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Abstract. Labeled Latent Dirichlet Allocation (LLDA) is an extension of the
standard unsupervised Latent Dirichlet Allocation (LDA) algorithm, to address
multi-label learning tasks. Previous work has shown it to perform en par with
other state-of-the-art multi-label methods. Nonetheless, with increasing number
of labels LLDA encounters scalability issues. In this work, we introduce Subset
LLDA, a topic model that extends the standard LLDA algorithm, that not only
can efficiently scale up to problems with hundreds of thousands of labels but
also improves over the LLDA state-of-the-art in terms of prediction accuracy. We
conduct experiments on eight data sets, with labels ranging from hundreds to
hundreds of thousands, comparing our proposed algorithm with the other LLDA
algorithms (Prior—-LDA, Dep-LDA), as well as the state-of-the-art in extreme
multi-label classification. The results show a steady advantage of our method
over the other LLDA algorithms and competitive results compared to the extreme
multi-label classification algorithms.

Keywords: Machine Learning - Extreme Classification - Topic Models - Multi-
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1 Introduction

Multi-label learning addresses supervised learning problems, where each training exam-
ple is associated with more than one labels at the same time [12]. Examples include tasks
such as image annotation or assigning concepts to documents. Although a great body of
prior work has dealt with developing methods for multi-label tasks (e.g. [16]), the major-
ity of these algorithms struggle to scale to data sets having more than a few thousand
labels. The ever increasing flow and volumes of data in modern-day applications call for
multi-label learning algorithms that can scale up effectively and efficiently.

Extreme multi-label classification (XMLC) is an emerging field that attempts to
address the above challenge, by proposing algorithms that can tackle problems with
extremely large label sets (> 10* labels).

We modify an already existing algorithm, Labeled Latent Dirichlet Allocation
(LLDA) [8] to successfully deal with such tasks. LLDA was introduced as an extension
of standard, unsupervised Latent Dirichlet Allocation (LDA) [2]], to deal with multi-label
learning tasks. Apart from delivering results competitive with state-of-the-art multi-label
algorithms, LLDA’s training is by design fit for large-scale and extreme learning prob-
lems, since its training time complexity is not dependent of the label set size L, but
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on the average number of labels assigned per instance. During testing though, LLDA
reduces to LDA and the algorithm is linearly dependent of L, which makes it unfit for
XMLC.

In order to make LLDA appropriate for such tasks, we propose an extension to LLDA,
Subset LLDA. Our algorithm is different only during prediction. It first determines a set
of relevant labels for each new instance, through its nearest neighbors in the training
space, and then constrains the LLDA’s inference on this particular subset of labels. By
doing so, we manage to decrease the algorithm’s testing time complexity and improve
LLDA’s quality of predictions, since by constraining the algorithm to search in a subset
of the entire label space, we alleviate LLDA’s tendency to converge to local optima (we
describe this more in detail in Section 3

We conduct experiments on four small scale data sets and four large scale data
sets, with L ranging from 101 to 670,000 comparing our approach to Prior-LDA and
Dep-LDA as well as two of the top performing extreme classification algorithms, Fast
XML and PfastreXML. The results show a consistent advantage of our method compared
to the other LLDA algorithms and competitive results with the extreme classification
methods. Our motivation by introducing Subset LLDA, is to contribute one more method
to the extreme classification inventory, that may be more apt than other methods for
specific experimental scenarios.

2 Background and Related Work

We present here the main methods in the literature to tackle XMLC tasks and then present
LDA, LLDA, and the other two LLDA extensions, Prior—LDA and Dep—LDA.Throughout
the paper we assume that the Collapsed Gibbs Sampling (CGS) algorithm [4] is employed
for all LLDA methods.

2.1 Extreme Classification Methods

Algorithms aiming to tackle extreme classification tasks mainly take one of the following
approaches:

— learn a hierarchy out of the training set, either over the labels or the features, and
solve the training and prediction procedures locally at each node. Examples in this
category include Label Partitioning by Sublinear Ranking (LPSR) [13], FastXML
[7] and Pfastre XML [5]].

— construct an embedding of the output space in a lower dimension. Embedding-based
methods render training and prediction tractable by assuming that the training label
matrix is low-rank, reducing the label set size by projecting the high dimensional
label vectors onto a low dimensional linear subspace. Most characteristic methods
in this category are LEML [15] and SLEEC [1]].

2.2 LDA and LLDA

Let us denote as L the number of labels, [ being a label and V' the number of features, v
being a feature type and w; being a feature token at position ¢ of the instance. M is the
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number of instances (Mrrarn and MrpsT will represent the training and testing set
sizes respectively), m being an instance. Also, L,, will denote the number of m’s labels
and N,,, the number of its non-zero features.

LDA assumes that, given a set of instances, there exist two sets of distributions, the
label-features distributions named ¢ and the instances-labels distributions named 6]
CGS LDA marginalizes out ¢ and 6, and uses only the latent variable assignments z.
The algorithm employs two count matrices during sampling, the number of times that v
is assigned to [ across the data set, represented by n;,, and the number of feature tokens
in m that have been assigned to [, represented by n,,;. During sampling, CGS updates
the hard assignment z; of w; to one of [ € {1...L}. This update is performed sequentially
for all tokens in the data set, for a fixed number of iterations. The update equation giving
the probability of setting z; to label [, conditional on w;, m, the hyperparameters o and
3, and the current label assignments of all other feature tokens (represented by -) is:
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Upon completion of the above procedure, point estimates can be calculated for ¢
and @ parameters. Instead of the standard CGS estimators [4], we employ the CG.SP
equations [6], that employ the full distribution over feature tokens. These methods
calculate the expected values of the standard CGS estimators and are therefore especially
suited for the large-scale setting that we are addressing in this work, since they allow
us to achieve better performance by drawing fewer samples than with the standard
estimators.

LLDA modifies LDA by constraining the possible assignments for a token to a label
to the instance’s observed labels. Inference on test instances is performed similarly to un-
supervised CGS - LDA: the label-features distributions, ¢, are fixed to those previously
learned on the training data, and the test instances’ € distributions are estimated.

LLDA employs a symmetric o hyperparameter over labels, giving equal weight on
them. Nevertheless, in most real-world tasks labels tend to have skewed distributions.
Moreover, modeling label dependencies can improve performance [9]], especially as the
number of labels increases. To address these issues, the authors of [10] have proposed
Prior—LDA and Dep—LDA respectively. Prior—LDA incorporates the label frequencies
observed in the training set via an asymmetric o hyperparameter: a frequent label will
have a larger « value than a rare one. Specifically, it is set to

ap=n-fita @)

with 7, a being user defined parameters and f; representing the frequency of [ in the
training corpus, f; € [0, 1].

Dep-LDA is a two-stage algorithm: first, an unsupervised LDA model is trained with
T topics and using as training data, each instance’s label seﬂ The estimated LDA model

! Specifically, LDA is defining ¢ and  in terms of topics since it is unsupervised, but to ease
understanding we consider through the paper that topics and labels are equivalent.
% j.e., the feature tokens of each instance are its labels
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will incorporate information about the label dependencies, since relevant labels will
tend to be described by the same topic(s). Second, an LLDA model is trained. During
prediction, the previously estimated 6, ¢’ parameters of the unsupervised LDA model
are used to calculate an asymmetrical o, ;. Specifically, the a,,” vector will be

ol =0, ¢+« 3)

3 Subset LLDA

When dealing with tasks with very large L (> 10*), LLDA and its extensions can not
scale in a satisfying manner since they are linearly dependent on L during prediction. To
alleviate this, we propose a simple extension to standard LLDA during prediction, by
constraining the label space in which the algorithm can search for solutions. Specifically,
our method proceeds in two stages:

— First, for each test instance, a set of candidate labels, denoted as £, ., is deter-
mined. A number of approaches can be followed to determine this candidate list,
for simplicity we retrieve the n-nearest instances from the training set, denoted as
M ..» and set the candidate list as the union of the retrieved instances tags.

- Second, we predict with LLDA, but constrain the possible labels to £,,, ..., Similarly
to Prior-LDA, we modify the prior on the instance-topics distributions to reflect the
frequencies of the labels among the n-most similar instances. For instance, if n = 10
and a given label /4 has appeared in three of the similar instances, while a label
I g has appeared in five of the similar instances, we set ), =1+ 0.3 - o, o), =
n+0.5-a.

Formally, our topic model makes the following assumptions: First, given an instance
m and given a set of already tagged instances M 7.q:,, m’s label set £,,, will be included
in the union of the n most similar instances from Mr,..;,,. Clearly, that assumption
holds always as n — My, but in any other case it will represent an approximation
and we expect that L,,, C L, ,.,. A second assumption relates to each label’s weight
during Gibbs sampling: we hypothesize that for a given instance m, its labels have
been generated by sampling from a multinomial distribution ¢/,,.This assumption is
very similar to the one employed in [10], when introducing Prior—LDA, except that we
constrain the set from which the instance’s labels are generated to L,, ,_,, instead of L.
Figure [T]illustrates our proposed model in graphical model notation.

From the above, the generative process for Subset LLDA will be:

— For each | € £, sample a distribution ¢; ~ Dirichlet(5) over V
— for each instance m
e Sample n instances from M4
o Set Loy, =L, withm; € M, andi € {1.n}
e Sample a multinomial distribution ¢/, ~ Dirichlet(5")
e Calculate o/ according to Equation 2]
e Sample a distribution 6,,, ~ Dirichlet(a) over £
o For each feature position ¢ € {1..N,, }

MRel
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Fig. 1: Subset LLDA in graphical model notation. Our model assumes that, given an instance
m, its labels have been generated by sampling from a multinomial distribution over m’s similar
instances.

x Sample a label z; ~Multinomial(6,,,)
* Sample a feature type v; ~Multinomial(¢;) with [ = z;.

Constraining the label set during prediction can also be useful for an additional reason.
In that phase, LLDA needs to search the entire label space to recommend labels for a
given test instance. Since this is a probabilistic method, the algorithm may converge to
local optima, especially as L is increasing. To concretize, let us consider a trained LLDA
model for which a specific feature v has a high probability ¢;,, for several labels. Also, let
us consider a test instance m that contains v, for which only one of the aforementioned
labels is semantically relevant. In that case, it is possible that these noisy labels, coupled
with LLDA’s probabilistic nature, will lead the algorithm to favor one of the irrelevant
labels at the expense of the correct label. This problem can of course be relieved by
averaging over many samples and Markov Chains (MC) [[L0J6]], but in most real cases
this is too expensive time-wise.

Finally, we note that to retrieve the most similar training instances we use the tf-idf
representation for each instance and employ the cosine similarity, setting n = 10.

3.1 Time complexity

The CGS algorithm for LDA proceeds as follows: for every feature token of every
instance in the corpus, it calculates probability distribution over all labels and then
samples a label for the token, out of this calculated probability. In this way, standard
LDA is linearly dependent on L. Formally, it will be

LLDA, introduces supervision during training, by constraining the possible labels that a
feature token can get on the instance’s label set L. Formally, during training LLDA’s
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Table 1: Statistics for the data sets used in the experiments.

Data set Drrain Drest L \4
Bibtex 4,880 2,515 159 1,836
Delicious 12,910 3,181 983 500
Mediamill 30,993 12,914 101 120
EUR-Lex 15,539 3,809 | 3,993 | 5,000
Wikil0O 14,146 6,616 | 30,938 (101,938
BioASQ 40,000 10,000 | 19,218 | 36,480
Delicious-200k| 196,606 100,095(205,443|782,585
Amazon-670k (490,449 153,025|670,091(135,909

complexity will be

Tripa < O(Mrrain - Vin - Lin). )

As explained, during testing LLDA is equivalent to LDA so its complexity will be given
by Equation[d] To alleviate this, with our approach we constrain Subset LLDA during
testing, to only consider labels from the n-most similar instances. The total complexity
of Subset LLDA, involves also finding the n-most similar instances which in our cases
will be O(MTEST . MTRAIN):

Tsubsetrrpa X O(Mrgst - Vi - v Ly + Mrest - MrrRAIN)- (6)

4 Empirical Evaluation

We here present the data sets, the setup and the results of the experiments that we carried
out. We compare Subset LLDA with Prior-LDA, Dep-LDA, Fast XML and PfastreXML.

In our experiments, we employed four small scale and four large scale data sets, their
statistics being illustrated in Table |1} The motivation behind using the four small scale
data sets is to be able to compare our algorithm with the other LLDA variants, as well as
to provide an empirical comparison against the other extreme classification methods, in
standard multi-label classification settings. All data sets apart from BioAS Cﬂ [L1] were
retrieved from the extreme classification repository, with the respective training/testing
splits.

Fast XML and PfastreXML were used with default parameters, with the relevant
software packages provided in the extreme classification repository. For the LLDA
models, we provide our Java implementatio We trained the same model for all
algorithms in order to ensure fairness of comparison, with oy; = %. For Dep-LDA, we
additionally need to train an LDA model to calculate the hyperparameter on 6 (ref. to
Equation [3). For its training we use 100 topics and 200 iterations, 50 burn-in iterations
and we set & = 0.1, 8 = 0.01. During prediction, we set n = 50, o = %, 8 = 0.01 for
all LLDA models. In both training and prediction and across all data sets, we used one

3 The exact data set used in the experiments is available upon request to the authors.
* https://www.dropbox.com/s/rypmlt18zk6jxdh/sllda.zip?dl=0
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Table 2: Micro-F and Macro-F results for the LLDA-based and the extreme classification methods.
A V indicates a statistically significant difference between Subset LLDA and the best performing
method, with a z-test and a significance level of 0.05. The - sign is used if the algorithm could not
deliver predictions after 48 hours.

(a) Micro-F
FastXML |Pfastre XML |PriorLDA |DepLDA [Subset LLDA
Bibtex 0.382 0.397 0.363 0.314 0.384
Delicious 0.347v 0.322 0.255 0.273 0.304
Mediamill 0.577 0.572 0.511 0.512 0.580
EUR-Lex 0.413 0.436 0.321 0.357 0.443v
BioASQ 0.382 0.370 - - 0.428v
Wikil0 0.317 0.33v - - 0.283
Delicious-200k| 0.162V 0.129 - - 0.135
Amazon 0.192 0.316v - - 0.243
Avg. Rank 2.125 2.000 1.875
(b) Macro-F
FastXML |PfastreXML |PriorLDA |DepLDA |Subset LLDA
Bibtex 0.273 0.288 0.257 0.204 0.292
Delicious 0.153 0.165v 0.100 0.090 0.136
Mediamill 0.070 0.101v 0.027 0.027 0.068
EUR-Lex 0.427 0.416 0.305 0.336 0.444
BioASQ 0.392 0.399 - - 0.451v
Wikil0 0.305v 0.285 - - 0.272
Delicious-200k| 0.105v 0.067 - - 0.078
Amazon 0.426 0.483 - - 0.486
Avg. Rank 2.125 2.000 1.875

Markov Chain with 200 iterations and 50 iterations burn-in, averaging across samples
to obtain the respective parameter estimates for each method. All algorithms output
rankings of relevant labels for each instance, so we used the rcut thresholding strategy
[[14] to compute the Micro-F and Macro-F scores.

4.1 Results

In Tables[2H4] we report the results of our experiments. For the LLDA methods, we report
the average over five runs.

First, let us consider the differences in prediction accuracy among the LLDA methods.
Subset LLDA steadily outperforms both Prior—LDA and Dep-LDA in all settings and
for all measures. It should be noted here, that Dep—LDA by design would benefit by
averaging over more samples and more than one MC more than the other methods, since
it employs the parameters learned from an unsupervised LDA model to calculate the
hyperparameters for 6, therefore it will be more prone than the other algorithms to get
stuck in local optima. In other words, the LDA model introduces an additional factor of
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Table 3: Precision@1 and Precision@5 results for the LLDA-based and the extreme classification
methods.

(a) Precision@1

FastXML|PfastreXML |PriorLDA |DepLDA [Subset LLDA
Bibtex 0.645v 0.565 0.551 0.501 0.579
Delicious 0.705v 0.546 0.488 0.526 0.525
Mediamill 0.873v 0.867 0.794 0.794 0.813
EUR-Lex 0.637 0.644 0.622 0.631 0.663v
BioASQ 0.176 0.189v - - 0.077
Wikil0 0.825v 0.757 - - 0.773
Delicious-200k| 0.432V 0.261 - - 0.163
Amazon 0.286 0.368v - - 0.350
Avg. Rank 1.625 2.000 2.375
(b) Precision@5
FastXML |PfastreXML |PriorLDA |DepLDA |Subset LLDA
Bibtex 0.286v 0.254 0.238 0.215 0.243
Delicious 0.596v 0.482 0.391 0.416 0.427
Mediamill 0.531 0.534 0.480 0.471 0.539
EUR-Lex 0.425 0.445 0.332 0.358 0.457v
BioASQ 0.170 0.169 - - 0.174
Wikil0 0.570 0.572 - - 0.560
Delicious-200k| 0.362v 0.262 - - 0.201
Amazon 0.195 0.320v - - 0.246
Avg. Rank 2.000 1.875 2.125

uncertainty, which could be alleviated with more samples and chains. We nevertheless
restrict our experiments to only one MC and relatively few samples (thirty) since our
main goal is to address large-scale tasks in which multiple MC averaging and averaging
over many samples is not feasible. One more interesting observation is that for tasks with
few labels (Bibtex, Mediamill), Dep—LDA performs equally or worse to Prior LDA
which may be explained by the fact that modeling dependencies does not necessarily
help improving performance in small scale tasks.

Comparing Subset LLDA with the extreme classification methods, we observe that
different algorithms fare well in different evaluation measures. By considering the
average rank per evaluation measure (last row of the tables), we observe that Subset
LLDA achieves the first place for two measures, Micro-F and Macro-F, PfastreXML for
precision@5 and FastXML for precision@ 1. FastXMI and PfastreXML are better in
predicting a few relevant labels per instance, while our algorithm is better in balancing
precision and recall (through the F-measure) both when treating all labels equally
(Macro-F) and when weighting them by their frequency (Micro-F).

Results vary greatly with respect to data sets too. For the small scale data sets, Subset
LLDA achieves the best result in 7 out of 16 cases (four data sets times four evaluation
measures), FastXML in 6 and PfastreXML in 3. For the large scale data sets, both
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Table 4: Training and prediction duration, in seconds, for the LLDA-based and the extreme
classification methods.

FastXML | PfastreXML | PriorLDA | DepLDA |Subset LLDA
Bibtex 3+1 3+1 29+73 32+64 29+22
Delicious 6+3 7+5 133+177 | 77+183 77+15
Mediamill 54+3 56+3 335+238 | 306+286 306+101
EUR-Lex 493+62 514+72  |941+422,492|900+22,761| 900+214
BioASQ 571+428 623+561 - - 1,380+553
WikilO 1,651+251 | 1,692+262 - - 1,131+192
Delicious-200k 20,444+5,760|20,578+5,891 - - 36,231+4,080
Amazon 14,931+984 |15,044+1,194 - - 38,510+221

FastXML and PfastreXML achieves the best result in 6 out of 16 cases, while Subset
LLDA in 4. These small differences among the methods, suggest that there exists no
one-size-fits-all algorithm for extreme learning tasks and each problem should be treated
separately.

In Table[d] we additionally report the training and testing duration for each of the
algorithms and data sets. The results show two clear tendencies, with Subset LLDA
being significantly faster than the two other LLDA variants, while being slower across
the majority of the data sets compared to FastXML and PfastreXML. We should note
though, that our implementation could be further optimized by using much faster LDA
implementations [3]] and that both the extreme classification methods as well as our
method can improve substantially by averaging over more trees or samples so a more
detailed analysis should be conducted to assess the trade-off between duration and
performance for each of the algorithms.

5 Conclusions and Future Work

In this work we have presented an extension of LLDA, to account for large-scale and
XMLC tasks. Our algorithm Subset LLDA, proceeds in two stages, by first determining
a set of relevant labels for a given test instance, and then constraining the CGS-LLDA
algorithm to search only this label subspace for a solution. Experiments on eight data sets,
with label sets sizes ranging from hundreds to hundreds of thousands, show a significant
improvement over the best performing LLDA-based algorithms and competitive results
with the state-of-the-art in extreme classification and suggest that Subset LLDA should
be considered as a competitive alternative when dealing with XMLC tasks.

References

1. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse Local Embeddings for Extreme Multi-
label Classification. In: Advances in neural information processing systems. pp. 730-738
(2015)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. J. Mach. Learn. Res. 3,
993-1022 (Mar 2003)



10

11.

12.

13.

15.

16.

Y. Papanikolaou and G. Tsoumakas

. Chen, J., Li, K., Zhu, J., Chen, W.: Warplda: a cache efficient o (1) algorithm for latent

dirichlet allocation. Proceedings of the VLDB Endowment 9(10), 744-755 (2016)

. Griffiths, T.L., Steyvers, M.: Finding Scientific Topics. Proceedings of the National Academy

of Sciences 101(Suppl. 1), 5228-5235 (April 2004)

. Jain, H., Prabhu, Y., Varma, M.: Extreme Multi-Label Loss Functions for Recommendation,

Tagging, Ranking & other Missing Label Applications. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 935-944.
ACM (2016)

. Papanikolaou, Y., Foulds, J.R., Rubin, T.N., Tsoumakas, G.: Dense Distributions from Sparse

Samples: Improved Gibbs Sampling Parameter Estimators for LDA. Journal of Machine
Learning Research 18(62), 1-58 (2017)

. Prabhu, Y., Varma, M.: Fastxml: A Fast, Accurate and Stable Tree-Classifier for Extreme

Multi-Label Learning. In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 263-272. ACM (2014)

. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: A Supervised Topic Model

for Credit Attribution in Multi-labeled Corpora. In: Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 1 - Volume 1. pp. 248-256.
EMNLP *09, Association for Computational Linguistics, Stroudsburg, PA, USA (2009)

. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification.

In: Proc. 20th European Conference on Machine Learning (ECML 2009). pp. 254-269 (2009)

. Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M.: Statistical Topic Models for Multi-label

Document Classification. Mach. Learn. 88(1-2), 157-208 (Jul 2012)

Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, 1., Zschunke, M., Alvers, M.R., Weis-
senborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos,
J., Baskiotis, N., Gallinari, P., Artiéres, T., Ngomo, A.C.N., Heino, N., Gaussier, E., Barrio-
Alvers, L., Schroeder, M., Androutsopoulos, L., Paliouras, G.: An overview of the BIOASQ
large-scale biomedical semantic indexing and question answering competition. BMC bioin-
formatics 16, 138 (2015)

Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of
Data Warehousing and Mining 3(3), 1-13 (2007)

Weston, J., Makadia, A., Yee, H.: Label Partitioning for Sublinear Ranking. In: Proceedings
of the 30th International Conference on Machine Learning (ICML-13). pp. 181-189 (2013)

. Yang, Y.: A Study of Thresholding Strategies for Text Categorization. In: SIGIR *01: Proceed-

ings of the 24th annual international ACM SIGIR conference on Research and development
in information retrieval. pp. 137-145. ACM, New York, NY, USA (2001)

Yu, H.E, Jain, P, Kar, P., Dhillon, I.: Large-Scale Multi-Label Learning with Missing Labels.
In: International Conference on Machine Learning. pp. 593-601 (2014)

Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering 99(PrePrints), 1 (2013)



	Subset Labeled LDA: A Topic Model for Extreme Multi-Label Classification

