n start with a fact a0 and continue
with a chain of n defeasible rules of the form ai-1) ai. A defeasible
proof of an will use all of the rules and the fact. More details about
the various theory types can be found in [33]. For each tested the-
ory, it was ensured that all included rules and facts were used. Our
tests included the following test theory types: chain, dag, levels,
teams and tree. The other two types featured by DTScale, circle
and mix, were omitted, because the former causes cyclic execution
in DR-DEVICE and the latter was considered redundant. Table 2
displays the order, i.e. total number of nodes (rules + atoms), and
size, i.e. total number of edges (including superiority edges) of
the generated GPR, depending on the loaded defeasible theory
type.

Results (Table 3) show that both systems can successfully ren-
der most (even large-scale) proofs in a few seconds, with the
exception of voluminous teams theories. Comparatively, VProofH

performs much better, offering at the same time a broader range
of proof trace views (tree, graph, d-POSL) and functionality
(zoom/pan, graph navigation etc.). VProofH’s superior performance
riorities Order Size

2r + 1 2r
+ 1 6r + 8 6r + 7
Pr�1

i¼0 4i 4
Pr

i¼04i þ 4
Pr�1

i¼0 4i 8
Pr

i¼04i þ 2
Pr�1

i¼0 4i

ðkþ 2Þ
Pr�1

i¼0 ki Pr�2
i¼0 ki

(2k + 1)r + 1 3(rk + 1)

once.
times.

[5]

0 10 100 500 1000
63 .261 .372 1.087 2.794
33 .433 .992 3.122 7.027

8.396 17.263 – –
66 1.390 3.477 12.409 –
23 .427 .695 2.634 5.613



Table 4
Descriptions and objectives of tasks in the user evaluation.

Task Task description Task objective

1 Estimate number of rules: Make an estimation regarding the total number of
rules involved in the proof. Answers were given in ranges, e.g. [1, 10],
[11, 20], [21, 30], [31, 40]

How correctly does the user estimate the total number of rules in the
proof?

2 Estimate number of nodes: Make an estimation regarding the proof order
(total number of nodes, i.e. rules+literals, involved in the proof). Answers
were given in ranges, e.g. [1, 25], [26, 50], [51, 75], [76, 100]

How correctly does the user estimate the order of the proof?

3 Determine rule types: Determine the rule types (strict, defeasible, defeater)
involved in the proof

Does the user perceive all types of rules that are involved in the proof?

4 Determine type of specific rule: Detect a specified rule and determine its type Can the user easily detect the specified rule? Does he/she successfully
comprehend its rule type?

5 Determine superiority pairs: Specify whether any superiority relationships
exist in the proof and, if so, determine the corresponding rule pairs,
indicating each time the superior and inferior rules

Can the user easily detect existing superiority relationships in the proof?
Can he/she successfully indicate the superior and inferior rules?

6 Determine proof status: Determine the proof status of a specified literal (i.e.
strictly/defeasibly proved/not-proved)

Can the user correctly detect the inference steps leading to the specified
literal? Can he/she realize the types of the rules involved?

7 Determine blocking factors of a rule: Detect a specified rule and determine
why the activation of the rule was blocked

Can the user easily detect the specified rule? Does he/she successfully
comprehend the reasons why activation of the rule was blocked?

8 Give a description of a specified rule: Give a description of the specified rule
in some logical formalism

Can the user correctly grasp the logical content of a specified rule? Do the
given representations assist adequately?

416 E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419
is due to the system’s improved algorithm efficiency and the other
tool’s resource-consuming verbalization module.
5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1 2 3 4 5 6 7 8
task#

ti
m

e 
(s

ec
)

VProofT

VProofG

VProofH

Fig. 10. Time (in s) needed to complete tasks.
6. User evaluation

A task-oriented user evaluation of VProofH was performed, in
order to assess whether the three simultaneous representations
(TPR, GPR, LPR) are indeed more helpful than having a sole repre-
sentation approach (e.g. only GPR). Additionally, the evaluation
was expected to identify possible flaws and deficiencies both in
the representation methodologies, as well as the software itself,
and provide valuable feedback for improvements.

Generally, task-oriented evaluations for various Semantic Web
applications are quite popular (e.g. [48,39]. Our user evaluation in-
volved 17 test users, mostly postgraduate students attending the
Semantic Web course at our university, as well as research person-
nel at our Lab. The involvement of less knowledgeable users in the
evaluation process would probably require their long-term prepa-
ration on issues related to Semantic Web and Logic Programming, a
factor that would reduce our ability of checking VProofH’s intui-
tiveness and usefulness related to defeasible logic issues alone. A
future goal, nevertheless, is to conduct a wider user evaluation that
will span other categories of (less and more knowledgeable) users
as well, like developers or knowledge engineers, as these are de-
scribed in the introduction. The test users were given a short intro-
ductory lecture on the basics of defeasible logics and were then
seated in front of a PC, in order to evaluate the software. They were
given three (3) groups of tasks; each task group involved a different
rule base and consisted of eight tasks. The corresponding tasks in
each group were similar, but each group required the use of a dif-
ferent combination of representation approaches. Thus, Task Group
1 (TG 1) involved using TPR and LPR only (the subset of VProofH

called VProofT), Task Group 2 (TG 2) involved using GPR and LPR
(subset VProofG), while Task Group 3 (TG 3) allowed the users to
utilize all three representations (TPR, GPR and LPR), namely the
full-fledged hybrid representation VProofH (isolating LPR would
not lead to any significant conclusions, since it comprises a second-
ary representation approach that better assists in displaying single
items of knowledge and not sets of facts or rules). Also, in order to
eliminate the effect of learning, the task groups were given to each
participant in a random order. Table 4 displays the list of tasks,
accompanied by a respective objective for each task.

Search facilities in all versions of the software were disabled, so
that users would rely each time only on the given representation
for discovering the specific elements required by the tasks.
Fig. 10 illustrates the results of the user evaluation.

The column chart in the figure shows the median times re-
quired for completing each task; the median was used for eliminat-
ing the effect of outliers. As can be observed, the hybrid approach
represented by VProofH performed better in all tasks, assisting the
users in completing the tasks notably sooner than the other two
representations. Regarding the other two subsets, it is interesting
to note that VProofT performs better in navigation-centered tasks
(like detecting a specific rule – task #4), while VProofG proves
superior in tasks regarding the estimation of a proof size, as well
as the comprehension of the underlying proof theory. Thus, a sec-
ondary conclusion that was derived from the evaluation involved
the utility of our DRVgraph representation against the more tradi-
tional tree-based approaches.

As far as the comparison of correct answers among the task
groups is concerned, the superiority of VProofH in almost all cases
is clearly demonstrated (stacked column chart in Fig. 11), with the
minor exception of tasks #1 and #2, where the graph-based repre-
sentation performs slightly better. Especially in the second task,
none of the three approaches performed adequately, probably be-
cause of the nature and complexity of the proofs given to test
users, which made it more difficult to estimate the total number
of nodes in each proof. It is obvious in both tasks, nevertheless, that
the approaches including GPR (VProofG and VProofH) greatly out-
perform the tree-based approach, as far as assessments regarding
numbers of nodes and proof sizes are concerned.



Table 7
Paired-samples t-test results of task correctness among
the different representations.

Significance

Between VProofT and VproofG 0.117
Between VProofT and VproofH 0.001
Between VProofG and VproofH 0.134

0

2

4

6

8

10

12

14

16

18

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

task#

co
rr

ec
t/

w
ro

n
g

 a
n

sw
er

s

correct wrong

Fig. 11. Comparison of correct answers among the three task groups.

E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419 417
Overall, it is primarily concluded that the hybrid representation
approach improves the user’s understanding of a proof and, in
some cases, significantly boosts the performance of the other two
isolated representations (e.g. task #8). It is also evident that our
DRVgraph-based GPR typically remains more effective than TPR,
as was previously stated.

In order to assess, whether the differences in times and correct-
ness are statistically significant, a one-way ANOVA was conducted
on the median times for completing each task as well as the corre-
sponding number of correct answers. The null hypothesis (H0) was
that there are no differences among the three approaches VProofT,
VProofG and VProofH. The results of ANOVA displayed in Table 5 in-
deed reveal a statistically significant effect of the representation
approach used (p 6 0.05), thus the null hypothesis is rejected. It
is therefore concluded that there is a significant difference among
at least one pair of representation approaches, without excluding
the possibility that the differences among all pairs are eventually
statistically significant.

Since there is a significant difference among deploying the dif-
ferent approaches, an independent-samples t-test was conducted
to investigate the difference among using any two approaches.

The results in Table 6 show that the time taken to accomplish
the tasks by using the combined hybrid approach (VProofH) is sig-
nificantly less than using the tree-only approach (VProofT). How-
ever, the difference between using VProofT vs. VProofG is less
significant, as is also the difference between VProofG vs. VProofH,
Table 6
Independent-samples t-test results of median times for
completing the designated tasks among the different
representations.

Significance

Between VProofT and VproofG 0.120
Between VProofT and VproofH 0.004
Between VProofG and VproofH 0.085

Table 5
ANOVA results of median times for completing the designated tasks among different
representations.

Sum of
squares

Degrees of
freedom

Mean
square

F Significance

Between approaches 678.083 2 339.042 5.925 0.009
Within approaches 1201.750 21 57.226
Total 1879.833 23
although the latter is marginally concluded (p = 0.085). The slight
difference among VProofG and VProofH probably suggests that
appending TPR to VProofG (namely, adding the tree facility over
the graph-based GPR that results in VProofH) adds marginally sig-
nificant value to the representation.

Similar conclusions are derived when examining the statistical
significance of task correctness. Table 7 displays the results of
paired-samples t-test among any two approaches. The task cor-
rectness of the hybrid approach is significantly better than the
TPR-based approach (p = 0.001), while the difference between the
other two pairs of approaches is less significant (p = 0.117 and
p = 0.134, respectively). It is therefore concluded, that the hybrid
approach does not significantly improve a user’s ability to success-
fully complete tasks, when compared to the VProofG approach that
features a GPR-based representation.

Conclusively, the user evaluation indicates that there is statisti-
cally significant difference among the hybrid approach and the
tree-based TPR as far as both task completion time and correctness
are concerned. However, the tests comparing the GPR-based ap-
proaches vs. the hybrid approach suggest that the latter does not
add statistically significant value to performance and correctness,
although the significance regarding the difference in completion
times was only marginally rejected. Consequently, VProofH defi-
nitely assisted users in completing the designated tasks sooner
than the other two approaches, while its performance regarding
task correctness is considered, if not better, then at least equivalent
to GPR. The overall improvement of VProofH against the other,
‘‘lighter’’ approaches is, therefore, considered notable.
7. Conclusions and future work

The paper argued that logic, proof and trust comprise the target
of upcoming research efforts in the Semantic Web and pointed out
the need for proof and explanation visualization mechanisms that
are addressed to human users for encouraging them to trust sys-
tem answers. A hybrid proof visualization approach was presented,
which, contrary to other methodologies that offer isolated repre-
sentations, offers multiple simultaneous views of an execution
trace, combining tree, graph and textual visualizations for repre-
senting proofs. Additionally, a software tool called VProofH was
implemented, which efficiently visualizes defeasible logic proofs,
offering a variety of interoperating representation and visualiza-
tion approaches that adapt to user needs. The representations are
interactive, meaning that user-triggered modifications in one of
them are reflected in the rest of the representations as well.

The user evaluation of VProofH revealed certain deficiencies of
the software and directions for future improvements. For instance,
an interesting idea would be to explicitly represent the superiority
relationship rule pairs in a separate list, which is a feature almost
all test users pointed out. On the other hand, an appealing develop-
ment would be tightly integrating VProofH with one or more defea-
sible logic reasoners (e.g. DR-DEVICE, DR-PROLOG, SPINdle – see
Section 1), for offering an explanation visualization facility to the
respective human users. Finally, the underlying DRVgraph model
should be extended for visualizing more defeasible logic elements,
like conflicting literals.



418 E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419
As a final remark, it should be noted that, since proofs depend
on statements whose truth cannot be safely assumed, the process
of merely rendering machine-oriented proofs into a human-com-
prehensible format is not adequate by itself. Therefore, proofs must
be augmented by trust. A mechanism towards this direction is to
enable digital signatures of proof documents [4]; digital signatures
can provide a universal basis for determining the level of trust fea-
tured by each Semantic Web proof document. Additionally, since
all the facts that are contained in a proof could be assigned to a
source, users need to retrieve some information about the sources
in order to trust them [1]. Towards this direction, applications that
rate the authoritativeness of sources could be developed.

Appendix A

EBNF description of d-POSL grammar:

(⁄ a rulebase contains facts, rules, superiority relationships and
conflicting literals ⁄)

rulebase ::= (fact | rule | suprel | conf)⁄.
(⁄ definition of facts ⁄)
fact ::= fid ‘‘:’’ literal ‘‘.’’.
literal ::= ’’�’’? atom.
atom ::= pred ‘‘(‘‘ sname ‘‘->’’ svalue (‘‘;’’ Sname ‘‘->’’ svalue)⁄ ‘‘)’’.
(⁄ definition of rules ⁄)
rule ::= rid ‘‘:’’ head imp body? ‘‘.’’.
head ::= literal .
imp ::= ’’:-‘‘ | ’’:=’’ | ’’:�’’.
body ::= cond_cluster ((‘‘,’’cond_cluster) | (‘‘,’’naf_cluster))⁄ .
cond_cluster ::= literal ((‘‘,’’ literal) | (‘‘,’’ cond))⁄ .
naf_cluster ::= ’’n+’’ cond_cluster .
cond ::= unkeyed extfunc unkeyed .
(⁄ definition of superiority relationships ⁄)
suprel ::= rid ‘‘>’’ rid ‘‘.’’.
(⁄ definition of conflicting literals ⁄)
conf ::= (‘‘:-‘‘ | ’’:=’’) literal (‘‘,’’ literal) + (var ‘‘n=’’ var) + ’’.’’.
(⁄ rest of definitions ⁄)
unkeyed ::= svalue ::= ind | var.
var ::= ‘‘?’’ symbol.
fid ::= rid ::= extfunc ::= ind::= pred ::= sname ::= symbol.
References

[1] G. Antoniou, A. Bikakis, N. Dimaresis, M. Genetzakis, G. Georgalis, G.
Governatori, E. Karouzaki, N. Kazepis, D. Kosmadakis, M. Kritsotakis, G. Lilis,
A. Papadogiannakis, P. Pediaditis, C. Terzakis, R. Theodosaki, D. Zeginis, Proof
explanation for a nonmonotonic Semantic Web rules language, Data and
Knowledge Engineering 64 (3) (2008) 662–687.

[2] G. Antoniou, D. Billington, G. Governatori, M.J. Maher, Representation results
for defeasible logic, ACM Transactions on Computational Logic 2 (2) (2001)
255–287.

[3] G. Antoniou, M.J. Maher, D. Billington, Defeasible logic versus logic
programming without negation as failure, Journal of Logic Programming 41
(1) (2000) 45–57.

[4] D. Artz, Y. Gil, A survey of trust in computer science and the Semantic Web,
Web Semantics: Science, Services and Agents on the World Wide Web, 5(2)
(2007) 58–71.

[5] I. Avguleas, K. Gkirtzou, S. Triantafilou, A. Bikakis, G. Antoniou, E. Kontopoulos,
N. Bassiliades, Visualization of proofs in defeasible logic, in: 2008 International
Symposium on Rule Interchange and Applications (RuleML-2008), LNCS, 5321,
Orlando, Florida, USA, Springer, 2008, pp. 197–210.

[6] N. Bassiliades, G. Antoniou, I. Vlahavas, A defeasible logic reasoner for the
Semantic Web, International Journal on Semantic Web and Information
Systems 2 (1) (2006) 1–41.

[7] N. Bassiliades, G. Antoniou, G. Governatori, Proof explanation in the DR-
DEVICE system, in: 1st Int. Conference on Web Reasoning and Rule Systems
(RR 2007), LNCS, 4524, Austria, Springer-Verlag, 2007, pp. 249–258.

[8] S.R. El-Beltagy, A.A. Rafea, A.H. Sameh, An agent based approach to expert system
explanation, in: A.N. Kumar, I. Russell, (Eds.), Twelfth Int. Florida Artificial
Intelligence Research Society Conference, AAAI Press, 1999, pp. 153–159.
[9] C. Bennett, J. Ryall, L. Spalteholz, A. Gooch, The aesthetics of graph visualization,
in: International Symposium on Computational Aesthetics in Graphics,
Visualization, and Imaging, Banff, Alberta, Canada, June 20–22, 2006, pp. 57–64.

[10] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American
284 (5) (2001) 34–43.

[11] T. Berners-Lee, W. Hall, J.A. Hendler, K. O’Hara, N. Shadbolt, D.J. Weitzner, A
framework for web science, Foundations and Trends in Web Science 1 (1)
(2006) 1–130.

[12] A. Bikakis, C. Papatheodorou, G. Antoniou, The DR-prolog tool suite for
defeasible reasoning and proof explanation in the Semantic Web, in: 5th
Hellenic Conference on Artificial Intelligence: Theories, Models and
Applications, LNAI, 5138, Syros, Greece, Springer-Verlag, 2008, pp. 345–351.

[13] Y. Biletskiy, G.R. Ranganathan, An invertebrate semantic/software application
development framework for knowledge-based systems, Knowledge-Based
Systems 21 (5) (2008) 371–376.

[14] T.W. de Boer, A Beginners Guide to Visual Prolog. <http://
www.download.pdc.dk/vip/72/books/deBoer/VisualPrologBeginners.pdf>.

[15] H. Boley, Object-oriented RuleML: user-level roles, URI grounded clauses, and
order-sorted terms, in: Rules and Rule Markup Languages for the Semantic
Web (RuleML-2003), Sanibel Island, Florida, LNCS 2876, Springer-Verlag, 2003.

[16] H. Boley, POSL: an integrated positional-slotted language for Semantic Web
knowledge. <http://www.ruleml.org/submission/ruleml-shortation.html>.

[17] P. Bouvier, Visual tools to debug prolog IV programs, in: P. Deransart, M.V.
Hermenegildo, J. Maluszynski, (Eds.), Analysis and Visualization Tools For
Constraint Programming, Constraint Debugging (DiSCiPl project), LNCS 1870,
Springer-Verlag, 2000, pp. 177–190.

[18] D. Bryant, P. Krause, A review of current defeasible reasoning
implementations, The Knowledge Engineering Review 23 (3) (2008) 227–260.

[19] B.G. Buchanan, E.H. Shortliffe, Rule based expert systems: The mycin
experiments of the Stanford Heuristic Programming Project, in: The
Addison-Wesley Series in Artificial Intelligence, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 1984.

[20] CLIPS 6.3 Reference Manual, Volume I, Basic Programming Guide. <http://
www.clipsrules.sourceforge.net/documentation/v630/bpg.pdf>.

[21] B.L. Craig, The OO jDREW Engine of Rule Responder: Naf Hornlog RuleML
Query Answering, in: A. Paschke, Y. Biletskiy, (Eds.), 2007 International
Conference on Advances in Rule Interchange and Applications, LNCS, Springer-
Verlag, Berlin, Heidelberg, 2007, pp. 149–154.

[22] C.G. Fernandes, V. Furtado, A. Glass, D.L. McGuinness, Towards the generation
of explanations for Semantic Web Services in OWL-S, in: Proceedings of the
2008 ACM Symposium on Applied Computing (SAC‘08), ACM, New York, NY,
2008, pp. 2350–2351.

[23] M. Gandhe, T. Finin, B. Grosof, SweetJess: Translating DamlRuleML to Jess, in:
Int. Workshop on Rule Markup Languages for Business Rules on the Semantic
Web (in conjunction with ISWC 2002), Sardinia, Italy, 2002.

[24] M. Genesereth, R. Fikes, Knowledge Interchange Format Version 3.0 Reference
Manual, Technical Report, Logic Group, Comp. Sci. Dept., Stanford Univ., 1992.

[25] Q. Guo, M. Zhang, Question answering based on pervasive agent ontology and
Semantic Web, Knowledge-Based Systems 22 (6) (2009) 443–448.

[26] I. Herman, G. Melancon, M.S. Marshall, Graph visualization and navigation in
information visualization: a survey, IEEE Transactions on Visualization and
Computer Graphics 6 (1) (2000) 24–43.

[27] S. Hussain, S.R. Abidi, S.S.R. Abidi, Semantic Web framework for knowledge-
centric clinical decision support systems, in: Proceedings of 11th Conference
on Artificial Intelligence in Medicine (AIME2007), LNCS, vol. 4594, Springer,
Berlin, 2007, pp. 451-455.

[28] E. Kontopoulos, N. Bassiliades, G. Antoniou, Visualizing defeasible logic rules for
the Semantic Web, in: 1st Asian Semantic Web Conference (ASWC’06), LNCS,
4185, Beijing, China, 3–7 September 2006, Springer-Verlag, pp. 278–292.

[29] E. Kontopoulos, N. Bassiliades, G. Antoniou, Visual stratification of defeasible
logic rule bases, in: 19th IEEE international conference on tools with artificial
intelligence (ICTAI’07), IEEE, Patras, Greece, 2007, pp. 238–245.

[30] E. Kontopoulos, N. Bassiliades, G. Antoniou, Deploying defeasible logic rule
bases for the Semantic Web, Data and Knowledge Engineering 66 (1) (2008)
116–146.

[31] H.P. Lam, G. Governatori, The making of SPINdle, in: International
Symposium on Rule Interchange and Applications (RuleML’09), 5858, 2009,
pp. 315–322.

[32] S.A. Ludwig, Comparison of a deductive database with a Semantic Web
reasoning engine, Knowledge-Based Systems 23 (6) (2010) 634–642.

[33] M.J. Maher, A. Rock, G. Antoniou, D. Billington, T. Miller, Efficient defeasible
reasoning systems, International Journal of Tools with Artificial Intelligence 10
(4) (2001) 483–501.

[34] D.L. McGuinness, P.P. da Silva, R. Fikes, J. Jenkins, G. Frank, Inference web:
portable and sharable explanations for question answering, in: AAAI Spring
Symposium Workshop on New Directions for Question Answering, Stanford
University, 2003.

[35] D.L. McGuinness, P.P. da Silva, Infrastructure for Web explanations, in: D.
Fensel, K. Sycara, J. Mylopoulos (Eds.), 2nd Int. Semantic Web Conference
(ISWC’03), LNCS, 2870, Springer, 2003, pp. 113–129.

[36] D. Nute, Defeasible logic, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.),
Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3,
Oxford University Press, 1994, pp. 353–395.

[37] D. Nute, Defeasible prolog, in: M. Covington, D. Nute, A. Vellino, (Eds.), Prolog
Programming in Depth, second ed., Prentice-Hall, Upper Saddle River, NJ, 1997,
pp. 345–405.

http://www.download.pdc.dk/vip/72/books/deBoer/VisualPrologBeginners.pdf
http://www.download.pdc.dk/vip/72/books/deBoer/VisualPrologBeginners.pdf
http://www.ruleml.org/submission/ruleml-shortation.html
http://www.clipsrules.sourceforge.net/documentation/v630/bpg.pdf
http://www.clipsrules.sourceforge.net/documentation/v630/bpg.pdf


E. Kontopoulos et al. / Knowledge-Based Systems 24 (2011) 406–419 419
[38] D. Nute, K. Erk, Defeasible logic graphs: I. Theory, Decision Support Systems 22
(3) (1998) 277–293.

[39] H. Oliver, G. Diallo, E. de Quincey, D. Alexopoulou, B. Habermann, P. Kostkova,
M. Schroeder, S. Jupp, K. Khelif, R. Stevens, G. Jawaheer, G. Madle, A user-
centred evaluation framework for the sealife Semantic Web browsers, BMC
Bioinformatics 10(Suppl. 10) (2009) S14+.

[40] D. Petrelli, S. Mazumdar, A. Dadzie, F. Ciravegna, Multi visualization and
dynamic query for effective exploration of semantic data, in: A. Bernstein, D.R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, K. Thirunarayan (Eds.),
8th International Semantic Web Conference (ISWC’09), Chantilly, VA, USA,
LNCS, 5823, Springer, 2009, pp. 505–520.

[41] Piccolo2D – A Structured 2D Graphics Framework. <http://
www.piccolo2d.org>.

[42] E. Pulvermueller, S. Feja, A. Speck, Developer-friendly verification of process-
based systems, in: H. Fujita (Ed.), Knowledge-Based Systems Special issue on
‘‘Intelligent Formal Techniques for Software Design: IFTSD’’, vol. 23(7), 2010,
pp. 667–676.

[43] N. Del Rio, P.P. da Silva, Probe-it! Visualization Support for Provenance, in: 2nd
International Symposium on Visual Computing (ISVC 2), Lake Tahoe, NV, USA,
LNCS, 4842, Springer, 2007, pp. 732–741.

[44] T.R. Roth-Berghofer, M.M. Richter, On explanation, Künstliche Intelligenz 22
(2) (2008) 5–7.
[45] P. Shvaiko, F. Giunchiglia, P.P. da Silva, D.L. McGuinness, Web explanations for
semantic heterogeneity discovery, in: Proceedings of the 2nd European
Semantic Web Conference (ESWC 2005), 2005, pp. 303–317.

[46] P.P. da Silva, D.L. McGuinness, R. Fikes, A proof markup language for
Semantic Web services, Information Systems 31 (4–5) (2006) 381–395.

[47] J. Sotos, MYCIN and NEOMYCIN: two approaches to generating explanations in
rule based expert systems, Aviation, Space, and Environmental Medicine 61
(1990) 950–954.

[48] Y. Sure, V. Iosif, First results of a Semantic Web technologies evaluation, in:
Common Industry Program at the Federated Event Co-Locating the Three
International Conferences: DOA/ODBASE/CoopIS’02, University of California,
Irvine, 2002, pp. 69–78.

[49] W. Swartout, S.W. Smoliar, Explanation: source of guidance for knowledge
representation, in: K. Morik (Ed.), Knowledge Representation and Organization
in Machine Learning, Springer Lecture Notes in Artificial Intelligence, vol. 347,
Springer-Verlag, 1989, pp. 1–16.

[50] J. Wielemaker, An overview of the SWI-prolog programming environment, in: F.
Mesnard, A. Serebenik, (Eds.), 13th International Workshop on Logic
Programming Environments, Heverlee, Belgium, Katholieke Universiteit
Leuven, 2003, pp. 1–16.

[51] B.A. Wooley, Explanation component of software system, ACM Crossroads 5
(1) (1998) 24–28.

http://www.piccolo2d.org
http://www.piccolo2d.org

	Visualizing Semantic Web proofs of defeasible logic in the DR-DEVICE system
	Introduction
	Defeasible logics
	Basic concepts
	Proof theory
	Example

	Current approaches
	TPR: Tree proof representation
	GPR: Graphical proof representation
	LPR: Logical proof representation
	Comparison

	Our approach: Hybrid proof visualization
	VProofH – Overview
	Proof XML Schema (PXS)
	Proof Parser Module (PPM)
	Tree Parser Module (TPM)
	The GPR of VProofH – DRVgraph
	The LPR of VProofH – POSL and d-POSL

	Scalability testing
	User evaluation
	Conclusions and future work
	Appendix A
	References


