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Abstract

Hierarchy Of Multi-label classifiERs (HOMER) is a multi-label learning algorithm that breaks the initial

learning task to several, easier sub-tasks by first constructing a hierarchy of labels from a given label set and

secondly employing a given base multi-label classifier (MLC) to the resulting sub-problems. The primary

goal is to effectively address class imbalance and scalability issues that often arise in real-world multi-label

classification problems. In this work, we present the general setup for a HOMER model and a simple extension

of the algorithm that is suited for MLCs that output rankings. Furthermore, we provide a detailed analysis

of the properties of the algorithm, both from an aspect of effectiveness and computational complexity. A

secondary contribution involves the presentation of a balanced variant of the k means algorithm, which serves

in the first step of the label hierarchy construction. We conduct extensive experiments on six real-world data

sets, studying empirically HOMER’s parameters and providing examples of instantiations of the algorithm

with different clustering approaches and MLCs, The empirical results demonstrate a significant improvement

over the given base MLC.

Keywords: Knowledge discovery, Machine learning, Supervised learning, Text mining

1. Introduction

In multi-label learning, training examples are associated with a vector of binary target variables, also

known as labels. The goal is to construct models that, given a new instance, predict the values of the target

variables (classification), order the target variables from the most to the least relevant one with the given

instance (ranking), do both classification and ranking, or even output a joined probability distribution for

all target variables.

In the past decade multi-label learning has attracted a great deal of scientific interest. One main reason

behind this is that a number of real-world applications can be formulated as multi-label learning problems;

functional genomics [1], recommending bid phrases to advertisers [2], image [3] and music [4] classification

are some example domains. The other main reason relates to the interesting challenges it poses, such as

∗Corresponding author
Email addresses: ypapanik@csd.auth.gr (Yannis Papanikolaou), greg@csd.auth.gr (Grigorios Tsoumakas),

katakis.i@unic.ac.cy (Ioannis Katakis)

Preprint submitted to Data Knowledge Engineering July 28, 2018



the identification and exploitation of dependencies among the target variables, the power-law distribution

that the frequency of labels exhibits in several real-world applications and the increased space and time

complexity involved in learning from multi-label data, especially when the number of labels is large.

This article presents a multi-label learning algorithm that we call HOMER1 (Hierarchy Of Multi-label

learnERs). HOMER is a divide-and-conquer algorithm, as it recursively partitions the vector of target

variables into smaller disjoint vectors forming a hierarchy of such vectors. We employ a novel approach to

perform this partitioning by clustering the labels using as a similarity measure the training examples for

which they co-occur (more specifically we represent each label as a binary vector of its occurrences in the

training set). This partitioning results in simpler learning tasks with fewer training examples (and features

in the case of documents) and less evident class imbalance.

HOMER was first presented in [5], a technical report that was accepted for presentation at the Mining

Multidimensional Data workshop of ECML PKDD 2008 in Berlin2. Since then, HOMER has been mentioned

in several scientific papers3. It has been employed in diverse ways, such as for the automatic classification of

edit categories in Wikipedia revisions[6], as a component of automated negotiation agents [7], for multi-label

classification of economic articles [8] and for semantic-based recommender systems [9].

HOMER is a multi-label learning algorithm that achieves state-of-the-art prediction accuracy. An exten-

sive experimental comparison involving 12 methods, 11 data sets and 16 evaluation measures concluded that

HOMER is among the two best performing methods overall [10]. Another empirical comparison involving

8 methods, 11 data sets and focusing on the empty prediction rate, found HOMER among the two best

performing methods too [11].

The contributions of this article that are inherited from the original technical report are:

• A novel multi-label classification algorithm that automatically constructs a hierarchy of sets of labels,

learns a local multi-label classification model at every node of the hierarchy, and applies these models

hierarchically, in a top-down manner, to deliver predictions for new instances (Section 4). HOMER

leads to state-of-the-art accuracy results and reduced time complexity during prediction compared to

the standard one-vs-rest (also known as binary relevance) approach.

• An extension of the k means algorithm, called balanced k means, which produces equally-sized partitions

(Section 3). Balanced k means is used recursively in the first step of HOMER in order to construct

the hierarchy of labelsets, leading to better results compared to non-balanced clustering approaches.

Besides serving as an archival publication for HOMER, this article contributes the following novel and

significant extensions to the original paper:

1Homer was an ancient Greek epic poet, best known as the author of Iliad and Odyssey (https://en.wikipedia.org/wiki/
Homer).

2The web page of the workshop is no longer available, but the papers that got accepted are listed in the workshop’s page
within the conference’s site (http://www.ecmlpkdd2008.org/workshop-papers-mmd).

3At the time of writing, Google Scholar reports 281 citations (https://scholar.google.gr/scholar?cluster=
16386130204802114854).
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• The addition of a parameter for controlling the expansion of the label hierarchy, which generalizes

the original description of HOMER, and allows it to perform better in domains with many rare labels

(Section 4).

• A direct extension of the algorithm, to account for algorithms that output rankings as results, or for

scenarios where the desired output is as well a ranking (Section 4.2).

• A detailed complexity analysis for the algorithm (Section 4.3).

• A short discussion on what are the aspects that should be taken into account to construct an effective

HOMER model and an analysis of how HOMER performs with respect to rare and frequent labels

(Section 4.4).

• Extensive empirical comparisons on six real world corpora, to analyze and study the algorithm’s param-

eters behavior, propose different instantiations of HOMER’s components and assess the improvement

over the given base MLC. Additionally, we compare HOMER with a state-of-the-art extreme classifi-

cation algorithm, Fast-XML (Section 5).

• We provide a review of the current state-of-the-art in multi-label classification, and of approaches

related to HOMER and resolve a number of misconceptions around HOMER in the literature (Section

2).

2. Related Work

In this section, we first focus on the latest advancements in the broader field of multi-label learning4 and

subsequently, present the specific papers that are directly connected to our algorithm.

2.1. Multi-label Learning

Recent advances in the field of multi-label learning have primarily concentrated in two different areas,

extreme learning and deep learning.

2.1.1. Extreme Multi-label Learning

Extreme multi-label learning aims to develop methods able to scale up to problems with more than 104

labels and up to millions of labels. Algorithms in this area are mainly divided in tree-based and embedding-

based methods.

In the first case, methods construct a hierarchy out of the training set, either over the labels or the features,

and solve the training and prediction procedures locally at each node. Specifically, we start by having a root

node containing the entire label (or feature) set and then partition each node’s label (or feature) set to its

respective child, according to some optimization criterion, or more broadly some partitioning formulation.

4For a comprehensive review of the older, established, multi-label methods we refer the interested reader to [12].

3



The nodes are recursively partitioned until each leaf contains only a small number of labels and training

instances. During prediction, a testing instance is passed down the tree until it reaches one or more leaf

nodes. In this way, a given multi-label classifier will be trained and predict only on a small subset of the

label set leading to sub-linear or even logarithmic (if the hierarchy is balanced) complexities.

The algorithm that we propose in this work, HOMER, can be regarded as the earliest paradigm in

this category, although not initially presented in the context of extreme learning. Following HOMER,

Label Partitioning by Sublinear Ranking (LPSR) [13] proceeded by learning an input partition and a label

assignment to each partition of the space, optimizing precision at k. The first method to tackle successfully

problems with millions of labels has been FastXML [14], which learns an ensemble of trees. Nodes are split by

learning a separating hyperplane which partitions training points in two sub-categories. FastXML optimizes

the normalized Discounted Cumulative Gain (nDCG) such that each training point’s relevant labels are

ranked as highly as possible in its partition. Finally, PfastreXML [15] is an extension of FastXML that

replaces the nDCG loss function with its propensity scored variant.

Embedding-based methods construct an embedding of the output space in a lower dimension. Algorithms

of this category render training and prediction tractable by assuming that the training label matrix is low-

rank, reducing the label set size by projecting the high dimensional label vectors onto a low dimensional

linear subspace. Characteristic methods include LEML [16] which formulates the problem as that of learning

a low-rank linear model in the empirical risk minimization (ERM) framework and SLEEC [17], that proceeds

by learning a small ensemble of local distance preserving embeddings, focusing on improving prediction on

rare labels.

In Section 5.9, we compare HOMER to one of the most competitive extreme classification methods,

FastXML. The results show a clear advantage of our method in terms of performance, while FastXML is

definitely faster for all experimental setups.

2.1.2. Neural Networks and Deep Learning

The major advances in neural networks have also affected the area of multi-label learning. The authors

of [18] have adapted already existing Convolutional Neural Networks (CNN) architectures for binary image

classification by consdidering different loss functions (softmax, pairwise ranking and weighted approximate

ranking) to deal with multi-label data. Hypotheses-CNN-Pooling [19] is a deep learning architecture that

first generates multiple object segment hypotheses and subsequently combines them in a shared CNN via

max-pooling to produce multi-label predictions. In [20], an architecture with CNN and Recurrent Neural

Networks (RNN) has been proposed, with the goal to exploit the label dependencies in an image.

The above methods have primarily focused on image data. In multi-label text, the authors of [21]

have employed shallow neural network architectures coupled with the latest developed techniques such as

rectified linear units and dropout to perform large scale multi-label classification. Another idea employed in

the literature [22, 23], is to use unsupervised neural networks (Restrictive Boltzmann Machines, paragraph

vectors) to come up with higher semantic representations of the documents and then employ already existing

4



MLCs on top of these representations. More recently, the authors of [24] have proposed a simple neural

network architecture, Fasttext to perform fast text classification. In this method, the features are first

embedded through a skip-gram model [25] into a low dimensional space, then a hidden layer is used to create

a text representation and eventually a linear classifier is employed in the output level, to perform predictions.

Although originally focusing on binary text classification, the algorithm can be easily extended to account

for multi-label data as well5.

2.2. Previous Work Related to HOMER

The key idea in HOMER is the automatic construction of a hierarchy on top of the labels of a multi-label

learning task. While this was novel at that time within the multi-label learning literature, the same idea had

already been studied for the single-target multi-class classification task [26, 27]. In both of these approaches,

the similarity between classes is based on their average feature vector (centroid). In HOMER, in contrast,

each label is represented as a binary vector whose dimensions correspond to the training examples and whose

values indicates whether the corresponding training example is annotated with the label. Calculating label

similarity based on this vector space would not make sense in the multi-class case, but it does in the multi-

label case, where labels are overlapping, and can co-occur at the same training example. In [26], similarity

was measured on a set of discriminative features selected based on the Fisher index, while in [27], similarity

was measured in a lower-dimensional feature space obtained through linear discriminant projection. As far

as the hierarchy construction process is concerned, in [26], this was done top-down using spherical 2-means,

initializing the algorithm with the two farthest classes. In [27], it was done bottom-up using agglomerative

hierarchical clustering. In HOMER, in contrast, the use of balanced k means is another key difference,

which can lead to balanced trees (not necessarily binary) that offer guarantees with respect to prediction

complexity.

After building the hierarchy, HOMER follows a standard top-down hierarchical classification approach

with local classifiers at each node, often referred to as pachinko machine [28]. A number of papers in

the rich hierarchical multi-label classification literature follow the same paradigm: In [29] a kernel-based

algorithm is presented, training SVM classifiers locally at each node. The authors of [30], have developed

decion tree-based methods for hierarchical multi-label classification with one of their proposed methods,

Clus-HSC, learning a separate classifier for each hierarchy edge. HMC-LMLP [31] is an algorithm training a

multilayer perceptron (MLP) locally at each level of the classification hierarchy, with predictions from each

MLP being propagated to the MLP of the next level. Finally, [32] have presented a method which employs a

binary relevance approach during training, combining the results of the individual classifiers and correcting

inconsistencies in predictions though a Bayesian model. This method as well employs the pachinko machine

principle during testing.

5https://github.com/facebookresearch/fastText/issues/72
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L set of data points to be clustered and also set of labels.
l a data point for the k means description, and also a label.
Wl set of data vectors.
k number of partitions or clusters.
Nl dimensionality of the data points.
V number of features of the multi-label task.

DTrain, DTest sets of training and test instances.
d an instance.
fd set of non-zero features of d.
Ld set of labels for d.
n a node of the hierarchy
Dn set of training instances at n.
Ln set of labels that are relevant to n.
Mn set of meta-labels for n.
MLC a multi-label learning classifier.
C a clustering algorithm.

Table 1: Notation used throughout the papert.

HOMER addresses a multi-label task by breaking down the entire label set recursively into several disjoint

smaller sets containing similar labels. A similar pattern, but randomly and non-recursively, is followed in

the disjoint version of Random k Labelsets (RAkELd) [33]. RAkELd was extended in [34], by introducing

an algorithm that divides the label set into several mutually exclusive subsets by taking into account the

dependencies among the labels, instead of randomly breaking the set of labels.

HOMER is a meta-algorithm, in the sense that it employs a base MLC on each of the sub tasks it creates

out of the initial task. However, this perspective is sometimes overlooked in the literature [35, 34, 36], where

HOMER is perceived just as its default instantiation using binary relevance as the multi-label learner with

C4.5 trees as binary classifiers. Therefore, HOMER could be used in conjunction with any state-of-the-art

multi-label learning algorithm, such as the ones discussed in Section 2.1.2. Another misconception in the

literature, is that it is erroneously considered as a label-powerset method [37, 22].

A variation of HOMER, where the calibrated label ranking algorithm was used as MLC was proposed in

[38]. Also, three different algorithms (balanced k means, predictive clustering trees (PCTs) and hierarchical

agglomerative clustering) for constructing the label hierarchy of HOMER were studied in [39] using the

random forest of PCTs as the MLC.

3. Balanced k Means

Before proceeding with the presentation of HOMER, we describe an extension of the k means clustering

algorithm, called balanced k means, which sets an explicit constraint on the size of each cluster. Let us

denote as L the set of data points to be clustered and l a given data point with Wl the set of data vectors,

k being the number of partitions and it the number of iterations. Nl will denote the dimensionality of the

data points. Table 1 summarizes the notation used throughout the manuscript. We note that we use here a

slightly different notation than what is usually employed in the literature, since we apply the algorithm on
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labels (hence, the l subscript). Algorithm 1 shows the respective pseudo-code.

ALGORITHM 1: Balanced k means Algorithm

Input: number of clusters k, L, data vectors Wl, iterations it.
Output: k balanced clusters of |L| data points.
for i← 1 to k do

// initialize clusters and cluster centers
Ci ← ∅ ;
ci ← random member of L ;

end
while it > 0 do

foreach l ∈ L do
for i← 1 to k do

dli ← distance(l, ci,Wi)
end
finished ← false;
ν ← l ;
while not finished do

j ← argmin
i

dνi;

Insert sort (ν, dν) to sorted list Cj ;
if |Cj |> d|L|/ke then

ν ← remove last element of Cj ;
dνj ←∞ ;

end
else

finished ← true;
end

end

end
recalculate centers;
it← it− 1

end
return C1, ..., Ck;

The key element in the algorithm is that for each cluster i we maintain a list of data points, Ci, sorted

in ascending order of distance to the cluster centroid ci. When the insertion of a point into the appropriate

position of the sorted list of a cluster, causes its size to exceed the maximum allowed number of points

(approximately equal to the number of items divided by the number of clusters), the last (furthest) element

in the list of this cluster is inserted to the list of the next most proximate cluster. This may lead to a cascade

of k − 1 additional insertions in the worst case. As opposed to k means, we limit the number of iterations

using a user-specified parameter, it, as no investigation of convergence was attempted.

3.1. Computational Complexity

At each iteration of the balanced k means algorithm, we loop over all points of L, calculate their distance

to the k cluster centers with an O(Nl)
6 complexity and insert them into a sorted list of max size |L| /k,

6We assume here that k is relatively small w.r.t. Nl.
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which has complexity O(|L|). This may result into a cascade of k − 1 additional insertions into sorted lists

in the worst case, but the complexity remains O(|L|). So the total cost of the balanced k means algorithm is

O(|L|Nl + |L|2). As typically |L| � Nl, the algorithm can efficiently partition labels into balanced clusters

based on very large data sets.

In the literature, there have been a some similar approaches to construct a balanced hierarchy with a

k means based algorithm. The frequency-sensitive k means algorithm [40] is a fast algorithm for balanced

clustering (complexity of O(|L|)). It extends k means with a mechanism that penalizes the distance to

clusters proportionally to their current size, leading to fairly balance clusters in practice. However, it does

not guarantee that every cluster will have at least a pre-specified number of elements. Another approach

to balanced clustering extends k means by considering the cluster assignment process at each iteration as

a minimum cost-flow problem [41]. Such an approach has a complexity of O(|L|3), which is worse than

the proposed algorithm. Finally, according to [42], the balanced clustering problem can also be solved

with efficient min-cut graph partitioning algorithms with the addition of soft balancing constraints. Such

approaches have a complexity of (O(|L|2), similarly to the proposed algorithm.

4. Hierarchy of Multi-label Classifiers

In this section we describe HOMER, based on the initially presented algorithm in [5], along with a number

of extensions to the previous work.

Before proceeding, we present the notation used throughout the paper. Let us define as L the labels

of the multi-label task that we wish to address and l a label. Similarly, DTrain and DTest will express

the set of training and test instances respectively and d an instance. For simplicity, when referring to D,

unless otherwise noted, we will mean DTrain. The set of non-zero features of d will be defined as fd and

the instance’s labels as Ld. As HOMER proceeds by constructing a hierarchy out of the data set, we will

represent the set of training instances at each node as Dn and the labels that are relevant to the node as

Ln. Also, each node will have a set of meta-labels, Mn (their role will be explained further on). Finally, we

will refer to a multi-label learning classifier as MLC and a clustering algorithm as C.

4.1. Description

A HOMER model is essentially a generic method to bundle any given multi-label classifier aiming to

improve performance and computational complexity. The main idea is the transformation of a multi-label

classification task with a large set of labels L into a tree-shaped hierarchy of simpler multi-label classification

tasks, each one dealing with a small number of labels. The algorithm consists of two parts, first the creation

of a label hierarchy out of the label set and second the training and prediction locally at each node of the

hierarchy, with a given MLC. Below, we describe these steps in detail.
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Japanese
Accessories

Breakfast Brunch
Sushi Bars
Chinese

Corkage
Alcohol beer and wine

BYOB Corkage no
BYOB

BYOB Corkage yes free

Seafood
Seafood Markets
Mediterranean

Tapas Small Plates
Vegetarian

Take-out
Good For Groups

Attire˙casual
Delivery

Outdoor Seating

Pet Services
Hair Salons

Pet Boarding/Pet Sitting
Pet Groomers

Pets

Hotels
Hotels Travel

Arts Entertainment
Drive-Thru-Food

Event Planning Services

Home Garden
Real Estate
Apartments

Grocery

Home Services

Hospitals
Doctors

First Aid Classes
Dermatologists
Orthodontists

Car Rental
Gas Service Stations

Car Dealers
Tires

Auto Glass Services

Figure 1: An example of a label hierarchy constructed with balanced k-means for the Yelp data set. For legibility purposes, we
show only a subset of the entire hierarchy that contains in total 814 labels. Labels whose semantics deviate from the semantics
of their cluster are underlined.

4.1.1. Label hierarchy

To construct a label hierarchy we first need to determine a vector representation for each label. A simple

choice, is to represent each label l as a binary vector Vl of |DTrain| dimensions, with

Vl(d) =

1, if l ∈ Ld

0, otherwise

(1)

The motivation is that labels that co-occur in instances will be more similar and thus more likely to belong

to the same cluster. Upon selection of a proper distance function for the label vectors, we employ a clustering

algorithm C and perform an iterative clustering of labels, until each node has only a few labels (the initial

HOMER algorithm in [5] partitions L until each leaf node has only one label). Specifically, the procedure is

as follows; starting from the root node of the hierarchy, and using the clustering algorithm, we partition the

initial label set into a number of children-clusters. Each of the resulting clusters defines a new node, which

is in turn partitioned into its children - clusters. A node’s labels are not further partitioned if |Ln| ≤ nmax,

where nmax is a user-defined threshold that specifies the maximum number of labels in the leaf nodes of

the hierarchy. The initially presented HOMER algorithm employed only k means and balanced k means as

clustering algorithms, from the above description however, it becomes clear that it is possible to employ any

given clustering algorithm for this task. In Figure 1, we depict an example of such a constructed hierarchy

for the Yelp data set (see Section 5.2 for details) setting k = 3, nmax = 5.

Figure 2: Training for a simple HOMER model. At each node we depict in parentheses, the training set, the label set on which
the MLC is trained and the respective Ln
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4.1.2. Training

For each node we train a local MLC with |Dn| instances. Dn comprises all instances from D annotated

with at least one of the labels of Ln. The local classifier is trained on Mn which will be either identical to

Ln (if the node is a leaf of the hierarchy) or a set of meta-labels, with each meta-label µc corresponding to

one of the children nodes. Formally, we denote Mn = {µc | c ∈ children(n)} with µc having the following

semantics: a training example can be considered annotated with µc, if it is annotated with at least one of

the labels of Lc. We would like to further clarify the difference between Ln and Mn; the first set, is the set

of the labels that the clustering algorithm assigned to the given node n during the clustering process. The

latter set, is the label set on which the MLC is trained. Figure 2 shows an example of a HOMER hierarchy,

with the training set, Mn and Ln at each node. From the above description, it is easy to see that any given

MLC can be used for training each node.

4.1.3. Prediction

During prediction on new, unannotated data, each new instance d is traversing the tree as follows:

starting from the root node, the local MLC assigns to each instance zero, one or more meta-labels. Then,

by following a recursive process x is forwarded to those nodes that correspond to the assigned meta-labels.

In other words, an instance d is forwarded to a child node c only if µc is among the predictions of the

parent MLC. Eventually, d reaches the leaves of the hierarchy. at which point the algorithm combines the

predictions of the terminal nodes. Figure 3(a) illustrates the aforementioned prediction process for a simple

HOMER model.

To summarize the description of HOMER, we provide the relevant pseudocode in Algorithm 2.

(a) HOMER.
(b) HOMER Ranking.

Figure 3: Prediction process for (a) the classic HOMER algorithm and (b) the relevant extension to address ranking outputs.

Specifically for (b) a pruning scheme has been followed, eliminating paths with a probability p ≤ parentProbability
k

.

4.2. Extension for ranking MLCs

The original HOMER algorithm requires that the local MLC outputs bipartitions and proceeds by

combining the terminal nodes predictions into the overall predictions for a given new instance. Nevertheless,

many multi-label algorithms produce a ranking of labels for a new instance. Formally, during prediction on

new instances an MLC assigns to each instance an |L|-dimensional binary vector, the predictions. There

exist though multi-label algorithms that assign an |L|-dimensional real-valued vector instead, in which case
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ALGORITHM 2: HOMER
Input: DTrain, L, DTest, C, MLC, nmax
/* Clustering */

RecursiveClustering(L);

/* Training */

for each node n ∈ hierarchy do
Dn = {d | d ∈ D,∃l | l ∈ Ln ∧ l ∈ Ld};
if n is a leaf node then

Mn = Ln;
end
else

Mn ={µc | c is a child of n};
end
train MLCn on training set Dn, label set Mn;

end

/* Prediction */

for each d ∈ DTest do
RecursivePrediction(ROOT, d) ;
/* ROOT is the root node of the hierarchy. */

Predictionsd = ∪predictionsLEAF -NODES ;

end

/* Recursive Label clustering. */

Procedure RecursiveClustering(Labels Ln)
Cluster(Ln) into k children nodes with C;
/* k does not need to be the same along iterations and is dependent of the C in

use. */

for each child node n′ do
if |Ln′ | > nmax then

RecursiveClustering (Ln);
end

end
return;

/* Recursively predict d, on the label hierarchy. */

Procedure RecursivePrediction(Node n, instance d)
predict with MLCn;
if n 6= leaf-node then

for each µc ∈Mn do
if µc is assigned to d then

RecursivePrediction(c, d);
end

end

end
return;

the predictions may represent a probability distribution over labels or, more broadly, a ranking of the most

to the least relevant labels for the given instance. Examples of such algorithms include shallow or deep

neural network architectures with a softmax output layer, or Labeled LDA (LLDA), a multi-label learning

extension of the LDA algorithm. In that case, a thresholding technique is employed in order to choose which

11



Clustering Algorithm Complexity

Balanced k means O(|L| |D|+ |L|2)
Fast OPTICS O(|D| |L| log2 |L|)

SLINK O(|L|2)

Table 2: Complexities for the Employed Clustering Algorithms.

of the labels are relevant to the instance.

Furthermore, there exist cases where one needs to assign to a new instance a ranking instead of a

bipartitions set. This problem is called label ranking and it consists of assigning to each instance a ranking

of labels from the most to the least relevant. Recommendation tasks such as suggesting relevant videos to

YouTube users [13] or proposing keywords to advertisers [2] can be formulated as label ranking tasks.

HOMER can be extended so as to account for the above cases with the following modification; during

prediction, each node’s MLC, instead of predicting one or more meta-labels for a given instance, assigns

a score (or probability) to each of them, which is the ranking score (or probability) of the base MLC.

Subsequently, the children nodes will propagate these scores, by multiplying their own predictions with the

score they have been assigned. Figure 3 illustrates the process for both classic HOMER and the proposed

extension. In order to avoid a full expansion of the tree, one can prune away a given node path, by applying

some heuristics. In the experiments for instance, we employ this approach to train HOMER-LLDA models

and prune away nodes having a probability p ≤ parentProbability
k .

4.3. Computational Complexity

From the above description, HOMER’s training complexity will be the combination of the clustering

algorithm’s complexity and the training cost of the hierarchy nodes. Assuming f is a function denoting

computational complexity, we have:

fH = fCLUST (|L| , |D|) + fHTrain(|L| , |D|) (2)

The complexity of the balanced clustering process at each node n depends on the actual algorithm being

used and can range from O(|Ln|) to O(|Ln|3) (see Section 3.1). Ln is equal to L at the root, but subsequently

decreases exponentially with the tree’s depth. Therefore, the overall complexity of HOMER with respect

to this algorithm is O(f(|L|). In other words HOMER retains the complexity of the balanced clustering

algorithm. Consider for example that f(|Ln|) = |Ln|2. Then at the root we have a cost of |L|2 while at

the second level we have k additional costs of (|L|/k)2, i.e. an additional cost of |L|2/k. At the next level

we have k2 additional costs of
(
|L|/k2

)2
, i.e. an additional cost of |L|2/k2. This is a sum of a geometric

series leading to a total cost of 2|L|2 when the depth of the tree approaches infinity. In the experiments,

we employ three different clustering algorithms, balanced k means, FastOPTICS and SLINK. Table 2 shows

the relevant complexities for these three algorithms.

Concerning the second part of Equation 2, we will simplify our analysis by assuming that we employ a

balanced clustering algorithm, with each node being partitioned to k children. Let us denote the hierarchy
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depth with ν. We further assume that kν = |L|
nmax and the complexity of the multi-label classifier that we

employ is linear w.r.t |D|.

In this case, the hierarchy will have
|L|

nmax−1
k−1 nodes (the sum of a geometric sequence). As described in

the previous section, each of the terminal nodes of the hierarchy will have at most nmax labels to train

and predict, whereas any non-terminal node will have k meta-labels respectively (the number of its children

nodes). Therefore, denoting as |Dnon−leaf | the average number of documents per non-leaf node and |Dleaf |

the average number of documents per leaf node, we have,

fHTrain =
kν−1 − 1

k − 1
× f(k, |Dnon−leaf |) + kν−1 × f(nmax, |Dleaf |) (3)

or

fHTrain =

|L|
nmax×k − 1

k − 1
× f(k)× |Dnon−leaf |+

|L|
nmax× k

× f(nmax)× |Dleaf |.7 (4)

This is equivalent to

fHTrain = (|L| 1

k(k − 1)× nmax
− 1

k − 1
)× f(k)× |Dnon−leaf |+

|L|
nmax× k

× f(nmax)× |Dleaf | (5)

Therefore, the training complexity of a HOMER model with balanced hierarchy will be

fHTrain ∈ O(|L| (|Dnon−leaf |+ |Dleaf |)) (6)

From the above we observe that HOMER’s training complexity is linear with respect to |L| regardless of

the baseline classifier’s complexity (here we have assumed that k � |L| and nmax� |L|, a valid assumption

for most real-world applications). With respect to |D|, HOMER also brings an improvement compared to

the baseline algorithm’s complexity. This improvement is difficult to be quantified though, as each node’s

training corpus is the union of it’s labels occurrences in D and thus it depends on a variety of factors,

including the label frequencies, the overlap of labels in training instances and, most importantly, the quality

of the label clustering.

Assuming again a balanced hierarchy, during prediction the complexity of the algorithm depends on the

number of different paths that each new instance will take in the label hierarchy (for instance in Figure 3(a)

the instance follows two different paths from a total of nine possible ones). Assuming that the MLC has a

prediction complexity of O(f(|L|)), then, in the ideal case where only one such path is followed, HOMER’s

prediction complexity will be

fHPrediction = logk(|L|)× f(k) + f(nmax)

or

fHPrediction ∈ O(logk(|L|)) (7)

7We have used the assumption that fMLC is linearly dependent on D to average over Dn.
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In the worst case, if all paths would be followed we would have

fHPrediction =

|L|
nmax×k − 1

k − 1
× f(k) +

|L|
nmax× k

× f(nmax)

therefore

fHPrediction ∈ O(|L|) (8)

4.4. Discussion

As explained in the introductory section of this paper, the motivation behind HOMER is to tackle a

problem that would be difficult to solve globally, by breaking it to several local sub-problems which are

expected to be more easily and effectively addressed. In this section, we focus on the factors that play an

important role in building an effective HOMER model.

The most important part of the algorithm is the construction of a good label hierarchy. By ’good’, we

imply that the clusters should have as much as possible similar labels within them. A good hierarchy can

engender the following benefits. First, similar labels will be expected to co-occur frequently. As a result, a

cluster containing labels that are related, will tend to have a smaller training corpus than one containing

dissimilar ones. As explained in the previous section, this leads in a shorter training time. A second benefit

involves prediction; if the clusters of the hierarchy contain very similar labels, then, during prediction a new

instance will follow only few (or ideally one) paths in the label hierarchy and therefore achieve a logarithmic

complexity. A third benefit involves performance; a hierarchy with similar clusters will cause the MLC at

each node to be more effective in predicting correctly the meta-labels for an unannotated instance.

Another substantial aspect in HOMER’s configuration relates to the nmax parameter. The initially

presented HOMER model was expanding totally the label hierarchy tree, with terminal nodes having only

a single label. In real world applications though, most labels tend to have very few positive examples and

therefore very low frequencies. Full expansion of the tree in this case, would lead to very small training

sets for each label and therefore poor performance. The model that we propose in this work, is using the

nmax parameter to address the above issues and stop the hierarchy expansion. As nmax approaches |L|, the

hierarchy will be shallower and the gain in performance smaller. On the other hand, as nmax approaches to

1 the training sets of the nodes will be smaller and performance can even be worse than the baseline MLC.

As a rule of thumb, we propose, depending on |L| size, |nmax| values in the order of 10 to 102.

In order to better understand the role of nmax, and generally the differences among hierarchies with

many or few nodes, let us inspect more closely how HOMER proceeds; as mentioned earlier, after creating

a hierarchy of the label space, the algorithm trains each node with a subset of the training instances. More

specifically, at each node the training set consists of the union of positive examples of each label. Hence, as

we proceed to the nodes further down the hierarchy, we expect that this kind of sub-sampling will lead to

learning problems that will have fewer and fewer negative examples for each label of the node (by definition,

the number of positive examples will remain steady for each label). The same trend will be observed among

HOMER models, as we increase the total number of nodes.
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This is no random sub-sampling though; through the iterative clustering process (during the construction

of the label hierarchy) we have put similar labels in the same cluster. Therefore, for each label, the negative

examples will consist of the union of positive examples of the other similar labels, excluding of course the

instances for which the labels co-occur. Through this process, we expect that the negative examples will

provide a greater discriminative power to the MLC, in learning more accurately the task by distinguishing

more effectively between similar labels.

This sub-sampling process will be expected to have a different effect on rare and frequent labels. Specif-

ically, if we increase the total number of nodes in the hierarchy, rare labels will most probably benefit from

reducing the imbalance between positive and negative examples. On the other hand, for frequent labels we

expect at some point that there will be an ’inverse’ imbalance with many positive examples and too few

negative ones, in which case performance will likely drop.

In Section 5 we study empirically how the sub-sampling process influences performance of frequent and

rare labels, validating our observations and remarks.

5. Experiments

We performed six sets of experiments. The first experiment (Section 5.4) studies how frequent and rare

labels are influenced by the total number of nodes in a HOMER model. In the second and third series of

experiments (Sections 5.5, 5.6), we investigated the role of parameters k (number of cluster-children nodes)

and nmax (maximum number of labels in every leaf node) with respect to performance. In the above cases,

we employed balanced k means as the clustering algorithm and Binary Relevance with Linear SVMs as the

baseline method.

In the fourth series of experiments (Section 5.7) we employed three different clustering algorithms using

two different multi-label algorithms as base classifiers, Binary Relevance with Linear SVMs and Labeled

LDA. Subsequently, in the fifth series of experiments (Section 5.9), we employed HOMER-BR on two large-

scale corpora and compared the algorithm against the respective baseline (BR-SVM). Finally (Section 5.9),

in the context of the last two series of experiments, we also compare HOMER to FastXML, a state-of-the-art

method in extreme multi-label classification.

The code of the implementation and experiments is available in GitHub8.

5.1. Implementations and parameter setup

We used the ELKI library [43] for the clustering algorithms as well as for the Jaccard distance measure.

The LibLinear package was employed for the Linear SVMs [44] in the Binary Relevance approach, keeping

default parameters (C = 1, e = 0.01 and L1R-L2LOSS-SVC as a solver). Labeled LDA was implemented

with the Prior-LDA variation [45]. For the latter, we used the Collapsed Gibbs Sampling method, with only

one Markov Chain for simplicity and 100 iterations during training and prediction (with 50 iterations of

8https://github.com/ypapanik/HOMER
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burn-in period and a sampling interval of 5 iterations). Parameter β was set to 0.1 while α was set to 50.0
|L|

during training and 50.0 ∗ frequency(l)
sumOfFrequencies + 30.0

|L| during prediction (following the Prior-LDA approach).

Specifically for Labeled LDA, as the Collapsed Gibbs Sampler follows a stochastic process, we repeated each

experiment five times and we report the average performance. Also, as Labeled LDA produces a ranking of

labels for each instance, we applied the Metalabeler approach [46] as a thresholding technique, in order to

obtain the necessary bipartitions. The same model, a linear regression model, was used for both LLDA and

HOMER-LLDA in the experiments.

Finally, all experiments were run on a machine with four 10-core Intel Xeon processors at 2.27GHz each

and on 1Tb of RAM memory.

5.2. Data sets

For the first experiment, we used a small subset of the BioASQ 2015 data set [47]. The BioASQ

challenge deals with the semantic annotation of scientific articles from the bio-medical domain. For each

article, the abstract, the title, the journal and the year of publication are given, along with a list of MeSH

tags, provided by the National Library of Medicine. For this experiment, we used the last 12,000 documents

of the corpus, keeping the first 10,000 for training and the rest for testing. Stop-words and features with less

than 5 occurrences were filtered out.

For the next three series of experiments, we employed Bibtex [48], Bookmarks [48], EUR-Lex [49]

and Y elp. The first three data sets have been extensively used in a number of papers, therefore we will

not further describe them. For the Y elp data set, we retrieved the data available from the Yelp data set

Challenge website9 and formulated a multi-label learning problem where the goal is to predict the attributes

for each business by using text from the relevant reviews. More specifically, we obtained 1,569,265 reviews

for a total of 61,185 businesses and after filtering out businesses with less than two reviews, we concatenated

reviews for each of the remaining businesses resulting in a corpus of 56,797 instances. The label set of the

problem consists of the set of attributes (only those with one value, Boolean, numerical or text) and the

categories of each business (e.g. an instance’s label set could consist of the following labels: ”By Appointment

Only”,”Price Range 2”,”Nail Salons”,”Accepts Credit Cards”,”Beauty & Spas”). Stop-words and words with

less than 10 occurrences in the corpus were removed, yielding a set of 70,180 features in total.

For the fifth set of experiments, we used two large-scale data sets, BioASQ and DMOZ. For BioASQ we

used a subset of the entire corpus (the last 250,000 documents) following the same preprocessing procedure as

for the first experiment. DMOZ is a data set employed in the Large Scale Hierarchical Text Classification

challenge [50]10. We have used the 2011 version, which is the only multi-label data set, and we did not

perform any further processing, keeping 80% of the data for training and the rest for testing. Both of the

above data sets represent large scale tasks, being highly imbalanced and with many rare labels. Table 3

shows the relevant statistics for all of the aforementioned data sets.

9http://www.yelp.com/dataset_challenge
10http://lshtc.iit.demokritos.gr/
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Documents Labels

Data set Training Test Average
Length

|L| Cardinality
∣∣Ld∣∣ V

Bibtex 4,880 2,515 68.46 159 2.38 73.05 1,479
Bookmarks 70,000 17,855 125.49 208 2.03 682.90 2,100
EUR-Lex 15,314 4,000 1274.19 3,826 5.29 21.17 26,575

Yelp 45,000 11,797 3531.23 814 9.76 539.75 70,180
BioASQ(1st exp) 10,000 2,000 211.52 13,283 13.12 107.89 19,145

BioASQ 200,000 50,000 221.68 24,094 13.53 112.36 92,293
DMOZ 322,465 72,288 358.34 27,689 1.03 11.97 108,230

Table 3: Data Sets Statistics. ’Label cardinality’ stands for the average number of labels per document and ’label frequency’ is
the average label frequency. All figures concerning labels and word types are given for the respective training sets.

5.3. Evaluation measures

We employ two widely-used evaluation measures to assess performance: the micro-averaged and macro-

averaged F1 measures (Micro-F and Macro-F, for short) [51]. These measures are a weighted function of

precision and recall, and emphasize the need for a model to perform well in terms of both of these underlying

measures. The Macro-F score is the average of the F1-scores that are achieved across all labels, and the

Micro-F score is the average F1 score weighted by each label’s frequency. Equations 9 and 10 provide the

definitions of the two measures in terms of the true positives (tpl), false positives (fpl) and false negatives

(fnl) of each label l.

Micro− F =

2×
|L|∑
l=1

tpl

2×
|L|∑
l=1

tpl +
|L|∑
l=1

fpl +
|L|∑
l=1

fnl

(9)

Macro− F =
1

|L|

|L|∑
l=1

2× tpl
2× tpl + fpl + fnl

(10)

5.4. Effect on frequent and rare labels when increasing total number of nodes

In this experiment, we want to study how well frequent and rare labels are learned from a HOMER

model when we increase the total number of nodes in the hierarchy. We used a subset of the BioASQ data

set, as this data set has very few frequent labels and a great number of extremely rare ones and is therefore

particularly suited for this empirical study. For the purpose of this experiment we considered as frequent, the

labels having a frequency greater than 700 and as rare the labels with a frequency lower than 70. Figure 4

depicts the performance for rare and frequent labels for seven different HOMER models in terms of Micro-F

and Macro-F. The configuration for this models was as follows: BR SVMs were employed as the baseline

MLC and for constructing the label hierarchy we used balanced k means with k = 3 and nmax = 3, 20,

100, 300, 1000, 10000, 20000 for each of the models. This led to seven different models with 9841, 1093, 364

121, 40, 4 and 1 total nodes accordingly. We note that a hierarchy with one node is equivalent to the base

classifier, in this case BR-SVMs.
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(a) Macro-F (b) Micro-F

Figure 4: Performance for rare and frequent labels of a subset of the BioASQ data set against the number of total nodes (in
log scale) for seven different HOMER models.

The results seem to validate our analysis in Section 4.4. Rare labels tend to benefit as the hierarchy

becomes deeper and fewer labels per terminal node are observed. This is expected, as the sub-sampling

process that HOMER follows is smoothing out the class imbalance problem for rare labels. On the contrary,

frequent labels exhibit an inverse behavior; as the number of total nodes increases, the initial increase in

performance is followed by a significant deterioration, for both measures. Again, this behavior is explained

by considering the fact that frequent labels will have fewer and fewer negative examples as we create deeper

hierarchies and, at some point, this will lead to an inverse imbalance effect, where the label will have many

positive and very few negative examples.

The above experiments could serve as a generic guide to properly configure a HOMER model; when

dealing with problems with many rare labels, we should aim at creating hierarchies with small nmax values

and therefore more total nodes. On the contrary, problems dominated by frequent labels, would lead us in

choosing larger nmax values.

The above results offer some additional insights regarding the behavior of HOMER versus its respective

base classifier. Comparing the base classifier (hierarchy with one node) with hierarchies with more nodes,

we observe some consistent trends. With respect to rare labels, HOMER improves over the base classifier

for both Micro-F and Macro-F. The same tendency is observed across the totality of labels, which is justified

by the fact that in the BioASQ data set rare labels dominate frequent labels. For frequent labels, results

are more diverse: for hierarchies up to 40 nodes, HOMER has a similar performance to its base classifier

for the Micro-F measure, while being superior for the Macro-F measure. For hierarchies with more than

40 nodes, this tendency is reversed and the base classifier achieves better performance than the HOMER

models. Overall, these results suggest that HOMER improves upon its base classifier, for tasks with many

rare labels.
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5.5. Empirical study on the number of clusters

In this set of experiments, we investigate how the number of clusters into which the labels of each node

are partitioned affects the algorithm’s performance. We select balanced k means as the clustering algorithm

(this is convenient, as this algorithm allows us to set explicitly the number of clusters), BR-SVM as the

MLC and set the nmax parameter accordingly for each of the used data sets. Specifically, we set nmax

to 20 for Bibtex, 10 for Bookmarks, 200 for EUR-Lex and to 20 for Y elp. In Figure 5 and Figure 6 we

report the results for different choices of the parameter, in terms of Macro-F and Micro-F respectively . The

performance of the baseline method (BR-SVM) is also depicted to facilitate comparisons.

First, HOMER-BR has a steady advantage over BR across the different data sets and the various k

configurations. Only in one case out of the eight plots, for Y elp in terms of Macro-F, we can observe BR

being steadily better. Also, we can notice HOMER-BR getting worse than BR for k = 10, in one case for

Macro-F and two for Micro-F, which suggests that for this configuration the constructed label hierarchy is

of inferior quality.

Secondly, for both measures, we observe a similar tendency in three out of four data sets. As the number of

clusters increases, performance has a declining trend, dropping even below the baseline for larger values. The

fourth data set, Y elp, has a different behavior being relatively steady in terms of Macro-F and improving

Micro-F as the number of clusters increases. We note here that the number of clusters is essentially the

primary factor of how the labels will be arranged in the hierarchy. For instance a large number of clusters

will lead to a very ”open” and shallow tree, while a smaller one will lead to deeper and more ”closed” ones.

Therefore, this is the main parameter that will affect the clustering ’s quality and subsequently performance

and should be the first element to be considered for experimentation when seeking to construct an optimal

clustering of the labels.

Moreover, even if these empirical results tend to favor a small number of clusters (two or three) as a

safe default choice for configuring a HOMER model (the results in [5], Section 5.1 suggest as well a similar

option) we advise against choosing a default option for this parameter as it is crucial for the quality of the

resulting label hierarchy.

A number of clustering algorithms, e.g. density-based algorithms such as DBSCAN [52] or OPTICS [53]

do not allow explicit setting of the number of clusters. The relevant parameters of each algorithm however,

control indirectly as well the number of clusters and eventually the structure of the tree and should therefore

be chosen carefully for optimal results.

5.6. Empirical study of the nmax parameter

In this experiment, we investigate the role of parameter nmax in HOMER’s performance. The above

parameter controls the maximum allowed number of labels in a leaf node. This parameter essentially deter-

mines if a node will be further partitioned in a set of children nodes. In the initial algorithm presentation

[5] all leaf nodes consisted of one label, the equivalent of setting nmax = 1. We ran HOMER on four data

sets (Bibtex, Bookmarks, Y elp, EUR-Lex) for multiple nmax values. We set the clustering algorithm to
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(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Figure 5: HOMER-BR results for five different choices of parameter k for the four data sets, in terms of the Macro-F measure.
The respective performance of BR is also shown to visualize the improvement.

balanced k means and the MLC to Binary Relevance with Linear SVMs. The parameter k was fixed to 3

across all data sets. We present the results of this experiments in Figure 7 and 8. The performance of the

baseline method (BR-SVM) is also depicted to facilitate comparisons.

First, compared to the base MLC, HOMER-BR has once more the upper hand in the seven out of eight

figures (apart from Y elp in terms of Macro-F). Furthermore, for small values of nmax in one case for Macro-F

and in one case for Micro-F, HOMER’s performance is worse than that of BR.

Secondly, there is a common trend in seven out of the eight figures (apart from the case of EUR-Lex for

Macro-F) with performance increasing initially with nmax, reaching a maximum value and then dropping

again. As we have explained in Section 4.4, this is an expected behavior since, as nmax→ 1 the training sets

of terminal nodes will be rather small, leading to a drop in performance. On the other hand, as nmax→ |L|,

performance will tend to approach that of the base MLC with the hierarchy degenerating to a single cluster

for nmax = |L|. These results validate the observations made in Section 4.4 about the fact that we should

expect an optimal value to exist for the nmax parameter.
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(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Figure 6: HOMER-BR results for different choices of parameter k, for the four data sets, in terms of the Micro-F measure.

5.7. Configuration paradigms; Different Clustering Algorithms and Classifiers

The goal of this series of experiments is to illustrate the ability of the described HOMER algorithm

to accommodate various clustering algorithms and multi-label classifiers. Here, we describe six different

instantiations of HOMER to serve as such example configurations, by employing three different clustering

algorithms (balanced k means described in Section 3, FastOPTICS [54] and SLINK [55]) and two different

multi-label classifiers (BR-SVMs and Labeled LDA).

For this experiment, we used four data sets, Bibtex, Bookmarks, EUR-Lex and Y elp. For Labeled LDA,

we employed the algorithm’s extension described in Section 4.2. Also, the k parameter described earlier is

not valid in case of SLINK and FastOPTICS, as these two algorithms take different parameters. Specifically,

for SLINK we kept default parameters and for FastOPTICS we set ε = 0.001 and minPts = nmax. For

these two clustering algorithms we followed again the approach that if a resulting cluster would have more

than nmax labels, then the algorithm would be run again on that cluster (in this case the ε parameter

of FastOptics was doubled in order to allow for smaller clusters). We note that for the algorithm-specific

parameters as well as for the nmax parameter we did not perform an exhaustive search for the optimal
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(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Figure 7: HOMER-BR results for different choices of parameter nmax, for the four data sets, in terms of the Macro-F measure.

parameters.

Table 4 shows the results for this round of experiments, the run time for each experiment and, specifically

for the HOMER models, the average training set size and number of total nodes.

First, let us examine the respective results for BR and HOMER-BR. All HOMER models demonstrate,

overall, an improved performance over BR, with the exception of the Macro-F measure in Y elp data set.

Balanced k means is somewhat more consistent in outperforming the base MLC, while results for FastOP-

TICS and SLINK seem more mixed. When comparing LLDA and HOMER-LLDA, we observe more mixed

results with LLDA having the upper hand in terms of Macro-F in three out of four data sets. In terms of

Micro-F however, HOMER with balanced k means is outperforming LLDA in all cases, while results for the

other two clustering configurations appear again more diversified.

Even if comparisons among HOMER models should be taken with a grain of salt, given that we did not

choose optimal parameters for each of the clustering algorithms and that each algorithm creates a hierarchy

with a different structure and a different total number of nodes, we can remark that balanced k means

is performing consistently better than FastOPTICS and SLINK. Apart from the aforementioned factors, a

possible reason for this behavior could be the fact that balanced k means produces a balanced hierarchy.
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(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Figure 8: HOMER-BR results for different choices of parameter nmax, for the four data sets, in terms of the Micro-F measure.

Similar results from the experiments in [5] may suggest that imposing such an explicit constraint of even

distribution of labels among the nodes of the hierarchy, can perhaps affect significantly performance.

In Table 4 we additionally provide the running times for each model. To facilitate our analysis of the

results, we also provide the average training corpus size for non-leaf nodes (depicted as |DNL|) and leaf nodes

(depicted as |DL|) and the total number of nodes for each of the algorithms. If we examine the training

times for the HOMER models that employ balanced k means, we can observe that results are aligned with

Equation 6 and the relevant conclusions of Section 4.3, with roughly similar times to BR-SVMs (apart from

the Y elp data set for HOMER-BR) . We note that HOMER includes also a filtering step of training instances

from parent to child node and this step was not optimized in our code. Therefore, the differences we observe

may also be due to that step. In case of the HOMER models using the rest of the clustering algorithms,

conclusions from Section 4.3 do not apply as the latter perform unbalanced clustering. Nevertheless, we can

observe in general a similar behavior with approximately equivalent training times of the HOMER models

to the respective MLCs.

In case of the Y elp data set the training times are significantly longer than those observed for the given

MLC. A possible reason for this could be the fact that the average label frequency is higher compared to
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Perorfmance Duration

MLC C Micro-F Macro-F Training Test |DNL|+ |DL|
∑
n

Bibtex
BR 0.417 0.249 0.5 0.1 4,880

H-BR k means (3, 40) 0.430 0.2824 0.6(0) 0 3,206.2+1,140.8 13
H-BR FastOPTICS (40) 0.423 0.2694 1.1(0.8) 0 4,880+2,044.2 5
H-BR SLINK (40) 0.422 0.2704 0.5(0.1) 0 4,880+212.6 43
LLDA 0.375 0.248 0.4 0.6 4,880

H-LLDA k means (3, 40) 0.376 0.2397 0.4(0) 0.3 3,206.2+1,140.8 13
H-LLDA FastOPTICS (40) 0.390 0.248 1.1(0.8) 0.3 4,880+2,044.2 5
H-LLDA SLINK (40) 0.366 0.2074 0.5(0.1) 3.0 4,880+212.6 43
FastXML 0.374 0.275 0.05 0.01 4,880

Bookmarks
BR 0.288 0.144 16.1. 1.2 70,000

H-BR k means (3, 10) 0.3334 0.2224 18.4(4.3) 0.1 23,075.3+5,048.9 40
H-BR FastOPTICS (10) 0.3184 0.1664 45.6(26.2) 0.8 51,057.5+9,749 14
H-BR SLINK (10) 0.3064 0.1654 20.5(4.8) 0.3 33,289.3+2,304.5 54
LLDA 0.201 0.112 17.5 20.2 70,000

H-LLDA k means (2, 55) 0.204 0.0954 19.2(3.1) 8.2 53,804.3+27,779.5 7
H-LLDA FastOPTICS (55) 0.1674 0.0674 27.5(17.2) 8.6 70,000+18,345 7
H-LLDA SLINK (55) 0.197 0.0774 14.0(3.5) 5.6 70,000+4,868.4 24
FastXML 0.236 0.174 3.3 0.15 70,000

EUR-Lex
BR 0.267 0.511 36.8 1.1 15,314

H-BR k means(3, 200) 0.3294 0.519 23.4(5.3) 0.9 9,062.5+2,764.7 40
H-BR FastOPTICS(200) 0.2974 0.511 82.4(49.3) 2.1 15,314+3,199.5 20
H-BR SLINK(200) 0.270 0.509 144.1(49.1) 4.0 15,314+63.5 966
LLDA 0.109 0.443 61.8 169.3 15,314

H-LLDA k means(3, 500) 0.116 0.433 67.9(4.4) 66,4 13,682+7,009.4 13
H-LLDA FastOPTICS(500) 0.0874 0.3804 80.6(41,1) 50.4 15,314+3673.2 14
H-LLDA SLINK(500) 0.0834 0.435 100.5(46.4) 42.0 15,314+79.4 976
FastXML 0.284 0.487 2.7 0.1 15,314

Yelp
BR 0.774 0.506 60.4 7.3 45,000

H-BR k means (3, 20) 0.7834 0.4744 228.4(28.4) 6.1 19,155.3+5,201.4 121
H-BR FastOPTICS (20) 0.7864 0.4694 188.3(77.2) 8.0 32,361+10,985.5 17
H-BR SLINK (20) 0.7874 0.4684 119.7(10.3) 7.1 15,900+913.9 180
LLDA 0.598 0.328 135.4 169.4 45,000

H-LLDA k means (3, 100) 0.6184 0.326 131.3(11.1) 38.0 41,946.2+26,304.3 13
H-LLDA FastOPTICS (40) 0.2914 0.2974 327.3(75.1) 81.1 45,000+9,623.1 18
H-LLDA SLINK (100) 0.2844 0.2774 381.7(14.5) 42.3 45,000+963.3 172
FastXML 0.605 0.348 7.3 0.15 45,000

Table 4: HOMER models are denoted with H-MLC. For each different clustering technique, we show the exact parameterization
in parentheses, the first number denoting k and the second nmax. The 4 symbol represents a statistically significant difference
between the base MLC and the respective HOMER model at p = 0.05 for a z-test (we use the symbol either if the HOMER
model is significantly better or significantly worse than the MLC of choice). In the ’Duration’ column, figures are given in
minutes, a 0 noting a duration of less than 6 seconds. In the ’Training’ column, the first number concerns the total training
time while the number in parentheses the clustering time. MacroF: 0.271 MicroF: 0.374

the other data sets and subsequently this leads in bigger |Dn| compared to |D| and therefore longer training

times. The number of total nodes also seems to play a role for unbalanced algorithms; SLINK tends to

produce far bigger hierarchies than the other algorithms paying the price in terms of training duration.
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Concerning prediction times, as we explained in Section 4.3, the computational complexity of a HOMER

model in the case of a balanced clustering algorithm can vary from logarithmic in the best case, to linear

in the worst case (if all paths of the label hierarchy are followed). Therefore, we see generally significantly

shorter times for the HOMER models compared to the base MLC, a tendency not being limited to those

models that employ balanced k means. In two cases however (for Bibtex and EUR-Lex) , SLINK has

significantly longer times than the base MLC. A possible explanation could relate with the quality of the

clustering; it seems that in this case the instances to be predicted are forwarded in large portions of the tree,

causing the longer prediction times.

Overall, the results suggest that it is totally valid to employ any given clustering algorithm to construct

the label hierarchy in the HOMER framework. In some cases (for instance in Bibtex and Y elp in terms

of Micro-F), alternatives to balanced k means can perform even better, therefore one should not rely on a

default HOMER setup for a specific multi-label task. Another remark we could make11, is that HOMER’s

performance, both in terms of running time and quality of prediction, seems to be largely dependent on the

quality of the label clustering. In other words, the Achilles’ heel of the algorithm described in this paper

seems to be the choice of the given clustering algorithm’s parameters.

5.8. Large-scale tasks

In the last round of experiments, we study two large-scale multi-label classification tasks, BioASQ and

DMOZ. We choose balanced k means as a clustering algorithm to create the label hierarchy and BR-Linear

SVMs as the multi-label classifier. Apart from performance, in this experiment we are also interested on

training and prediction duration. Table 5 shows the relevant results. We also show the respective running

times for the algorithms and
∣∣Dn

∣∣ compared to |D|, as a means to illustrate the improvement in training

complexity. The total number of nodes per model is also depicted.

These two multi-label tasks provide a characteristic example case where HOMER can bring a significant

improvement both in performance and running times. First, in terms of both measures and for both tasks

we observe a statistically significant gain in performance. Second, in terms of training times we also notice

a significant improvement. Especially for DMOZ, training with HOMER-BR is almost sixteen times faster

than with BR. This difference is partly due to the nature of the data set; as DMOZ has |Ld| ' 1, the

resulting |Dn| will be a lot smaller than |D| allowing for faster training. Prediction is also conducted much

faster, at half time for BioASQ and one third of the time for DMOZ.

These results may provide a hint on when HOMER is more appropriate to be employed on a multi-label

task. Applications with large |L| and |D| appear to be more suitable, rendering the application of a given

MLC more beneficial at the same time improving the relevant running times.

11initial experimentation on the data sets used throughout the paper validated these observations.
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Performance Duration
MLC Micro-F Macro-F Training Test

∣∣Dn

∣∣ ∑
n

BioASQ
BR 0.542 0.406 784 33 200,000

HOMER-BR(k = 3, nmax = 800) 0.5514 0.4164 452.4(59) 15 49,906.3+15,432.3 121
FastXML 0.424 0.233 10.5 5.3 200,000

DMOZ
BR 0.20512 0.24413 3,688 24 322,465

HOMER-BR(k = 3, nmax = 500) 0.2414 0.2634 232(66) 8 32,707.2+4,078.1 121
FastXML 0.212 0.232 3.2 2.5 322,465

Table 5: Results on BioASQ and DMOZ. The same notation is followed as in Table 4

.

5.9. Comparison with FastXML

In order to provide an idea of how HOMER compares to the latest state-of-the-art, in Tables 4 and 5

we compare our method with FastXML. For this method we employed the code provided in the Extreme

classification repository12, running it with default parameters. To ease replication of results, we provide the

package as well in our HOMER repository.

The results show that HOMER variations with BR-SVMs as a baseline are steadily better than FastXML,

while results are more mixed regarding HOMER variations with LLDA. In the majority of conditions (seven

out of twelve cases) BR-SVMs also outperform FastXML. This tendency is reversed, regarding training and

prediction times, where FastXML has clearly the upper hand, being faster even by two orders of magnitude

than HOMER. These results provide a rather clear insight on the suitability of each of the methods: FastXML

should be preferred when time and scalability are the priority, while HOMER, at least with BR-SVMs, is

more suitable if performance is most important.

6. Conclusion

In this work we have presented the HOMER framework, an approach that can wrap any given multi-label

classifier, with the aim to improve on performance and running time. The algorithm breaks down the global

multi-label task to several smaller subtasks, by first employing recursively a clustering algorithm on the label

set, creating a label hierarchy. Training and prediction is subsequently carried out locally at each node of the

hierarchy. The algorithm has a linear training complexity and a logarithmic testing complexity, irrespective

of the employed MLC.

The empirical results from the experiments carried out in this paper, demonstrate that HOMER can

significantly improve performance when applied on a given MLC method. Special care should be given

however, to adjust optimally the clustering algorithm’s parameters, as this is the part that affects most the

algorithm’s behavior. Specifically for the last part of the experiments, the positive results may indicate that

12http://manikvarma.org/downloads/XC/XMLRepository.html
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HOMER is especially apt in addressing large-scale multi-label tasks. Finally, driven by the results of Section

5.9, as a future extension of this work we would like to consider possible extensions of HOMER to address

extreme classification tasks, that is, multi-label tasks with hundreds of thousands of labels or more.
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