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Abstract This paper proposes a new measure for ensemble pruning via directed hill

climbing, dubbed Uncertainty Weighted Accuracy (UWA), which takes into account

the uncertainty of the decision of the current ensemble. Empirical results on 30 data

sets show that using the proposed measure to prune a heterogeneous ensemble leads to

significantly better accuracy results compared to state-of-the-art measures and other

baseline methods, while keeping only a small fraction of the original models. Besides

the evaluation measure, the paper also studies two other parameters of directed hill

climbing ensemble pruning methods, the search direction and the evaluation dataset,

with interesting conclusions on appropriate values.

1 Introduction

Ensemble methods (Dietterich, 2000) has been a very popular research topic during

the last decade. Their success arises largely from the fact that they offer an appealing

solution to several interesting learning problems of the past and the present, such

as improving predictive performance, scaling inductive algorithms to large databases,

learning from multiple physically distributed data sets and learning from concept-

drifting data streams.

Typically, ensemble methods comprise two phases: the production of multiple pre-

dictive models and their combination. Recent work (Banfield et al, 2005; Caruana

et al, 2004; Margineantu and Dietterich, 1997; Giacinto et al, 2000; Fan et al, 2002;

Martinez-Munoz and Suarez, 2004, 2006; Partalas et al, 2008; Tsoumakas et al, 2005),

has considered an additional intermediate phase that deals with the reduction of the

ensemble size prior to combination. This phase is commonly called ensemble pruning,

while other names include selective ensemble, ensemble thinning and ensemble selection.

Ensemble pruning is important for two reasons: efficiency and predictive perfor-

mance. Having a very large number of models in an ensemble adds a lot of computa-

tional overhead. For example, decision tree models may have large memory require-
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ments (Margineantu and Dietterich, 1997) and lazy learning methods have a consid-

erable computational cost during execution. The minimization of run-time overhead

is crucial in certain applications, such as in stream mining. In addition, when models

are distributed over a network, the reduction of models leads to the reduction of the

important cost of communication. Equally important is the second reason, predictive

performance. An ensemble may consist of both high and low predictive performance

models. The latter may negatively affect the overall performance of the ensemble. Prun-

ing these models while maintaining a high diversity among the remaining members of

the ensemble is typically considered a proper recipe for an effective ensemble.

The ensemble pruning problem can be posed as an optimization problem as follows:

Find the subset of the original ensemble that optimizes a measure indicative of its

generalization performance (for example accuracy on a separate validation set). As the

number of subsets of an ensemble consisting of T models is 2T − 1 (the empty set is

not accountable), exhaustive search becomes intractable for a moderate ensemble size.

Several efficient methods that are based on a directed hill climbing search in the space

of subsets report good predictive performance results (Banfield et al, 2005; Caruana

et al, 2004; Margineantu and Dietterich, 1997; Martinez-Munoz and Suarez, 2004).

These methods start with an empty (or full) initial ensemble and search the space of

different ensembles by iteratively expanding (or contracting) the initial ensemble by a

single model. The search is guided by an evaluation measure that is based on either

the predictive performance or the diversity of the alternative subsets. The evaluation

measure is the main component of a directed hill climbing algorithm and it differentiates

the methods that fall into this category.

The primary contribution of this work is a new measure for directed hill climbing

ensemble pruning (DHCEP) that takes into account the uncertainty of the decision of

the current ensemble. Empirical results on 30 data sets show that using the proposed

measure to prune a heterogeneous ensemble leads to significantly better accuracy re-

sults compared to state-of-the-art measures and other baseline methods, while keeping

only a small fraction of the original models. In addition, it is shown that the proposed

measure maintains its lead across a variety of pruning levels. The secondary contri-

bution of this work is an empirical study of the main parameters (search direction,

evaluation dataset, evaluation measure) of DHCEP methods, leading to interesting

conclusions on suitable settings.

This paper extends our previous work (Partalas et al, 2008) in the following re-

spects. First of all, it empirically compares a variety of different combinations of values

for the main parameters of DHCEP methods, instead of specific instantiations. This

has led to interesting new conclusions, such as the fact that the proposed measure

significantly outperforms its rivals when used in a forward search direction. The com-

parison is based on a much larger number of datasets. Finally, this paper includes an

extended description of the proposed measure elaborating on its key issues.

The remainder of this paper is structured as follows: Section 2 presents background

information on ensemble methods. Section 3 includes an extensive introduction to

DHCEP methods and their main parameters. Section 4 presents the proposed measure.

Section 5 describes the setup of the empirical study and Section 6 presents and discusses

the results. Finally, Section 7 concludes this work and poses future research directions.
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2 Ensemble Methods

2.1 Producing the Models

An ensemble can be composed of either homogeneous or heterogeneous models. Homo-

geneous models derive from different executions of the same learning algorithm by using

different values for the parameters of the learning algorithm, injecting randomness into

the learning algorithm or through the manipulation of the training instances, the in-

put attributes and the model outputs (Dietterich, 2000). Two popular methods for

producing homogeneous models are bagging (Breiman, 1996) and boosting (Schapire,

1990).

Heterogeneous models derive from running different learning algorithms on the

same dataset. Such models have different views about the data, as they make different

assumptions about them. For example, a neural network is robust to noise in contrast

to a k-nearest neighbor classifier.

In the empirical evaluation part of this paper we focus on ensembles consisting

of models produced by running different learning algorithms, each with a variety of

different parameter settings.

2.2 Combining the Models

A lot of different ideas and methods have been proposed in the past for the combination

of classification models. The necessity for high classification performance in some crit-

ical domains (e.g. medical, financial, intrusion detection) has motivated researchers to

explore methods that combine different classification algorithms in order to overcome

the limitations of individual learning paradigms.

Unweighted and Weighted Voting are two of the simplest methods for combining

not only Heterogeneous but also Homogeneous models. In Voting, each model outputs

a class value (or ranking, or probability distribution) and the class with the most votes

(or the highest average ranking, or average probability) is the one proposed by the

ensemble. In Weighted Voting, the classification models are not treated equally. Each

model is associated with a coefficient (weight), usually proportional to its classification

accuracy.

Let x be an instance and mi, i = 1..k a set of models that output a probability

distribution mi(x, cj) for each class cj , j = 1..n. The output of the (weighted) voting

method y(x) for instance x is given by the following mathematical expression:

y(x) = arg max
cj

k∑

i=1

wimi(x, cj),

where wi is the weight of model i. In the simple case of voting (unweighted), the weights

are all equal to one, that is, wi = 1, i = 1..k.

3 Ensemble Pruning via Directed Hill Climbing

Hill climbing search greedily selects the next state to visit from the neighborhood of

the current state. States, in our case, are the different subsets of the original ensemble
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H = {ht, t = 1, 2, . . . , T} of T models. The neighborhood of a subset of models S ⊆ H

comprises those subsets that can be constructed by adding or removing one model from

S. We focus on the directed version of hill climbing that traverses the search space from

one end (empty set) to the other (complete ensemble). An example of the search space

for an ensemble of four models is presented in Figure 1.
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Fig. 1 An example of the search space of DHCEP methods for an ensemble of 4 models.

The key design parameters that differentiate one DHCEP method from the other

are (Tsoumakas et al, 2009): a) the direction of search, b) the measure and dataset

used for evaluating the different branches of the search, and c) the amount of pruning.

The following sections discuss the different options for instantiating these parameters

and the particular choices of existing methods.

3.1 Direction of Search

Based on the direction of search we have two main categories of DHCEP methods: a)

forward selection, and b) backward elimination (see Figure 1).

In forward selection, the current classifier subset S is initialized to the empty set.

The algorithm continues by iteratively adding to S the classifier ht ∈ H \ S that

optimizes an evaluation function. In the past, this approach has been used in (Fan et al,

2002; Martinez-Munoz and Suarez, 2004; Caruana et al, 2004) and in the Reduced-Error

Pruning with Backfitting (REPwB) method in (Margineantu and Dietterich, 1997).

In backward elimination, the current classifier subset S is initialized to the complete

ensemble H and the algorithm continues by iteratively removing from S the classifier

ht ∈ S that optimizes an evaluation function. In the past, this approach has been used

in the AID thinning and concurrency thinning algorithms (Banfield et al, 2005).
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In both cases, the traversal requires the evaluation of
T (T+1)

2 subsets, leading to

a time complexity of O(T 2g(T, N)). The term g(T, N) concerns the complexity of the

evaluation function, which is linear with respect to N and ranges from constant to

quadratic with respect to T , as we shall see in the following sections.

3.2 Evaluation Dataset

The evaluation function scores the candidate subsets of models according to an evalua-

tion measure that is calculated based on the predictions of its models on a set of data,

which will be called the pruning set. The role of the pruning set can be performed by

the training set, a separate validation set, or even a set of - naturally existing or arti-

ficially produced - instances with unknown value for the target variable. The pruning

set will be denoted as D = {(xi, yi), i = 1, 2, . . . , N}, where xi is a vector with feature

values and yi is the value of the target variable, which may be unknown.

In the past, the training set has been used for evaluation in (Martinez-Munoz and

Suarez, 2004). This approach offers the benefit that plenty of data will be available for

evaluation and training, but is susceptible to the danger of overfitting. Withholding a

part of the training set for evaluation, has been used in the past in (Caruana et al, 2004;

Banfield et al, 2005) and in the REPwB method in (Margineantu and Dietterich, 1997).

This approach is less prone to overfitting, but reduces the amount of data available

for training and evaluation compared to the previous approach. It sacrifices both the

predictive performance of the ensemble’s members and the quantity of the evaluation

data for the sake of using unseen data in the evaluation. This method should probably

be preferred over the previous one, when there is abundance of training data.

An alternative approach that has been used in (Caruana et al, 2006), is based on k-

fold cross-validation. For each fold an ensemble is created using the remaining folds as

the training set. The same fold is used as the pruning set for models and subensembles

of this ensemble. Finally, the evaluations are averaged across all folds. This approach

is less prone to overfitting as the evaluation of models is based on data that were not

used for their training and at the same time, the complete training dataset is used

for evaluation. During testing the above approach works as follows: The k models

that were trained using the same procedure (same algorithm, same subset, etc.) form

a cross-validated model. When the cross-validated model makes a prediction for an

instance, it averages the predictions of the individual models. An alternative testing

strategy that we suggest for the above approach is to train an additional single model

from the complete training set and use this single model during testing.

3.3 Evaluation Measure

The main component that differentiates DHCEP methods is the evaluation measure.

Evaluation measures can be grouped into two major categories: those that are based

on performance and those on diversity.

3.3.1 Performance-based Measures

The goal of performance-based measures is to find the model that maximizes the perfor-

mance of the ensemble produced by adding (removing) a model to (from) the current
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ensemble. Their calculation depends on the method used for ensemble combination,

which usually is voting. Accuracy was used as an evaluation measure in (Margineantu

and Dietterich, 1997; Fan et al, 2002), while Caruana et al (2004) experimented with

several metrics, including accuracy, root-mean-squared-error, mean cross-entropy, lift,

precision/recall break-even point, precision/recall F-score, average precision and ROC

area. Another measure is benefit, which is based on a cost model and has been used in

(Fan et al, 2002).

The calculation of performance-based metrics requires the decision of the ensemble

on all examples of the pruning set. Therefore, the complexity of these measures is

O(|S|N). However, this complexity can be optimized to O(N), if the predictions of the

current ensemble are updated incrementally each time a classifier is added to/removed

from it.

3.3.2 Diversity-based Measures

It is generally accepted that an ensemble should contain diverse models in order to

achieve high predictive performance. However, there is no clear definition of diversity,

nor a single measure to calculate it. In their interesting study, Kuncheva and Whitaker

(2003), could not reach a solid conclusion on how to utilize diversity for the production

of effective classifier ensembles. In a more recent theoretical and experimental study on

diversity measures (Tang et al, 2006), the authors reached the conclusion that diversity

cannot be explicitly used for guiding the process of directed hill climbing methods. Yet,

certain approaches have reported promising results (Martinez-Munoz and Suarez, 2004;

Banfield et al, 2005).

One issue that is worth mentioning here is how to calculate the diversity during the

search in the space of ensemble subsets. For simplicity we consider the case of forward

selection only. Let S be the current ensemble and ht ∈ H \ S a candidate classifier to

add to the ensemble.

One could compare the diversities of subensembles S′ = S ∪ ht for all candidate

ht ∈ H \ S and select the ensemble with the highest diversity. Any pairwise and non-

pairwise diversity measure can be used for this purpose (Kuncheva and Whitaker,

2003). Pairwise measures calculate the diversity between two models. The diversity of

an ensemble of models can be calculated as the mean pairwise diversity of all models in

the ensemble. The time complexity of this process is typically O(|S′|2N). Non-pairwise

diversity measures can directly calculate the diversity of an ensemble of models and

their time complexity is typically O(|S′|N). A straightforward optimization can be

performed in the case of pairwise diversity measures. Instead of calculating the sum of

the pairwise diversity for every pair of classifiers in each candidate ensemble S′, one

can simply calculate the sum of the pairwise diversities only for the pairs that include

the candidate classifier ht. The sum of the rest of the pairs is equal for all candidate

ensembles. The same optimization can be achieved in backward elimination too. This

reduces their time complexity to O(|S|N).

Several methods use a different approach to calculate diversity during the search.

They use pairwise measures to compare the candidate classifier ht with the current

ensemble S, which is viewed as a single classifier that combines the decisions of its

members with voting. This way they calculate the diversity between the current en-

semble as a whole and the candidate classifier. Such an approach has time complexity

O(|S|N), which can be optimized to O(N), if the predictions of the current ensemble
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are updated incrementally each time a classifier is added to/removed from it. However,

these calculations do not take into account the decisions of individual models.

In the past, the widely known pairwise diversity measures disagreement, double

fault, Kohavi-Wolpert variance, inter-rater agreement, generalized diversity and diffi-

culty were used for DHCEP in (Tang et al, 2006). Complementariness (Martinez-Munoz

and Suarez, 2004) and concurrency (Banfield et al, 2005) are two diversity measures

designed specifically for ensemble pruning via directed hill climbing. We next introduce

some additional notation to uniformly present these two methods.

We can distinguish four events concerning the decision of a classifier h and an

ensemble of models S with respect to an example (xi, yi):

etf(h, S, xi, yi) : h(xi) = yi ∧ S(xi) 6= yi

eft(h, S, xi, yi) : h(xi) 6= yi ∧ S(xi) = yi

ett(h, S, xi, yi) : h(xi) = yi ∧ S(xi) = yi

eff(h, S, xi, yi) : h(xi) 6= yi ∧ S(xi) 6= yi

The complementariness of a model h with respect to an ensemble S and a pruning

set D is calculated as follows:

COMD(h, S) =

N∑

i=1

I(etf(h, S, xi, yi)),

where I(true) = 1, I(false) = 0.

The complementariness of a model with respect to an ensemble is actually the

number of examples of D that are classified correctly by the model and incorrectly by

the ensemble. A pruning algorithm that uses the above measure, tries to add (remove)

at each step the model that helps the current ensemble classify correctly the examples

it gets wrong. Note that in the backward case the removed model is the one that

minimizes the measure.

The concurrency of a model h with respect to an ensemble S and a pruning set D

is calculated as follows:

COND(h, S) =

N∑

i=1

(
2I(etf(h, S, xi, yi)) + I(ett(h, S, xi, yi))− 2I(eff(h, S, xi, yi))

)

This measure is similar to complementariness, with the difference that it takes into

account two extra events and weights them. No specific argument is given for this

particular choice of events and weights.

The margin distance minimization method (Martinez-Munoz and Suarez, 2004)

(also specifically designed for DHCEP) follows a different approach for calculating the

diversity, which implicitly takes into account the decisions of individual models. For

each classifier ht an N -dimensional vector, ct, is defined where each element ct(i) is

equal to 1 if the tth classifier classifies correctly example i of the pruning set, and -1

otherwise. The vector, CS of the ensemble S is the average of the individual vectors

ct, CS = 1
|S|

∑|S|
t=1 ct. When S classifies correctly all the instances the corresponding

vector is in the first quadrant of the N -dimensional hyperplane. The objective is to

reduce the Euclidean distance, d(o, CS), of the current ensemble CS from a predefined

vector with the same components, oi = p, i = 1, . . . N, 0 < p < 1, placed in the first
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quadrant of the N -dimensional hyperplane. The value of p is usually between 0.05 and

0.25. The proposed margin diversity measure, MARD(ht, S), of a classifier ht with

respect to an ensemble S and a pruning set D is calculated as follows:

MARD(ht, S) = d

(
o,

1

|S|+ 1

(
ct + CS

))

3.4 Amount of Pruning

Another issue that pertains to almost all ensemble pruning methods concerns the size

of the final ensemble. Two main approaches are followed with respect to this issue: a)

use a fixed user-specified amount or percentage of models, and b) dynamically select

the size based on the predictive performance of candidate ensembles of different size.

In the second case the predictive performance of the ensembles encountered during

the complete search process from the one end of the search space to the other is

recorded and the ensemble with the best performance is selected. If the goal of pruning

is to improve efficiency, then the former approach can be used in order to achieve the

desired number of models, which may be dictated by constraints (memory and speed)

in the application environment. If the goal of pruning is to improve performance, then

the latter approach can be used, as it is more flexible and can sacrifice efficiency for

effectiveness.

4 The Proposed Measure

We here propose a new measure starting from the common notation that was intro-

duced in Section 3.3 to describe the complementariness and concurrency measures. For

simplicity of presentation we slightly abuse the notation by dropping symbols xi and

yi.

First of all we note that complementariness is based on event etf(h, S) only. How-

ever, the rest of the events are also plausible indicators of the utility of a candidate

classifier h with respect to an ensemble S. For example, event ett(h, S) should also add

to the utility of h, though potentially not as much as etf(h, S).

This is reflected in the concurrency measure, which explicitly takes into account

three of the events (implicitly the fourth one as well, since eft(h, S) = 1 − ett(h, S) −
eff(h, S)−etf(h, S)), each with a different weight. Concurrency is considering positively

the event etf(h, S), negatively the event eff(h, S), positively with half the weight of the

previous events the event ett(h, S) and neutrally the event eft(h, S). The contribution of

each of the events to the heuristic is rather ad-hoc, as there is no theoretical justification

for the particular choice of weights.

More important is the fact that, as briefly mentioned in the previous section, con-

currency, complementariness and all other diversity measures that are computed based

on the decision of the candidate model and the decision of the ensemble as a whole,

are agnostic of the decisions of the individual models of the ensemble. We consider this

a major limitation of these measures, and justify our claim with an example. Consider

two members of the pruning set (xi, yi) and (xj , yj) that are wrongly classified by

candidate classifier h. The first one is wrongly classified by 49% of the members of the

ensemble S, while the second one by just 10%. In both cases event eft(h, S) is the true
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one. Should these examples contribute the same value to the measure? The rational

answer is no. In the first case, the uncertainty of the ensemble is high, while in the

second it is low. In a forward selection scenario, the probability that the ensemble will

wrongly classify example i in the future, if it adds h to S, is far greater compared to

the probability that it will wrongly classify j.

The above issues motivated us to propose a new measure that takes into account

the uncertainty of the ensemble’s decision, and at the same time has clear and justified

semantics. The following quantities are introduced to allow its definition: NTi, which

denotes the proportion of models in the current ensemble S that classify example

(xi, yi) correctly, and NFi = 1 − NTi, which denotes the proportion of models in

S that classify it incorrectly. The proposed measure, dubbed Uncertainty Weighted

Accuracy (UWA), is defined as follows:

UWA(h, S) =

N∑

i=1

(
I(etf(h, S, xi, yi))NTi − I(eft(h, S, xi, yi))NFi +

I(ett(h, S, xi, yi))NFi − I(eff(h, S, xi, yi))NTi

)

First of all, note that events etf and ett increase the metric, because the candidate

classifier is correct, while events eft and eff decrease it, as the candidate classifier is in-

correct. The strength of increase/decrease depends on the uncertainty of the ensemble’s

decision. If the current ensemble S is incorrect, then the reward/penalty is multiplied

by the proportion of correct models in S. On the other hand, if S is correct, then the

reward/penalty is multiplied by the proportion of incorrect models in S.

This complex, at first sight, weighting scheme, actually represents a simple rule:

examples for which the ensemble’s decision is highly uncertain should influence the

metric stronger, while examples where most of the ensemble’s members agree should

not influence the metric a lot. The rationale of this rule is the following: When most

members of the ensemble agree, then this is either a very easy (if the ensemble is

correct), or a very hard (if it is wrong) example. Rewarding a candidate classifier that

correctly classifies an easy example is of no real value, as is penalizing it for erring

on a very hard example. On the other hand, when the ensemble is marginally correct

or incorrect, then the decision of the candidate classifier is more important, as it may

correct an incorrect decision of the ensemble, or the other way round.

To see exactly how the measure represents the above rule, let’s examine each specific

event separately, in a forward selection scenario.

– In event etf , the addition of a correct classifier when the ensemble is wrong con-

tributes a reward proportional to the number of correct classifiers in that ensemble.

The rationale is that if the number of correct classifiers is small, then correct clas-

sification of this example is hard to achieve and thus the addition of this classifier

will not have an important impact on the ensemble’s performance. On the other

hand, if the number of correct classifiers is large, then the example is marginal and

thus the impact of the addition of this classifier is significant.

– In event eft, the addition of an erring classifier when the ensemble is correct con-

tributes a penalty proportional to the number of erring classifiers in that ensemble.

The rationale is that if the number of erring classifiers is small, then the addition

of another erring classifier will not influence the ensemble significantly, while if the
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number of erring classifiers is large, then the example is marginal and thus the

classifier could change the ensemble’s decision from correct to wrong.

– In event ett, the addition of a correct classifier when the ensemble is correct con-

tributes a reward proportional to the number of erring classifiers in that ensemble.

The rationale is that if the number of erring classifiers is small, then the addition

of a correct classifier is not really very useful. The higher the number of erring

classifiers the more important is the addition of this candidate classifier.

– In event eff , the addition of an erring classifier when the ensemble is wrong con-

tributes a penalty proportional to the number of correct classifiers in that ensemble.

The rationale is that if the number of correct classifiers is small, then the addition

of another erring classifier will not influence the ensemble significantly, as this is a

hard to correctly classify example. If the number of correct classifiers is large, then

the example is marginal and thus the classifier has a negative effect to the ensemble

as it moves it further away from the margin.

We next give a concrete example, in a forward selection scenario, in order to clarify

how the proposed measure works. Consider an ensemble that contains 10 classifiers h1

to h10 and two candidate classifiers h′1 and h′2. Tables 1 and 2 show whether each of

these classifiers is correct or incorrect for a pruning set containing 5 examples x1 to

x5. A correct decision is indicated by a plus (+), and a wrong decision by a minus

(−). For the ensemble, example x1 is a difficult one, x2 an easy, while the rest of the

examples are marginal. The last column of Table 2 shows the value of the proposed

measure.

Table 1 An ensemble of 10 classifiers and the decision of its models for the 5 instances of the
pruning set.

x1 x2 x3 x4 x5

h1 − + − + −
h2 − + + + −
h3 − + − + −
h4 − + − − +
h5 − + + − −
h6 + + + − +
h7 − + + + +
h8 + + − − −
h9 − − + + −
h10 − − + + +

NT 0.2 0.8 0.6 0.6 0.4
NF 0.8 0.2 0.4 0.4 0.6

Table 2 Two candidate classifiers, their decisions for the 5 instances of the pruning set and
the value of the proposed measure.

x1 x2 x3 x4 x5 UWA

h′1 + − + − − -0.4
h′2 − − − + + 0
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The events that characterize h′1 in relation to examples x1 to x5 are etf , eft, ett,

eft and eff respectively. Consequently, the contributions to UWA are NT1 − NF2 +

NF3−NF4−NT5, giving 0.2−0.2+0.6−0.4−0.6 = −0.4. The reward from correctly

classifying x1 is small, as it is a very easy example. The classifier is penalized stronger

for the incorrect classification of marginal examples x4 and x5, compared to the hard

example x2. The events that characterize h′2 in relation to examples x1 to x5 are eff ,

eft, eft, ett and etf respectively. Consequently, the contributions to UWA are −NT1 −
NF2 −NF3 + NF4 + NT5, giving −0.2 − 0.2 − 0.6 + 0.4 + 0.6 = 0. The reward from

correctly classifying the marginal examples x4 and x5 is large, as is the penalty from

incorrect classification of marginal example x3. In contrast, the incorrect classification

of the very hard and very easy examples x1 and x2 incurs a small penalty. Despite

that both candidate classifiers make the same number of errors, overall h′2 is more

beneficial to the current ensemble, which is reflected in a higher value of UWA. It is

this candidate classifier, that would be added to the ensemble in this forward selection

scenario that we examined.

Concluding this section, we explain how the name of the proposed measure was

conceived. If we dropped the weights from the measure, then it would be proportional

to the accuracy of the candidate classifier, since it would give a reward (penalty) of

1 whenever there is a correct (incorrect) candidate classifier decision, irrespectively of

the ensemble’s decision. The weights correspond to the ensemble’s uncertainty, hence

uncertainty weighted accuracy.

5 Experimental Setup

This section presents information about the datasets that were used for conducting the

experiments, the classifiers that comprise the initial ensemble, the ensemble pruning

methods that participate in the comparison, as well as the experimentation methodol-

ogy that was followed.

The source code we developed for conducting the experiments along with a package

for performing statistical tests on multiple datasets, can be found at the following URL:

http://mlkd.csd.auth.gr/ensemblepruning.html.

5.1 Datasets

We experimented on 30 data sets from the UCI Machine Learning repository (Asuncion

and Newman, 2007). Table 3 presents the details of these data sets (Folder in UCI

server, number of instances, classes, continuous and discrete attributes, percentage of

missing values). We avoided using datasets with a very small number of examples, so

that an adequate amount of data is available for training, evaluation and testing.

5.2 Ensemble Construction

We constructed a heterogeneous ensemble of 200 models, by running different learning

algorithms with different parameters on the training set. The WEKA machine learning

library (Witten and Frank, 2005) was used as the source of learning algorithms. We

trained 40 multilayer perceptrons (MLPs), 60 k Nearest Neighbors (kNNs), 80 support
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Table 3 Details of data sets: Folder in UCI server, number of instances, classes, continuous
and discrete attributes, percentage of missing values

id UCI Folder Inst Cls Cnt Dsc MV(%)

d1 anneal 798 6 9 29 0.00
d2 balance-scale 625 3 4 0 0.00
d3 breast-w 699 2 0 2 0.00
d4 car 1728 4 0 6 0.00
d5 cmc 1473 3 2 7 0.00
d6 colic 368 2 7 15 23.80
d7 credit-g 1000 2 7 13 0.00
d8 dermatology 366 6 1 33 0.00
d9 ecoli 336 8 7 0 0.00
d10 haberman 306 2 3 0 0.00
d11 heart-h 294 5 6 7 20.46
d12 heart-statlog 270 2 13 0 0.00
d13 hill 607 2 100 0 0.00
d14 hypothyroid 3772 4 7 30 5.4
d15 ionosphere 351 2 34 0 0.00
d16 kr-vs-kp 3196 2 0 36 0.00
d17 mammographic 962 2 5 0 3.3
d18 mfeat-morphological 2000 10 6 0 0.00
d19 page-blocks 5473 5 10 0 0.00
d20 primary-tumor 339 2 0 17 0.00
d21 segment 2310 7 19 0 0.00
d22 sick 3772 2 7 23 5.40
d23 sonar 195 2 60 0 0.00
d24 soybean 683 19 0 35 0.00
d25 spambase 4601 2 57 0 0.00
d26 tic-tac-toe 958 2 0 9 0.00
d27 vehicle 946 4 18 0 0.00
d28 vote 435 2 0 16 5.63
d29 vowel 990 11 3 10 0.00
d30 waveform-5000 5000 3 21 0 0.00

vector machines (SVMs) and 20 decision trees (DT) using the C4.5 algorithm. The

different parameters used to train the algorithms were the following (default values

were used for the rest of the parameters):

– MLPs: we used 5 values for the nodes in the hidden layer {1, 2, 4, 8, 16}, 4 values

for the momentum term {0.0, 0.2, 0.5, 0.9} and 2 values for the learning rate {0.3,

0.6}.
– kNNs: we used 20 values for k distributed evenly between 1 and the plurality of

the training instances. We also used 3 weighting methods: no-weighting, inverse-

weighting and similarity-weighting.

– SVMs: we used 8 values for the complexity parameter {10−5, 10−4, 10−3, 10−2,

0.1, 1, 10, 100}, and 10 different kernels. We used 2 polynomial kernels (of degree

2 and 3) and 8 radial kernels (gamma ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}).
– Decision trees: We constructed 10 trees using postpruning with 5 values for the

confidence factor {0.1, 0.2, 0.3, 0.5 } and 2 values for Laplace smoothing {true,

false}, 8 trees using reduced error pruning with 4 values for the number of folds

{2, 3, 4, 5} and 2 values for Laplace smoothing {true, false}, and 2 unpruned trees

using 2 values for the minimum objects per leaf {2, 3}.
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5.3 Ensemble Pruning Methods

We compare 16 instantiations of the general DHCEP algorithm, that arise by using

all combinations of 4 different values for the evaluation measure parameter and 2

different values for each of the evaluation dataset and search direction parameters. As

far as the evaluation measure parameter is concerned, we used the proposed measure,

UWA, and the following performance and diversity based measures: Accuracy (ACC)

(Caruana et al, 2004), Complementariness (COM) (Martinez-Munoz and Suarez, 2004)

and Concurrency Thinning (CON) (Banfield et al, 2005). The search was performed in

both the forward (F) and the backward (B) directions. The pruning set was instantiated

to: a) the training set (T), which means that all available data are used for both building

the models and pruning the ensemble, and b) a separate validation set (V).

In addition to the above 16 methods we implemented two methods that do not use

any diversity measures and prune the ensemble according to a fixed order. The first

one is called Random Ordering (RO), which randomly orders the classifiers and the

second one is called Greedy Ordering (GO), which orders the classifiers according to

their accuracy on the pruning set. Additionally, we implemented two baseline methods,

corresponding to two extreme pruning scenarios. The first one selects the best single

model (BSM) in the ensemble, according to the performance of the models on the

pruning set, while the second one retains all models of the ensemble (ALL). Note that

for RO, GO, BSM and ALL, the direction parameter has no meaning and is neglected.

Additionally, note that ALL does not require a pruning set, as it does not include any

selection process. For this reason, the performance of ALL is calculated only for the

case where all available training data are used for training the models of the ensemble.

Voting was used for model combination in all aforementioned algorithms. Addition-

ally, all the algorithms follow the dynamic approach in (Caruana et al, 2004), which

selects the ensemble, during the pruning procedure, with the highest accuracy on the

pruning set, instead of using an arbitrary percentage of models. Table 4 shows the

acronyms that will be used in the rest of this paper for the different instantiations of

the parameters of the general DHCEP algorithm, RO, GO and BSM.

5.4 Methodology

Initially, each dataset is split into three disjunctive parts: D1, D2 and D3, consisting

of 60%, 20% and 20% respectively. In the case where a separate validation set is used

for pruning, D1 is used for training the models and D2 for performing the pruning

procedure. In the other case, D1 ∪ D2 is used for both training and pruning. D3 is

always used solely for testing the methods.

The experiment described in this section is performed 10 times for each dataset

using a different randomized ordering of its examples. All reported results are averages

over these 10 repetitions.

6 Results and Discussion

According to (Demsar, 2006) the appropriate way to compare the effectiveness of mul-

tiple algorithms on multiple datasets is based on their average rank across all datasets.

On each dataset, the algorithm with the best performance gets rank 1.0, the one with



14

Acronym Search Direction Evaluation Dataset Evaluation Measure
FTACC Forward Training set ACCuracy
FTCON Forward Training set CONcurrency
FTCOM Forward Training set COMplementariness
FTUWA Forward Training set Uncertainty Weighted Accuracy
FVACC Forward Validation set ACCuracy
FVCON Forward Validation set CONcurrency
FVCOM Forward Validation set COMplementariness
FVUWA Forward Validation set Uncertainty Weighted Accuracy
BTACC Backward Training set ACCuracy
BTCON Backward Training set CONcurrency
BTCOM Backward Training set COMplementariness
BTUWA Backward Training set Uncertainty Weighted Accuracy
BVACC Backward Validation set ACCuracy
BVCON Backward Validation set CONcurrency
BVCOM Backward Validation set COMplementariness
BVUWA Backward Validation set Uncertainty Weighted Accuracy

TGO - Training set -
TRO - Training set -

TBSM - Training set -
VGO - Validation set -
VRO - Validation set -

VBSM - Validation set -

Table 4 Acronym, search direction, evaluation dataset and evaluation measure for the differ-
ent DHCEP, ordering and baseline pruning methods.

the second best performance gets rank 2.0 and so on. In case two or more algorithms

tie, they all receive the average of the ranks that correspond to them.

Table 5 shows the average rank (based on classification accuracy) along with the

average size and composition (type of models) of the pruned ensemble, for each method

participating in the experiments. DHCEP methods are grouped first by pruning set,

then by search direction and finally sorted by evaluation measure. The table continues

with RO, GO and BSM grouped by pruning set, and ends with the ALL method.

Detailed tables with the classification accuracy, rank and ensemble size of all methods

in all datasets can be found in the Appendix.

We first study the evaluation dataset parameter and its relation to the effective-

ness of the ensemble pruning methods. We observe that using a separate validation set

leads to better results than using the training set, for all methods. In order to investi-

gate whether the differences in accuracy are statistically significant, we conducted 11

Wilcoxon signed rank tests (Wilcoxon, 1945), one for each pair of methods that differ

in terms of the evaluation dataset. At a confidence level of 95% all the tests reported

significant differences in favor of using a separate validation set. This shows that using

unseen data to guide the pruning process is very important, despite the fact that it

comes at the expense of available training data for the models of the ensemble. When

the training set is used as the pruning set, the pruning process is based on model pre-

dictions for data that are known to the models, and is therefore biased towards model

subsets that overfit the training data. The negative effect of overfitting is stronger for

methods that select a small number of models, such as the baseline BSM method and

the DHCEP methods that search in the forward direction.

We next study the effect of the search direction parameter. In light of the results

concerning the evaluation dataset, we exclude methods that use the training set from
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Method Avg.Rank Avg.Size MLP kNN SVM DT
FVUWA 3.96 7.5 2.0 0.9 2.8 1.8
FVCON 6.51 6.8 1.8 1.3 2.4 1.3
FVCOM 7.46 7.3 2.3 2.2 1.8 1.0
FVACC 7.63 7.7 2.8 2.3 1.9 0.7
BVUWA 6.25 32.6 9.5 6.0 11.3 5.8
BVCON 6.58 29.7 8.0 5.9 10.5 5.3
BVCOM 9.65 36.6 10.5 8.7 12.5 4.9
BVACC 12.86 46.5 18.1 15.5 10.4 2.6
FTUWA 18.45 1.69 0.05 0.61 0.98 0.05
FTCON 18.36 1.4 0.03 0.68 0.76 0.01
FTCOM 19.45 1.5 0.06 0.53 0.86 0.07
FTACC 18.11 1.3 0.05 0.51 0.8 0.04
BTUWA 12.65 43.6 7.3 15.9 14.6 5.8
BTCON 13.86 41.6 7.0 15.2 14.1 5.3
BTCOM 14.08 51.8 15.4 18.8 14.7 2.8
BTACC 15.31 29.8 10.6 12.8 5.4 1.1
VRO 12.58 86.1 18.3 26.2 32.1 9.6
VGO 8.80 30.0 8.1 7.6 10.0 4.3
VBSM 7.08 1.0 0.31 0.06 0.48 0.14
TRO 12.90 84.2 14.3 30.6 30.8 8.4
TGO 12.40 52.1 9.1 19.5 17.5 5.8
TBSM 17.58 1.0 0.12 0.79 0.08 0.0
ALL 15.36 200.0 40.0 60.0 80.0 20.0

Table 5 Average rank, ensemble size and type of the selected models of each method across
all datasets.

this discussion. We first notice that forward selection leads to better results compared

to backward elimination for all evaluation measures. In order to investigate whether

the differences in accuracy are statistically significant, we conducted 4 Wilcoxon signed

rank tests, one for each pair of DHCEP methods that use a separate validation set for

pruning and differ in terms of the search direction. At a confidence level of 95% all

tests show significant differences in favor of the forward direction, apart from the pair

of BVCON and FVCON.

As far as the size of the pruned ensemble is concerned, we observe that those

DHCEP methods that search in the forward direction tend to produce much smaller

ensembles than those that search in the backward direction. More specifically, the

FVxxx methods achieve an average reduction of 96.33% of the initial ensemble, while

the BVxxx ones achieve an average reduction of 81.82%. Note that this trend also holds

for DHCEP methods that use the training set to guide the pruning process.

Based on these results, the recommended search direction for DHCEP methods is

the forward one. Even though it does not bring a statistically significant benefit for

one of the measures (CON), it manages to reduce the initial ensemble substantially more

compared to the backward direction. Note that this conclusion assumes the use of a

separate validation set for evaluation.

This is an interesting outcome and can be explained by considering the fact that

DHCEP methods are based on a comparison of the decisions of a candidate model

and an ensemble of models. In the backward direction, DHCEP methods remove those

models that are not helpful compared to the current ensemble according to an eval-

uation measure. However, the current ensemble is initially suboptimal, as it contains

all models, both good and bad ones. Therefore, there is a high probability that a good

model will be removed in the beginning, just because it does not improve the current
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suboptimal ensemble. On the other hand, in the forward direction the initial ensemble

is empty, and is progressively expanded according to the evaluation measure, so it al-

ways contain good models. This explains both the higher performance and the smaller

size of the DHCEP methods that search in the forward direction.

We continue the analysis of the results with a study of the evaluation measure pa-

rameter. As before, we exclude methods that use the training set from this discussion.

We first notice that the proposed measure, UWA leads to the two best overall results,

independently of the search direction. We next proceed to an investigation of whether

the proposed measure is significantly better compared to the rest. Taking into account

the conclusion concerning the search direction parameter, we performed a Wilcoxon

signed rank test between FVUWA and each of FVCON, FVCOM and FVACC. We

also performed a Wilcoxon signed rank test between FVUWA and each of VGO, VRO,

VBSM and ALL. At a confidence level of 95% all the tests show that FVUWA per-

forms significantly better than its competitors. This shows that taking into account

the uncertainty of the ensemble’s decision can lead to substantially better results in

terms of accuracy. The size of the pruned ensemble is approximately the same as that

returned by DHCEP methods using other evaluation measures.

It is also interesting to look at the composition of the pruned ensembles, as shown

in the last four columns of Table 5. Focusing on DHCEP methods that search in the

forward search direction and use a separate validation set for evaluation, we notice

that they produce ensembles with a balanced mixture of different types of models.

Different types of models lead to more diverse ensembles, and as a result more accurate

ensembles. It is also interesting to look into how the composition of models affects the

performance of these 4 methods. It seems that more SVMs and MLPs and less DTs and

kNN models, lead to better results. MLPs and SVMs are high performance classifiers

and thus they dominate the ensemble. Additionally, the selection of DTs and kNNs

seems to add to the overall diversity, and such models should be present in the pruned

ensemble.

So far, we have looked at how methods behave under the setting that the per-

centage of pruning is automatically determined by the methods themselves, which as

we have discussed in Section 3 is suitable when the main motivation of the pruning

process is to increase the prediction effectiveness. However, if we were primarily inter-

ested in assessing the efficiency of the methods, then we should evaluate their accuracy

under different percentages of pruning. Still, we should note that the automated prun-

ing methods already achieve a remarkable pruning level, thus they meet the goal of

efficiency too.

Figure 2 depicts the average rank of the FVxxx methods during the pruning pro-

cess. The curves are produced by calculating the ranks for the different sizes of the

ensemble between 1 and 200. It is interesting to note that the method using the pro-

posed measure (FVUWA) is the best one for the largest part of the graph. Especially

in the area between 2 and 40 models, it clearly outperforms its rivals. These findings

show that it can be used for guiding a pruning process, in situations where computa-

tional and storage savings is the dominant motivation. Another interesting observation

is that although FVCOM has a better average rank compared to FVACC based on the

automatic selection of the amount of pruning, it is much worse than FVACC under the

same level of pruning for the largest part of the graph.
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Fig. 2 Performance of the FVxxx methods during the pruning phase. The ranking procedure
is performed for the different sizes of the ensemble between 1 and 200.

7 Conclusions and Future Work

This paper presented a new measure for DHCEP, called Uncertainty Weighted Accu-

racy (UWA), which takes into account the uncertainty of the decisions of the current

ensemble. We compared UWA against state-of-the-art measures using different values

for the parameters of search direction and evaluation dataset on ensembles of heteroge-

neous models. The empirical comparison was carried out on 30 datasets and included

4 additional baseline ensemble pruning methods. The results show that the proposed

measure leads to significantly better accuracy results compared to its rivals and it also

manages to reduce substantially the size of the original ensemble and thus to minimize

the computational complexity.

Several interesting conclusions came up. To begin with, the evaluation dataset

parameter plays an important role on the performance of the DHCEP methods. The

use of a separate set leads to significantly better results than using all the available

data. Also, the direction of search is another important parameter that influences the

performance of DHCEP methods. The results showed that the forward direction helps

to significantly improve the accuracy.

One interesting future work direction concerns the composition of the pool of mod-

els that constitute the initial ensemble. It is interesting to investigate which parameters

of the algorithms have proved effective or not (for example a neural network with 10

hidden nodes) and to use this information in order to substitute the specific models

with other more effective ones. Another related interesting direction concerns the de-

velopment of a method that can train and add models in the ensemble incrementally

in an active learning fashion. In other words to grow the ensemble dynamically by

actively selecting the next most appropriate model to train and/or perhaps dynam-
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ically removing inappropriate models that were previously added. This will save the

computational costs of training a large number of models from the beginning.
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