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Abstract

Ensemble selection deals with the reduction of an ensemble of predic-

tive models in order to improve its efficiency and predictive performance.

A number of ensemble selection methods that are based on greedy search

of the space of all possible ensemble subsets have recently been proposed.

They use different directions for searching this space and different mea-

sures for evaluating the available actions at each state. Some use the

training set for subset evaluation, while others a separate validation set.

This paper abstracts the key points of these methods and offers a gen-

eral framework of the greedy ensemble selection algorithm, discussing its

important parameters and the different options for instantiating these pa-

rameters.

1 Introduction

Ensemble methods [Dietterich, 1997] have been a very popular research topic
during the last decade. They have attracted scientists from several fields includ-
ing Statistics, Machine Learning, Pattern Recognition and Knowledge Discovery
in Databases. Their popularity arises largely from the fact that they offer an
appealing solution to several interesting learning problems of the past and the
present, such as improving predictive performance over a single model, scaling
inductive learning algorithms to large databases, learning from multiple physi-
cally distributed datasets and learning from concept-drifting data streams.

Typically, ensemble methods comprise two phases: the production of mul-
tiple predictive models and their combination. Recent work [Margineantu and
Dietterich, 1997, Giacinto et al., 2000, Lazarevic and Obradovic, 2001, Fan et al.,
2002, Tsoumakas et al., 2004, Caruana et al., 2004, Martinez-Munoz and Suarez,
2004, Banfield et al., 2005, Partalas et al., 2006, Zhang et al., 2006], has con-
sidered an additional intermediate phase that deals with the reduction of the
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ensemble size prior to combination. This phase is commonly called ensemble
pruning, selective ensemble, ensemble thinning and ensemble selection, of which
we shall use the last one within this paper.

Ensemble selection is important for two reasons: efficiency and predictive
performance. Having a very large number of models in an ensemble adds a
lot of computational overhead. For example, decision tree models may have
large memory requirements [Margineantu and Dietterich, 1997] and lazy learn-
ing methods have a considerable computational cost during execution. The
minimization of run-time overhead is crucial in certain applications, such as
in stream mining. Equally important is the second reason, predictive perfor-
mance. An ensemble may consist of both high and low predictive performance
models. The latter may negatively affect the overall performance of the en-
semble. Pruning these models while maintaining a high diversity among the
remaining members of the ensemble is typically considered a proper recipe for
an effective ensemble.

A number of ensemble selection methods that are based on a greedy search
of the space of all possible ensemble subsets, have recently been proposed
[Margineantu and Dietterich, 1997, Fan et al., 2002, Caruana et al., 2004,
Martinez-Munoz and Suarez, 2004, Banfield et al., 2005]. They use different
directions for searching this space and different measures for evaluating the
available actions at each state. Some use the training set for subset evaluation,
while others a separate validation set. Most experimental studies compare a
limited number of the different options for these parameters. Therefore no clear
conclusions and general guidelines exist for greedy ensemble selection.

The above issues motivated this work, which makes the following contribu-
tions:

• It highlights the salient parameters of greedy ensemble selection algo-
rithms, offers a critical discussion of the different options for instanti-
ating these parameters and mentions the particular choices of existing
approaches. The paper steers clear of a mere enumeration of particu-
lar approaches in the related literature, by generalizing their key aspects
and providing comments, categorizations and complexity analysis wher-
ever possible.

• It performs an extensive experimental study of several options of greedy
ensemble selection algorithms both on homogeneous and heterogeneous
classifier ensembles. The analysis of the results leads to several interesting
conclusions, that were previously not discussed in the related literature.

The remainder of this paper is structured as follows. Section 2 contains back-
ground material on ensemble production and combination. Section 3 presents
the generic greedy ensemble selection algorithm. Section 4 gives the details of
the experimental setup and Section 5 discusses the results. Finally, Section 6
summarizes this work and outlines the main conclusions.
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2 Background

This section provides background material on ensemble methods. More specif-
ically, information about the different ways of producing models are presented
as well as different methods for combining the decisions of the models.

2.1 Producing the Models

An ensemble can be composed of either homogeneous or heterogeneous models.
Homogeneous models derive from different executions of the same learning algo-
rithm. Such models can be produced by using different values for the parameters
of the learning algorithm, injecting randomness into the learning algorithm or
through the manipulation of the training instances, the input attributes and the
model outputs [Dietterich, 2000]. Popular methods for producing homogeneous
models are bagging [Breiman, 1996] and boosting [Schapire, 1990].

Heterogeneous models derive from running different learning algorithms on
the same data set. Such models have different views about the data, as they
make different assumptions about it. For example, a neural network is robust
to noise in contrast with a k-nearest neighbor classifier.

2.2 Combining the Models

Common methods for combining an ensemble of predictive models include vot-
ing, stacked generalization and mixture of experts.

In voting, each model outputs a class value (or ranking, or probability distri-
bution) and the class with the most votes is the one proposed by the ensemble.
When the class with the maximum number of votes is the winner, the rule is
called plurality voting and when the class with more than half of the votes is
the winner, the rule is called majority voting. A variant of voting is weighted
voting where the models are not treated equally as each of them is associated
with a coefficient (weight), usually proportional to its classification accuracy.

Stacked generalization [Wolpert, 1992], also known as stacking is a method
that combines models by learning a meta-level (or level-1) model that predicts
the correct class based on the decisions of the base level (or level-0) models. This
model is induced on a set of meta-level training data that are typically produced
by applying a procedure similar to k-fold cross validation on the training data.
The outputs of the base-learners for each instance along with the true class of
that instance form a meta-instance. A meta-classifier is then trained on the
meta-instances. When a new instance appears for classification, the output of
the all base-learners is first calculated and then propagated to the meta-classifier,
which outputs the final result.

The mixture of experts architecture [Jacobs et al., 1991] is similar to the
weighted voting method except that the weights are not constant over the input
space. Instead there is a gating network which takes as input an instance and
outputs the weights that will be used in the weighted voting method for that
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specific instance. Each expert makes a decision and the output is averaged as
in the method of voting.

3 Greedy Ensemble Selection

Greedy ensemble selection algorithms attempt to find the globally best subset
of classifiers by taking local greedy decisions for changing the current subset.
An example of the search space for an ensemble of four models is presented in
Figure 1.

Figure 1: An example of the search space of greedy ensemble selection algorithms
for an ensemble of four models

In the following subsections we present and discuss on what we consider to
be the main aspects of greedy ensemble selection algorithms: the direction of
search, the measure and dataset used for evaluating the different branches of
the search and the size of the final subensemble. The notation that will be used
is the following.

• D = {(xi, yi), i = 1, 2, . . . , N} is an evaluation set of labelled training
examples where each example consists of a feature vector xi and a class
label yi.

• H = {ht, t = 1, 2, . . . , T} is the set of classifiers or hypotheses of an
ensemble, where each classifier ht maps an instance x to a class label
y, ht(x) = y.

• S ⊆ H , is the current subensemble during the search in the space of
subensembles.

3.1 Direction of Search

Based on the direction of search, there are two main categories of greedy en-
semble selection algorithms: forward selection and backward elimination.
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In forward selection, the current classifier subset S is initialized to the empty
set. The algorithm continues by iteratively adding to S the classifier ht ∈ H\S
that optimizes an evaluation function fFS(S, ht, D). This function evaluates the
addition of classifier ht in the current subset S based on the labelled data of D.
For example, fFS could return the accuracy of the ensemble S ∪ ht on the data
set D by combining the decisions of the classifiers with the method of voting.
Algorithm 1 shows the pseudocode of the forward selection ensemble selection al-
gorithm. In the past, this approach has been used in [Fan et al., 2002, Martinez-
Munoz and Suarez, 2004, Caruana et al., 2004] and in the Reduce-Error Pruning
with Backfitting (REPwB) method in [Margineantu and Dietterich, 1997].

Algorithm 1 The forward selection method in pseudocode

Require: Ensemble of classifiers H , evaluation function fFS , evaluation set D
1: S = ∅
2: while S 6= H do

3: ht = arg max
h∈H\S

fFS(S, h, D)

4: S = S ∪ {ht}
5: end while

In backward elimination, the current classifier subset S is initialized to the
complete ensemble H and the algorithm continues by iteratively removing from
S the classifier ht ∈ S that optimizes the evaluation function fBE(S, ht, D).
This function evaluates the removal of classifier h from the current subset S

based on the labelled data of D. For example, fBE could return a measure of
diversity for the ensemble S \ {ht}, calculated on the data of D. Algorithm 2
shows the pseudocode of the backward elimination ensemble selection algorithm.
In the past, this approach has been used in the AID thinning and concurrency
thinning algorithms [Banfield et al., 2005].

Algorithm 2 The backward elimination method in pseudocode

Require: Ensemble of classifiers H , evaluation function fBE , evaluation set D
1: S = H

2: while S 6= ∅ do

3: ht = arg max
h∈S

fBE(S, h, D)

4: S = S \ {ht}
5: end while

The time complexity of greedy ensemble selection algorithms for traversing
the space of subensembles is O(t2g(T, N)). The term g(T, N) concerns the
complexity of the evaluation function, which is linear with respect to N and
ranges from constant to quadratic with respect to T , as we shall see in the
following subsections.
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3.2 Evaluation Function

One of the main components of greedy ensemble selection algorithms is the
function that evaluates the alternative branches during the search in the space
of subensembles. Given a subensemble S and a model h the evaluation function
estimates the utility of inserting (deleting) h into (from) S using an appropriate
evaluation measure, which is calculated on an evaluation dataset. Both the
measure and the dataset used for evaluation are very important, as their choice
affects the quality of the evaluation function and as a result the quality of the
selected ensemble.

3.2.1 Evaluation Dataset

One approach is to use the training dataset for evaluation, as in [Martinez-
Munoz and Suarez, 2004]. This approach offers the benefit that plenty of data
will be available for evaluation and training, but is susceptible to the danger of
overfitting.

Another approach is to withhold a part of the training set for evaluation, as
in [Caruana et al., 2004, Banfield et al., 2005] and in the REPwB method in
[Margineantu and Dietterich, 1997]. This approach is less prone to overfitting,
but reduces the amount of data that are available for training and evaluation
compared to the previous approach. It sacrifices both the predictive performance
of the ensemble’s members and the quantity of the evaluation data for the sake of
using unseen data in the evaluation. This method should probably be preferred
over the previous one, when there is abundance of training data.

An alternative approach that has been used in [Caruana et al., 2006], is
based on k-fold cross-validation. For each fold an ensemble is created using the
remaining folds as the training set. The same fold is used as the evaluation
dataset for models and subensembles of this ensemble. Finally, the evaluations
are averaged across all folds. This approach is less prone to overfitting as the
evaluation of models is based on data that were not used for their training and
at the same time, the complete training dataset is used for evaluation.

During testing the above approach works as follows: the k models that where
trained using the same procedure (same algorithm, same subset, etc.) form a
cross-validated model. When the cross-validated model makes a prediction for
an instance, it averages the predictions of the individuals models. An alternative
testing strategy that we suggest for the above approach is to train an additional
single model from the complete training set and use this single model during
testing.

3.2.2 Evaluation Measure

The evaluation measures can be grouped into two major categories: those that
are based on performance and those on diversity.

The goal of performance-based measures is to find the model that maximizes
the performance of the ensemble produced by adding (removing) a model to
(from) the current ensemble. Their calculation depends on the method used for
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ensemble combination, which usually is voting. Accuracy was used as an eval-
uation measure in [Margineantu and Dietterich, 1997, Fan et al., 2002], while
Caruana et al. [2004] experimented with several metrics, including accuracy,
root-mean-squared-error, mean cross-entropy, lift, precision/recall break-even
point, precision/recall F-score, average precision and ROC area. Another mea-
sure is benefit which is based on a cost model and has been used in [Fan et al.,
2002].

The calculation of performance-based metrics requires the decision of the
ensemble on all examples of the pruning dataset. Therefore, the complexity
of these measures is O(|S|N). However, this complexity can be optimized to
O(N), if the predictions of the current ensemble are updated incrementally each
time a classifier is added to/removed from it.

It is generally accepted that an ensemble should contain diverse models in
order to achieve high predictive performance. However, there is no clear defi-
nition of diversity, neither a single measure to calculate it. In their interesting
study, Kuncheva and Whitaker [2003], could not reach into a solid conclusion
on how to utilize diversity for the production of effective classifier ensembles. In
a more recent theoretical and experimental study on diversity measures [Tang
et al., 2006], the authors reached to the conclusion that diversity cannot be ex-
plicitly used for guiding the process of greedy ensemble selection. Yet, certain
approaches have reported promising results [Martinez-Munoz and Suarez, 2004,
Banfield et al., 2005].

One issue that worths mentioning here is how to calculate the diversity
during the search in the space of ensemble subsets. For simplicity we consider
the case of forward selection only. Let S be the current ensemble and h ∈ H \S

a candidate classifier to add to the ensemble.
One could compare the diversities of subensembles S′ = S

⋂

ht for all can-
didate ht ∈ H \ S and select the ensemble with the highest diversity. Any
pairwise and non-pairwise diversity measure can be used for this purpose. The
time complexity of most non-pairwise diversity measures is O(|S′|N), while that
of pairwise diversity measures is O(|S′|2N). However, a straightforward opti-
mization can be performed in the case of pairwise diversity measures. Instead
of calculating the sum of the pairwise diversity for every pair of classifiers in
each candidate ensemble S′, one can simply calculate the sum of the pairwise
diversities only for the pairs that include the candidate classifier ht. The sum
of the rest of the pairs is equal for all candidate ensembles. The same opti-
mization can be achieved in backward elimination too. This reduces their time
complexity to O(|S|N).

Existing methods [Martinez-Munoz and Suarez, 2004, Banfield et al., 2005,
Tang et al., 2006] use a different approach to calculate diversity during the
search. They use pairwise measures to compare the candidate classifier ht with
the current ensemble S, which is viewed as a single classifier that combines the
decisions of its members with voting. This way they calculate the diversity
between the current ensemble as a whole and the candidate classifier. Such an
approach has time complexity O(|S|N), which can be optimized to O(N) , if
the predictions of the current ensemble are updated incrementally each time a
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classifier is added to/removed from it. However, these calculations do not take
into account the decisions of individual models.

In the past, the widely known diversity measures disagreement, double fault,
Kohavi-Wolpert variance, inter-rater agreement, generalized diversity and diffi-
culty were used for greedy ensemble selection in Tang et al. [2006]. Concurrency
[Banfield et al., 2005], margin distance minimization and Complementariness
Martinez-Munoz and Suarez [2004] are three diversity measures designed specif-
ically for greedy ensemble selection. We next present these measures using a
common notation.

The complementariness of a model hk with respect to a subensemble S and
a set of examples D = (xi, yi), i = 1, 2, . . . , N is calculated as follows:

COMD(hk, S) =

N
∑

i=1

I
(

yi = hk(xi) AND yi 6= S(xi)
)

,

where I(true) = 1, I(false) = 0 and S(xi) is the classification of instance
xi from the subensemble S. This classification is derived from the application
of an ensemble combination method to S, which usually is voting. The comple-
mentariness of a model with respect to a subensemble is actually the number of
examples of D that are classified correctly by the model and incorrectly by the
subensemble. A selection algorithm that uses the above measure, tries to add
(remove) at each step the model that helps the subensemble classify correctly
the examples it gets wrong.

The concurrency of a model hk with respect to a subensemble S and a set
of examples D = (xi, yi), i = 1, 2, . . . , N is calculated as follows:

COND(hk, S) =

N
∑

i=1

(

− 2 ∗ I
(

yi 6= hk(xi) AND yi 6= S(xi)
)

+

+2 ∗ I
(

yi = hk(xi) AND yi 6= S(xi)
)

+ I
(

yi = hk(xi) AND yi = S(xi)
)

)

This measure is very similar to complementariness with the difference that
it takes into account two extra cases. A possible extension is to take also under
consideration the case that the ensemble S classifies correctly the instance and
the model k does not.

The margin distance minimization method [Martinez-Munoz and Suarez,
2004] follows a different approach for calculating the diversity. For each classifier
ht an N -dimensional vector, ct, is defined where each element ct(i) is equal to 1
if the tth classifier classifies correctly instance i, and -1 otherwise. The vector,
CS of the subensemble S is the average of the individual vectors ct, CS =
1

|S|

∑|S|
t=1

ct. When S classifies correctly all the instances the corresponding

vector is in the first quadrant of the N -dimensional hyperplane. The objective
is to reduce the distance, d(o, C), where d is the Euclidean distance and o a
predefined vector placed in the first quadrant. The margin, MARD(hk, S),
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of a classifier k with respect to a subensemble S and a set of examples D =
(xi, yi), i = 1, 2, . . . , N is calculated as follows:

MARD(hk, S) = d

(

o,
1

|S| + 1

(

ck + CS

)

)

A disadvantage of calculating pairwise diversity measures between the can-
didate classifier and the current ensemble, is that the decisions of individual
models are not considered, as the current ensemble is treated as a whole. We
hypothesize that better results can be obtained from a measure that takes into
account the strength of the current ensemble’s decision. In particular, we argue
that an example that is incorrectly (correctly) classified by most of the members
of the current ensemble, should not affect strongly the evaluation measure, as
this is probably a very hard (easy) example. On the other hand, examples that
are misclassified by about half of the ensemble’s members, are near to change
status (correct/incorrect classification) and should strongly affect the measure.

Another issue concerning the concurrency measure in particular, is that it
does not take into account the case where the classifier is wrong and the current
ensemble correct. This is an important case, as it might lead to misclassification
of examples, especially those near to change status.

A measure that deals with this problem is Focused Selection Diversity (FSD)
which considers all cases and takes into account the strength of the current en-
semble’s decision [Partalas et al., 2008]1. It first defines the following quantities:
NTi, which denotes the number of models in the current ensemble S that clas-
sify example i correctly and NFi that denotes the number of models in S that
classify example i incorrectly. The measure is defined as follows:

FSDD(hk, S) =
1

|S|

N
∑

i=1

(

NTi ∗ I
(

yi = hk(xi) AND yi 6= S(xi)
)

−

−NFi∗I
(

yi 6= hk(xi) AND yi = S(xi)
)

+NFi∗I
(

yi = hk(xi) AND yi = S(xi)
)

−

−NTi ∗ I
(

yi 6= hk(xi) AND yi 6= S(xi)
)

)

The measure rewards the cases where the model hk under consideration is
correct and penalizes the cases where it is incorrect. If the current ensemble S is
incorrect, then the reward/penalty is multiplied with the proportion of correct
models in S. On the other hand, if S is correct, then the reward/penalty is
multiplied with the proportion of incorrect models in S. This weighting scheme
focuses the attention of the measure to examples near to change status, while it
overlooks examples that are either very easy or very hard to classify correctly.

1An extended and comprehensive version of this work can be found in [Partalas et al.,
2010]
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3.3 Size of Final Ensemble

Another issue that concerns greedy ensemble selection algorithms, is when to
stop the search process, or in other words how many models should the final
ensemble include.

One solution is to perform the search until all models have been added
into (removed from) the ensemble and select the subensemble with the highest
accuracy on the evaluation set. This approach has been used in [Caruana et al.,
2004]. Others prefer to select a predefined number of models, expressed as
a percentage of the original ensemble [Margineantu and Dietterich, 1997, Fan
et al., 2002, Martinez-Munoz and Suarez, 2004, Banfield et al., 2005].

4 Experimental Setup

We experiment on 14 datasets, 10 from the UCI Machine Learning repository
[Asuncion and Newman, 2007] and 4 from the Agnostic vs. Prior Knowledge
challenge2 and more specifically from the agnostic track. Tables 1 and 2 present
the details of these datasets. We avoid using UCI datasets containing less than
900 examples, so that an adequate amount of data is available for training,
evaluation and testing.

Id UCI Folder Inst Cls Cnt Dsc MV(%)

d1 car 1728 4 0 6 0.00
d2 cmc 1473 3 2 7 0.00
d3 credit-g 1000 2 7 13 0.00
d4 hypothyroid 3772 4 7 23 5.40
d5 image 2310 7 19 0 0.00
d6 kr-vs-kp (chess) 3196 2 0 36 0.00
d7 tic-tac-toe 958 2 0 9 0.00
d8 vehicle 946 4 18 0 0.00
d9 vowel 990 11 3 10 0.00
d10 waveform-5000 5000 3 21 0 0.00

Table 1: Details of datasets from the UCI Machine Learning repository: Folder
in UCI server, number of instances, classes, continuous and discrete attributes,
percentage of missing values.

Initially, each dataset is split into three disjunctive parts: a training set
DTr, a selection set DS and a test set DTe, consisting of 60%, 20% and 20%
of the examples in this dataset respectively. Two different ensemble production
methods are then used, in order to create an ensemble of 200 models: a) boot-
strap sampling (as in bagging), and b) running different learning algorithms
with different parameter configurations. To the best of our knowledge, this is

2http://www.agnostic.inf.ethz.ch/
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Id Name Inst Cls Attr MV(%)

d11 ada 4147 2 48 0.00
d12 gina 3153 2 970 0.00
d13 hiva 3846 2 1617 0.00
d14 sylva 13086 2 216 0.00

Table 2: Details of datasets from the Agnostic vs. Prior Knowledge challenge:
name, number of instances, classes, number of attributes, percentage of missing
values.

the only experimental study of ensemble selection algorithms considering both
homogeneous and heterogeneous models.

The WEKA machine learning library is used as the source of learning algo-
rithms [Witten and Frank, 2005] in both cases. In the first case we train 200
decision trees, using default parameters. In the second case we train 28 mul-
tilayer perceptrons, 66 k-NNs, 100 support vector machines (SVMs), 2 naive
Bayes classifiers and 4 decision trees. The different parameters that are used to
train these algorithms are the following (default values are used for the rest of
the parameters):

• Multilayer perceptrons: we use 6 values for the nodes in the hidden layer
{1, 2, 4, 8, 16, 32, 64} and 4 values for the momentum term {0.0, 0.2, 0.5,
0.8}.

• kNNs: we use 22 values for k distributed evenly between 1 and the plurality
of the training instances. We also use 3 weighting methods: no-weighting,
inverse-weighting and similarity-weighting.

• SVMs: we use 10 values for the complexity parameter {10−7, 10−6, 10−5,
10−4, 10−3, 10−2, 0.1, 1, 10, 100}, and 10 different kernels. We use 2
polynomial kernels (degree 2 and 3) and 8 radial kernels (gamma {0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}).

• Naive Bayes: we build one model with default parameters and one with
kernel estimation.

• Decision trees: we use 2 values for the confidence factor {0.25, 0.5}, and
2 values for Laplace smoothing {true, false}.

In order to evaluate the utility of using a separate selection dataset for the
evaluation function, we train two different ensembles of models for each one of
the above ensemble production methods: In the first ensemble, DTr is used for
training the models. DS is then used for evaluation and DTe for testing. In the
second ensemble, the dataset DTr

⋃

DS is used for both training and evaluation.
As in the previous case, DTe is then used for testing. In this way, we make a
fair comparison between using just the training set and using a separate dataset
for evaluation.
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In the next step, we use the greedy ensemble selection algorithm after setting
the parameters of direction, evaluation dataset and evaluation measure. We
experiment with the direction parameter using both forward (F) and backward
(B) as values. For the evaluation dataset, we use both the training set (T)
and a separate selection set (S) as the evaluation dataset, as explained in the
previous paragraph. Concerning the evaluation measure, we use the following 5
measures: accuracy (ACC), concurrency (CON), complementariness (COM), margin
(MAR) and the proposed measure (FSD). Voting is used as the method for model
combination within the computation of ACC, CON, COM and FSD. The reference
vector o in MAR is set to {0.25, 0.25, . . . , 0.25}. Table 3 shows the acronyms for
the different instantiations of the greedy ensemble selection algorithm, which
will be used in the section discussing the experimental results.

Acronym Direction Evaluation Dataset Evaluation Measure
FTACC Forward Training Accuracy
FTCON Forward Training Concurrency
FTCOM Forward Training Complementariness
FTMAR Forward Training Margin
FTFSD Forward Training Focused Selection Diversity
FSACC Forward Selection Accuracy
FSCON Forward Selection Concurrency
FSCOM Forward Selection Complementariness
FSMAR Forward Selection Focused Selection Diversity
BTACC Backward Training Accuracy
BTCON Backward Training Concurrency
BTCOM Backward Training Complementariness
BTMAR Backward Training Margin
BTFSD Backward Training Focused Selection Diversity
BSACC Backward Selection Accuracy
BSCON Backward Selection Concurrency
BSCOM Backward Selection Complementariness
BSMAR Backward Selection Margin
BSFSD Backward Selection Focused Selection Diversity

Table 3: Acronym, search direction, evaluation dataset and evaluation measure
for the different instantiations of the greedy ensemble selection algorithm.

We follow the approach of [Caruana et al., 2004] and select the subensem-
ble with the highest classification accuracy on the selection set (using voting),
instead of using an arbitrary percentage of models. We record the size of the
resulting ensemble and its classification accuracy on the test set, using voting
for model combination. The whole experiment is performed 10 times for each
dataset and the results are averaged.

We also calculate the performance of the complete ensemble of 200 models
(ALL) using voting for model combination and the best single model (BSM) based
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on the performance of the models on the evaluation dataset. The set DTr

⋃

DS

is used for training the models in both cases, as well as for evaluation in the
second case.

The source code that was used for conducting the experiments is available
at the following URL: http://mlkd.csd.auth.gr/ensemblepruning.html.

5 Results and Discussion

In this section we present and discuss the results that came up from the experi-
ments we conducted for both homogeneous and heterogeneous models. We also
report results concerning our submission to the Agnostic vs. Prior Knowledge
challenge.

5.1 Homogeneous Models

Results concerning homogeneous models are analyzed from the perspectives of
predictive performance, final ensemble size and the relationship between them.

5.1.1 Predictive Performance

Tables 6 and 7 in the Appendix present the classification accuracy and corre-
sponding rank respectively for each algorithm and dataset along with the mean
accuracy and rank across all datasets. Following the recommendation of Demsar
[2006], we start the performance comparison of the different algorithms based
on their average rank across all datasets. We notice that the two best perform-
ing algorithms are BTFSD and FTFSD. This shows that FSD leads to the highest
predictive performance irrespectively of the search direction, when the training
set is used for evaluation.

Figure 2 presents aggregates of the mean ranks for the different values of
the search direction (a), evaluation dataset (b) and evaluation measure (c) pa-
rameters, as well as aggregates for the different values of parameter pairs (d-f).

A first interesting remark based on Figure 2(b), is that the mean rank of
algorithms that use the selection set (14.21) for evaluation is much larger than
the mean rank of algorithms that use the training set (6.78), indicating a clear
superiority of the latter. The Wilcoxon signed-ranks test [Wilcoxon, 1945] is
employed in order to verify this hypothesis. In specific, 10 tests are performed
for the corresponding pairs of algorithms that use the same values for the direc-
tion and evaluation measure parameters but different values for the evaluation
dataset parameter (xSxxx vs. xTxxx). For a confidence level of 95%, the dif-
ferences between all of the 10 pairs of algorithms are significant. We therefore
conclude that the use of the training set offers significant merits to ensemble
selection algorithms in homogeneous ensembles.

Algorithms that use a separate selection set for evaluation, use less data
for training, leading to models with lower predictive performance. In addition,
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Figure 2: Mean rank across all datasets for different values of parameters and
parameter pairs.

14



the selection set is much smaller than the training set, making the evaluation
less resilient to noise. On the other hand, using the training set for evaluation
purposes is generally considered an unreliable approach, because models usually
overfit the training set and performance evaluations are optimistic. Here, we
notice that this doesn’t hold. We believe that this happens, because the ensem-
ble is composed of homogeneous models, and as a consequence all models are
equally affected by overfitting. This makes the amount of training data to play
the decisive role in the performance of ensemble selection algorithms.

Concerning the evaluation measures, the mean ranks of the algorithms are
the following in ascending order: FSD 9.47, CON 10.16, COM 10.31, MAR 10.86 and
ACC 11.71. We notice that the proposed measure has the best average perfor-
mance, but the difference with the rest of the measures is not large. Figure 2(f)
shows the mean ranks of the algorithms grouped by the values of the evaluation
measure and evaluation dataset parameters. Focusing on the results of the sig-
nificantly better algorithms that use the training set for evaluation, we notice
that the superiority of FSD is more evident. However, the differences with the
rest of the measures are still rather small.

In order to investigate whether there are significant differences among the
performance of the different measures for the xTxxx algorithms, we initially
employ Friedman’s test, which shows critical differences among the algorithms.
Following the recommendation of Demsar [2006], we proceed to the post-hoc
Nemenyi test [Nemenyi, 1963]. Figure 3 graphically represents the result of the
test with 90% confidence, q0.10 = 2.920 and CD = 3.341. The best ranks are
to the right and the groups of algorithms that are not significantly different
are connected with a bold line. We notice that there are two groups of similar
algorithms. The only statistically significant difference is that of FTFSD over
BTMAR.

123456710 9 8

FTFSD

BTFSD

BTCON

FTACC

FTCONFTMAR

FTCOM

BTCOM

BTACC

BTMAR

CD

Figure 3: Graphical representation of the Nemenyi test for the algorithms that
use the training set for evaluation.

Concerning the search direction parameter, we notice that the mean rank
of algorithms that search in the forward direction (10.60) is approximately the
same with the mean rank of the algorithms that search in the backward direction
(10.40). We therefore conclude that the search direction does not significantly
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affect the performance of ensemble selection algorithms in homogeneous ensem-
bles.

We also calculate the performance of the simpler ensemble methods ALL

and BSM, which were mentioned in the previous section. For simplicity of pre-
sentation, we compare these two methods against the best (BTFSD) and worst
(BSACC) ensemble selection algorithms. The mean ranks of the four methods are
in ascending order BTFSD 1.643, ALL 1.821, BSACC 2.786 and BSM 3.75. Figure
4 shows the result of the Nemenyi test with 90% confidence, q0.10 = 2.459 and
CD = 1.119.

1234

BPACC

BTFSD

ALL

CD

BSM

Figure 4: Graphical representation of the Nemenyi test for ALL, BSM, BTFSD and
BSACC.

The results show that greedy ensemble selection may lead to worse results
than using all models, if a proper algorithm isn’t used. This happens, because
the individual performance of the different models is approximately the same
and performance gains from ensemble selection are in general limited.

5.1.2 Ensemble Size

Table 8 in the Appendix shows the size of the final ensemble that is selected from
each algorithm on each dataset as well as the average size across all datasets.
Figure 5 presents aggregates of the results for the different values of the search
direction (a), evaluation dataset (b) and evaluation measure (c) parameters.

One interesting result is that algorithms that search in the forward direction
produce smaller ensembles than those that search in the backward direction. In
fact, the mean number of models selected by the Bxxxx algorithms (58.06) is
more than double the mean number of models selected by the Fxxxx algorithms
(24.57). Given that the direction parameter doesn’t affect the predictive per-
formance of algorithms significantly, we suggest the use of the forward direction
for ensemble selection in homogeneous ensembles.

A second interesting result is that algorithms that use the selection set for
evaluation produce smaller ensembles than those that use the training set. Al-
though xSxxx algorithms produce very small ensembles, they are not recom-
mended due to their significantly worse predictive performance. Concerning the
evaluation measures, we notice that the mean number of models selected by all
algorithms apart from xxMAR is approximately the same. The latter group of
algorithms select on average more than twice the mean number of models that
select the rest of the algorithms.
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Figure 5: Mean size of selected ensemble across all datasets and respective
algorithms.

5.1.3 Predictive Performance vs. Ensemble Size

Figure 6 shows the relationship between ensemble size and predictive perfor-
mance. We notice that size and performance are not correlated. The 5 best
performing algorithms produce ensembles of mean size between 25 and 60, while
the 5 worst performing ones produce ensembles of mean size between 15 and 29.

Figures 7 to 11 depict the accuracy curves of the xTxxx algorithms during
ensemble selection on both the evaluation and test sets for one indicative dataset
(d1). Note that the final subensemble that is selected by the algorithms, is the
one that corresponds to the maximum of the evaluation set accuracy curve. In
the figures we observe that this maximum point corresponds to a near optimal
point in the test set accuracy curve. This shows that the greedy ensemble
selection algorithm manages this way to select an appropriate size for the final
subensemble, which allows it to achieve high generalization performance.

5.2 Heterogeneous Models

We proceed to the analysis of the results concerning heterogeneous models fol-
lowing the same pattern as in the case of homogeneous models. In this case, we
additionally present a discussion on the different types of algorithms that are
selected in the final ensemble.
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Figure 6: Mean rank against mean size of selected ensemble of all algorithms
across all datasets.
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Figure 7: Accuracy of BTFSD and FTFSD against the number of models.

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 50 100 150 200

A
cc

ur
ac

y

Number of models in the ensemble

BTACC (evaluation)
BTACC (test)

(a)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  50  100  150  200

A
cc

ur
ac

y

Number of models in the ensemble

FTACC (evaluation)
FTACC (test)

(b)

Figure 8: Accuracy of BTACC and FTACC against the number of models.
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Figure 9: Accuracy of BTCOM and FTCOM against the number of models.
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Figure 10: Accuracy of BTCON and FTCON against the number of models.
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Figure 11: Accuracy of BTMAR and FTMAR against the number of models.
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5.2.1 Predictive Performance

Tables 9 and 10 at the Appendix present the classification accuracy and the
corresponding ranks for each algorithm on each dataset. We notice that the
best performing algorithms are BSCON and BSFSD occupying the first and the
second place respectively.

Figure 12 depicts the aggregates of the mean ranks for the different values
of the search direction (a), evaluation dataset (b) and evaluation measure (c)
parameters, as well as aggregates for the different values of parameter pairs
(d-f).

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

  0

  2

  4

  6

  8

  10

  12

ForwardBackward

M
ea

n 
R

an
k

(a)

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

  0

  2

  4

  6

  8

  10

  12

  14

TrainingSelection

M
ea

n 
R

an
k

(b)

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

  0

  2

  4

  6

  8

  10

  12

FSDMARCONCOMACC

M
ea

n 
R

an
k

(c)

��
��
��
��

����

Backward
Forward

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

  0

  2

  4

  6

  8

  10

  12

  14

  16

TrainingSelection

M
ea

n 
R

an
k

(d)

����

��
��
��
��Backward

Forward

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

  0

  2

  4

  6

  8

  10

  12

  14

FSDMARCONCOMACC

M
ea

n 
R

an
k

(e)

��
��
��
��

����

Selection
Training

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

  0

  2

  4

  6

  8

  10

  12

  14

  16

FSDMARCONCOMACC

M
ea

n 
R

an
k

(f)

Figure 12: Mean rank across all datasets for different values of parameters and
parameter pairs.

As we observe in Figure 12(a), the mean rank of the Bxxxx algorithms (9.307)
is better than that of the Fxxxx algorithms (11.693). In Figure 12(e), we notice

20



that for some measures (CON, FSD) the difference between the Bxxxx and Fxxxx

algorithms is quite large. In order to investigate the impact of the direction
parameter, we perform the Wilcoxon signed-ranks test for the corresponding
pairs of algorithms that use the same values for the evaluation measure and the
evaluation dataset parameters, but different values for the direction parameter.
For a confidence level of 95% three significant differences were detected for the
following pairs of algorithms: BSACC-FSACC, BTFSD-FTFSD and BTCON-FTCON.

An interesting remark is the substantially higher performance of xSxxx al-
gorithms compared to xTxxx algorithms, as shown in Figures 12(b) and 12(f).
To verify this observation we perform the Wilcoxon signed-ranks test for the
corresponding pairs of algorithms. The results of the tests show that all the dif-
ferences, apart from those of the pair BSMAR-BTMAR, are significant. This leads
to the conclusion that using a separate selection set improves the efficiency of
the algorithms, in contrast to the case of homogeneous models. In this case,
there are many different algorithms participating in the ensemble and the level
of overfitting may differ among them, turning the use of a separate selection set
into a necessity.

Concerning the evaluation measures, the mean ranks of the algorithms are
the following: FSD 9.71, CON 9.83, MAR 10.536, COM 10.929 and ACC 11.491. Sim-
ilarly to the case of homogeneous models, the proposed measure has the best
average rank, which shows its robustness. The CON measure has similar perfor-
mance, which shows that when we consider all combinations of correct/incorrect
classification by the current ensemble and the candidate classifier gives extra
strength to the measure. In contrast, algorithms that use the COM measure,
which takes into account only one combination, come short of performance
compared to those that use CON and FSD.

We next proceed to the Nemenyi test in order to detect significant differences
among the xSxxx algorithms. Figure 13 depicts a graphical representation of
the test with 90% confidence, q0.10 = 2.920 and CD = 3.341. We can identify
two groups of algorithms. Significant differences exist between the pairs BSCON-
BSACC and BSFSD-BSACC.

123456710 9 8

CD

BSCON

BSFSD

FSFSD

FSACCFSCON

BSCOM

BSMAR

FSCOM

FSMAR

BSACC

Figure 13: Graphical representation of the Nemenyi test for the xSxxx algo-
rithms.

Figure 14 presents the graphical representation of the Nemenyi test for the
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best performing algorithm BSCON, the worst performing algorithm BTACC and
the methods ALL and BSM with 90% confidence, q0.10 = 2.459 and CD = 1.119.
The mean ranks of the four algorithms in ascending order are 1.357 BSCON,
2.714 ALL, 2.964 BSM and 2.964 BTACC. The BSCON algorithm is significant better
than the other algorithms, which clearly shows that ensemble selection leads to
high predictive performance. We identify only one group of algorithms which
includes the worst performing ones.

1234

CD

BSCON

BSM

ALL

FTACC

Figure 14: Graphical representation of the Nemenyi test for ALL, BSM, BTACC
and BSCON.

An interesting observation is the identical performance of FTACC and BSM,
which is verified by looking at the analytical accuracy results for each dataset.
In addition, the algorithms FTCOM, FTCON and FTFSD also have the same perfor-
mance, which means that they act similar to the BSM algorithm. This behavior
can be verified by the fact that FTACC, FTCOM, FTCON and FTFSD select just one
model, the one with the highest accuracy in the evaluation set, as Table 11 in
the Appendix shows.

5.2.2 Ensemble Size

Table 11 at the Appendix presents the size of the selected ensemble for each
algorithm on each dataset and additionally the average size across all datasets.
Figure 15 shows aggregates of the mean size of the selected ensemble for the
different values of the search direction (a), evaluation dataset (b) and evalua-
tion measure (c) parameters, as well as for pairs of values of the direction and
evaluation dataset parameters (d).

We first notice in Figure 15(a) that algorithms searching in the backward
direction tend to produce much larger ensembles (45.54) than those searching
in the forward direction (6.83). This conclusion appeared in the case of homo-
geneous models too. In the previous section we concluded that the direction
parameter does not affect significantly the performance of the greedy ensemble
selection algorithm. Based on this conclusion the recommended direction for an
ensemble selection algorithm is the forward direction.

In Figure 15(b) we notice that xSxxx algorithms produce smaller ensembles
(17.88), than the xTxxx algorithms (34.49). In addition, in Figure 15(d), we
notice that in the xSxxx algorithms, the backward direction produces ensembles
twice the size (24.90) of the ensembles that are produced from the equivalent
algorithms in the forward direction (10.86). As for the evaluation measures,
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Figure 15: Mean size of selected ensemble across all datasets and respective
algorithms.

the xxMAR algorithms produce the largest ensembles, xxACC the smaller, while
xxCOM, xxCON and xxFSD select approximately the same number of models.

5.2.3 Predictive Performance vs. Ensemble Size

Figure 16 presents the relationship between the ensemble size and the predictive
performance expressed in rank. The first conclusion is that size and performance
are not correlated, similar to the case of homogeneous ensemble. The 5 best
performing algorithms select ensembles of size between 7 and 25 while the 5
worst performing algorithms between 1 and 76.

Figures 17 to 21 show the accuracy curve both on the evaluation set and the
test set during the ensemble selection for one indicative dataset (d11). Firstly,
we notice that the ensemble selection procedure improves the classification ac-
curacy substantially using a small number of models. Also, it is clearly showed
that the final subensemble that is selected by the algorithms based on the eval-
uation dataset, corresponds to a near-optimal point on the curve of the test set.
Another interesting observation is that all algorithms manage to exclude most
of the models that harm the performance considerably. These models are placed
at the end of the curve for each algorithm, as it can be noticed in the figures.
This behavior leads to final subensembles of both small size and high predictive
performance.

23



 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  10  20  30  40  50  60  70  80

M
ea

n 
R

an
k

Size of ensemble

Figure 16: Mean rank against mean size of selected ensemble of all algorithms
across all datasets.
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Figure 17: Accuracy of BSFSD and FSFSD against the number of models.
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Figure 18: Accuracy of BSACC and FSACC against the number of models.
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Figure 19: Accuracy of BSCOM and FSCOM against the number of models.
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Figure 20: Accuracy of BSCON and FSCON against the number of models.
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Figure 21: Accuracy of BSMAR and FSMAR against the number of models.
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5.2.4 Type of Models

Table 4 presents the average type of models selected from each algorithm. The
results are averaged for all datasets. Figure 22 presents aggregates for the
different evaluation measures across all datasets.

NN kNN SVM NB DT
BSACC 8.8 5.7 2.1 0.0 0.1
BSCOM 10.9 5.0 7.3 0.9 2.0
BSCON 7.9 1.4 8.0 0.5 1.4
BSMAR 23.8 23.3 2.5 0.0 0.0
BSFSD 5.7 1.2 8.1 0.4 1.3
BTACC 10.4 21.9 8.6 0.1 0.2
BTCOM 19.4 30.5 24.4 0.4 1.4
BTCON 14.1 22.9 28.9 0.6 2.8
BTMAR 25.6 31.2 10.4 0.1 0.3
BTFSD 14.4 25.1 28.4 0.7 3.2
FSACC 4.6 4.8 2.6 0.1 0.4
FSCOM 3.8 2.0 2.4 0.2 0.6
FSCON 2.1 0.6 2.4 0.3 0.4
FSMAR 7.5 4.1 6.5 0.6 1.5
FSFSD 2.2 0.3 2.7 0.2 0.2
FTACC 0.2 0.8 0.0 0.0 0.0
FTCOM 0.2 0.8 0.0 0.0 0.0
FTCON 0.2 0.8 0.0 0.0 0.0
FTMAR 3.0 4.0 1.8 0.6 0.7
FTFSD 0.2 0.8 0.0 0.0 0.0

Averages 8.25 9.36 7.35 0.28 0.825

Table 4: Average number of models for all datasets, selected from each algo-
rithm.

The xxACC algorithms select on average 8.3 kNN, 6.0 NN and 3.33 SVM
models. The xxCOM algorithms exhibit a balance in the type of models that
they select (8.58 kNN, 9.58 NN, 8.53 SVM). The xxCON and xxFSD algorithms
select mostly SVM models at an average of 9.83 and 9.8 respectively. Finally,
in the case of xxMAR algorithms, the kNN and NN models dominate as their
average selection is 15.68 and 14.98 respectively.

5.3 Results on the Agnostic vs. Prior Knowledge chal-

lenge

In order to provide results for comparisons with other methods that participated
in the challenge, we run the FSFSD algorithm on the challenge datasets (d11,
d12, d13, d14).
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Figure 22: Aggregates for the different measures concerning the type of models
that are selected.

We use a mixed ensemble of 250 models consisting of the 200 heterogeneous
models that were previously described, and 50 additional models using the rule
learners Ripper [Cohen, 1995] and PART [Witten and Frank, 1998], the ensemble
methods boosting, bagging, and decorate [Melville and Mooney, 2004] using the
C4.5 algorithm as the base classifier, and finally, the RandomForest [Breiman,
2001] algorithm. We use the training set for producing the models and the
validation set for ensemble selection.

Table 5 presents the results of the FSFSD algorithm on each dataset of
the Agnostic vs. Prior Knowledge challenge for the train, validation and test
sets, using the balanced error and area under the curve measures, which are
calculated automatically by the challenge organizers.

Balanced Error Area Under Curve
Train Valid Test Train Valid Test

ada 0.1243 0.2004 0.2293 0.9711 0.8877 0.9007
gina 0.0041 0.0285 0.051 1.0 0.9932 0.9871
hiva 0.2417 0.2986 0.3141 0.9505 0.7313 0.7476
sylva 0.0059 0.0148 0.0224 0.9998 0.9994 0.9996

Table 5: Results for the FSFSD algorithm on the Agnostic vs. Prior Knowledge
challenge datasets.

6 Conclusions

The contribution of this paper is two-fold. First of all, it presents a general
framework for the greedy ensemble selection algorithm by abstracting the main
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aspects of existing methods. These aspects are the direction of search, the eval-
uation dataset, the evaluation measure and the size of the final ensemble. The
second contribution is the systematic experimental study we performed for the
several options of greedy ensemble selection algorithms on both homogeneous
and heterogeneous ensembles.

The analysis of the results bring out several interesting conclusions. In the
homogeneous models, the use of all available data for both training and selection
leads to better results than using a separate selection set. In heterogeneous
models this conclusion is contradictory, as the use of a separate selection set
offers significantly better performance than using all data. In both cases, the
direction parameter does not affect significantly the performance and based on
this conclusion we suggest the use of the forward direction as it produces smaller
ensembles than the backward direction. Concerning the size of the ensemble that
is selected, we concluded that selecting it based on the maximum accuracy on
the evaluation set, leads to small ensembles with high predictive performance.

Appendix

This section provides the tables that present the results of the experiments
for each algorithm on each dataset for both homogeneous and heterogeneous
models. Due to space limitation, the tables are presented in landscape form.
More specifically, Tables 6, 7 and 8 present the classification accuracies, the
corresponding ranks and the size of each selected ensemble respectively for the
homogeneous models. Tables 9, 10 and 11 present the classification accuracies,
the corresponding ranks and the size of each selected ensemble respectively for
the heterogeneous models.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 Avrg
BSACC 90.8 52.7 78.0 99.4 96.7 99.1 89.8 73.7 85.9 83.3 84.2 92.2 95.4 99.0 87.2
BSCOM 91.9 51.6 80.0 99.4 97.2 99.2 92.7 74.4 87.6 83.5 84.3 92.5 95.6 99.2 87.8
BSCON 91.6 52.0 79.5 99.5 97.1 99.2 91.2 73.4 85.9 83.6 84.0 92.7 95.6 99.1 87.5
BSMAR 90.7 52.9 77.5 99.4 97.0 99.1 89.2 74.0 86.6 84.1 84.3 93.0 95.6 99.1 87.3
BSFSD 91.5 52.3 79.0 99.5 97.2 99.2 91.3 73.3 86.1 83.5 84.0 93.2 95.6 98.9 87.5
BTACC 92.7 53.5 76.5 99.5 97.5 99.3 93.7 76.2 89.1 83.5 84.3 93.0 95.4 99.3 88.1
BTCOM 92.8 52.9 78.0 99.5 97.7 99.3 93.9 75.6 89.2 83.8 84.3 93.8 95.7 99.2 88.3
BTCON 92.8 53.4 76.5 99.6 97.7 99.4 94.0 75.5 89.0 83.9 84.2 94.3 95.7 99.3 88.2
BTMAR 92.4 53.8 76.5 99.5 97.7 99.2 93.4 75.0 88.9 83.8 84.3 93.8 95.6 99.2 88.1
BTFSD 92.8 53.4 78.0 99.6 97.7 99.4 94.8 75.9 89.5 83.9 84.3 94.3 95.8 99.2 88.5
FSACC 91.4 53.4 77.0 99.4 96.8 99.1 90.2 73.6 86.8 83.7 84.1 91.6 95.4 99.2 87.3
FSCOM 91.2 52.6 76.0 99.4 97.0 99.1 92.3 73.3 87.3 83.5 84.2 92.5 95.4 99.2 87.4
FSCON 91.4 52.6 78.5 99.5 97.3 99.1 91.3 73.8 86.3 83.3 83.8 92.4 95.6 99.1 87.4
FSMAR 91.4 52.5 79.0 99.4 97.0 99.1 90.9 74.3 87.4 83.5 84.3 91.7 95.4 99.0 87.5
FSFSD 91.8 53.2 79.0 99.4 97.1 99.1 90.9 73.7 86.1 83.4 84.1 91.6 95.4 99.2 87.4
FTACC 92.8 53.5 76.5 99.6 97.8 99.4 94.0 76.2 87.1 83.8 84.0 93.5 95.8 99.4 88.1
FTCOM 93.0 53.7 75.5 99.6 97.7 99.3 94.2 75.4 88.1 83.5 84.1 93.7 95.8 99.3 88.1
FTCON 92.7 53.7 76.5 99.5 97.7 99.3 94.1 76.7 88.2 83.7 84.2 94.1 95.8 99.3 88.3
FTMAR 92.8 53.8 75.0 99.6 97.4 99.3 93.9 75.4 89.6 84.0 84.5 93.8 95.4 99.2 88.1
FTFSD 93.1 53.2 78.0 99.6 97.8 99.4 94.7 76.0 89.1 83.4 84.4 94.1 95.8 99.3 88.4

Table 6: Classification accuracy for each algorithm on each dataset for homogeneous models.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 Avrg
BSACC 19.0 14.0 8.5 17.0 20.0 17.0 19.0 15.5 19.5 19.5 11.5 17.0 17.0 18.5 16.643
BSCOM 11.0 20.0 1.0 17.0 12.5 11.5 11.0 11.0 10.0 13.5 6.0 14.5 10.5 10.5 11.429
BSCON 13.0 19.0 2.0 10.0 14.5 11.5 15.0 18.0 19.5 10.0 18.0 13.0 10.5 16.0 13.571
BSMAR 20.0 12.5 11.0 17.0 17.0 17.0 20.0 13.0 15.0 1.0 6.0 11.5 10.5 16.0 13.393
BSFSD 14.0 18.0 4.0 10.0 12.5 11.5 13.5 19.5 17.5 13.5 18.0 10.0 10.5 20.0 13.75
BTACC 8.5 5.5 15.0 10.0 9.0 7.0 9.0 2.5 4.5 13.5 6.0 11.5 17.0 4.0 8.786
BTCOM 5.0 12.5 8.5 10.0 5.5 7.0 7.5 6.0 3.0 6.0 6.0 6.0 6.5 10.5 7.143
BTCON 5.0 8.0 15.0 3.5 5.5 2.5 5.5 7.0 6.0 3.5 11.5 1.5 6.5 4.0 6.071
BTMAR 10.0 1.5 15.0 10.0 5.5 11.5 10.0 10.0 7.0 6.0 6.0 6.0 10.5 10.5 8.536
BTFSD 5.0 8.0 8.5 3.5 5.5 2.5 1.0 5.0 2.0 3.5 6.0 1.5 3.0 10.5 4.679
FSACC 16.0 8.0 12.0 17.0 19.0 17.0 18.0 17.0 14.0 8.5 15.0 19.5 17.0 10.5 14.893
FSCOM 18.0 15.5 18.0 17.0 17.0 17.0 12.0 19.5 12.0 13.5 11.5 14.5 17.0 10.5 15.214
FSCON 16.0 15.5 6.0 10.0 11.0 17.0 13.5 14.0 16.0 19.5 20.0 16.0 10.5 16.0 14.357
FSMAR 16.0 17.0 4.0 17.0 17.0 17.0 16.5 12.0 11.0 13.5 6.0 18.0 17.0 18.5 14.321
FSFSD 12.0 10.5 4.0 17.0 14.5 17.0 16.5 15.5 17.5 17.5 15.0 19.5 17.0 10.5 14.571
FTACC 5.0 5.5 15.0 3.5 1.5 2.5 5.5 2.5 13.0 6.0 18.0 9.0 3.0 1.0 6.5
FTCOM 2.0 3.5 19.0 3.5 5.5 7.0 3.0 8.5 9.0 13.5 15.0 8.0 3.0 4.0 7.464
FTCON 8.5 3.5 15.0 10.0 5.5 7.0 4.0 1.0 8.0 8.5 11.5 3.5 3.0 4.0 6.643
FTMAR 5.0 1.5 20.0 3.5 10.0 7.0 7.5 8.5 1.0 2.0 1.0 6.0 17.0 10.5 7.179
FTFSD 1.0 10.5 8.5 3.5 1.5 2.5 2.0 4.0 4.5 17.5 2.0 3.5 3.0 4.0 4.857

Table 7: Corresponding ranks for each algorithm on each dataset for homogeneous models.

3
0



d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 Avrg
BSACC 13.1 30.8 38.0 77.5 12.3 74.8 14.7 14.6 23.1 38.8 23.6 18.0 9.0 8.0 28.3
BSCOM 23.2 26.1 47.0 92.9 24.1 68.3 25.8 19.8 48.2 42.7 15.7 13.0 17.0 15.0 34.2
BSCON 14.6 23.7 38.0 74.9 14.0 27.6 20.9 9.8 24.2 41.8 16.6 20.0 3.0 106.0 31.0
BSMAR 108.4 80.0 7.0 93.0 93.7 94.0 96.8 72.3 128.3 135.8 101.9 109.0 14.0 199.0 95.2
BSFSD 18.3 16.5 14.0 92.9 21.2 50.2 23.4 15.9 33.9 32.5 19.3 47.0 4.0 6.0 28.2
BTACC 21.0 60.0 32.0 30.3 25.2 8.6 70.5 47.0 117.8 60.5 44.6 17.0 8.0 11.0 39.5
BTCOM 36.0 57.2 40.0 33.3 96.2 14.0 144.3 135.7 170.9 153.5 38.8 143.0 6.0 37.0 78.9
BTCON 37.8 67.6 62.0 39.0 52.8 14.2 85.1 81.6 135.2 127.5 40.2 21.0 14.0 43.0 58.6
BTMAR 147.0 160.0 102.0 67.1 153.9 52.8 131.3 128.8 154.6 163.2 158.5 189.0 3.0 199.0 129.2
BTFSD 32.9 65.9 34.0 44.8 55.6 22.4 114.9 75.5 133.8 114.4 38.3 46.0 15.0 12.0 57.5
FSACC 12.5 21.4 16.0 1.6 6.5 2.1 16.3 17.2 33.3 35.4 18.8 10.0 5.0 19.0 15.3
FSCOM 20.5 16.9 17.0 6.0 10.8 7.5 18.4 23.0 25.9 39.9 19.5 10.0 7.0 7.0 16.3
FSCON 15.1 18.4 37.0 4.6 16.4 4.8 14.6 10.3 21.4 27.6 14.0 11.0 3.0 13.0 15.0
FSMAR 24.0 38.5 19.0 6.0 21.4 17.2 20.0 27.3 31.5 38.2 41.5 28.0 7.0 67.0 27.6
FSFSD 16.4 18.3 49.0 2.9 12.5 3.8 12.6 18.2 23.3 28.9 19.6 12.0 4.0 11.0 16.6
FTACC 25.5 60.8 19.0 6.4 12.6 6.9 38.3 33.8 17.6 84.1 37.4 65.0 8.0 27.0 31.5
FTCOM 21.6 53.9 19.0 11.6 20.5 9.4 18.8 28.9 13.9 48.4 31.7 45.0 6.0 13.0 24.4
FTCON 25.2 54.1 27.0 7.6 24.7 6.7 24.1 41.8 21.3 101.4 34.5 76.0 4.0 39.0 34.8
FTMAR 22.5 59.2 46.0 28.0 26.4 12.3 46.2 52.0 37.9 85.3 39.7 47.0 5.0 11.0 37.0
FTFSD 24.6 57.7 24.0 8.5 23.7 9.5 21.6 31.2 19.9 56.7 34.3 41.0 16.0 13.0 27.2

Table 8: Size of each selected ensemble for homogeneous models.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 Avrg
BSACC 98.8 53.7 74.6 94.0 97.4 99.2 97.9 81.3 94.0 85.5 80.7 93.3 96.7 99.4 89.0
BSCOM 99.0 54.1 75.0 99.3 98.5 99.2 98.7 82.1 95.4 85.2 81.1 93.5 96.6 99.3 89.8
BSCON 99.4 55.1 75.2 99.3 98.3 99.4 98.7 84.0 96.0 86.0 83.2 93.7 96.2 99.5 90.3
BSMAR 98.1 56.1 75.1 93.5 98.3 99.2 98.5 82.3 93.5 85.8 80.5 91.0 96.7 99.5 89.2
BSFSD 99.3 56.5 75.2 99.3 98.3 99.4 98.8 83.8 95.8 86.0 82.5 93.5 96.4 99.5 90.3
BTACC 90.6 48.0 74.2 90.7 98.5 96.9 9.54 80.5 93.8 73.8 77.2 94.0 97.0 97.8 86.3
BTCOM 89.4 45.6 75.8 94.4 98.9 99.2 76.9 82.9 94.3 84.1 77.1 92.4 96.6 99.4 86.2
BTCON 91.4 47.6 75.9 90.8 98.3 99.2 98.3 83.2 94.4 84.7 75.8 93.3 96.7 99.4 87.8
BTMAR 89.6 51.7 75.6 94.4 98.3 98.1 95.2 82.4 94.5 85.9 82.5 91.9 96.6 99.3 88.3
BTFSD 92.1 47.3 75.8 90.8 98.3 99.2 98.2 83.1 94.4 83.9 76.6 93.3 96.7 99.4 87.8
FSACC 99.7 53.7 75.0 99.5 98.1 99.2 98.4 74.6 97.5 86.7 82.9 93.5 96.4 99.5 89.6
FSCOM 99.7 52.7 71.5 99.3 98.1 99.2 98.4 75.7 97.5 85.0 81.9 93.7 96.4 99.5 89.2
FSCON 99.7 56.1 71.5 99.3 98.1 99.2 97.9 75.7 97.5 85.4 82.6 93.7 96.4 99.5 89.5
FSMAR 98.9 53.1 74.0 99.5 97.8 99.2 97.9 81.4 95.3 84.7 82.1 93.7 96.7 99.2 89.5
FSFSD 99.7 51.7 74.0 99.5 98.1 99.2 98.4 78.7 97.5 86.2 83.4 93.7 96.4 99.5 89.7
FTACC 99.4 42.9 69.5 90.7 98.1 95.5 95.8 64.5 99.0 72.7 75.8 80.8 95.2 97.5 84.1
FTCOM 99.4 42.9 69.5 90.7 98.1 95.5 95.8 64.5 99.0 72.7 75.8 80.8 95.2 97.5 84.1
FTCON 99.4 42.9 69.5 90.7 98.1 95.5 95.8 64.5 99.0 72.7 75.8 80.8 95.2 97.5 84.1
FTMAR 99.0 43.2 73.9 94.8 98.1 96.1 96.9 69.1 98.2 72.7 77.7 80.8 96.9 98.5 85.4
FTFSD 99.4 42.9 69.5 90.7 98.1 95.5 95.8 64.5 99.0 72.7 75.8 80.8 95.2 97.5 84.1

Table 9: Classification accuracy for each algorithm on each dataset for heterogeneous models.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 Avrg
BSACC 14.0 6.5 10.0 12.0 20.0 8.0 11.0 10.0 18.0 7.0 10.0 11.0 5.0 9.5 10.857
BSCOM 11.5 5.0 8.5 6.0 2.5 8.0 2.5 8.0 12.0 9.0 9.0 8.0 9.0 12.5 7.964
BSCON 7.0 4.0 5.5 6.0 6.5 1.5 2.5 1.0 10.0 3.5 2.0 4.0 16.0 4.0 5.25
BSMAR 15.0 2.5 7.0 13.0 6.5 8.0 4.0 7.0 20.0 6.0 11.0 15.0 5.0 4.0 8.857
BSFSD 10.0 1.0 5.5 6.0 6.5 1.5 1.0 2.0 11.0 3.5 5.5 8.0 13.0 4.0 5.607
BTACC 18.0 12.0 11.0 18.0 2.5 15.0 18.0 11.0 19.0 15.0 13.0 1.0 1.0 16.0 12.179
BTCOM 20.0 15.0 2.5 10.5 1.0 8.0 20.0 5.0 17.0 13.0 14.0 13.0 9.0 9.5 11.25
BTCON 17.0 13.0 1.0 14.5 6.5 8.0 8.0 3.0 15.5 11.5 18.0 11.0 5.0 9.5 10.107
BTMAR 19.0 10.5 4.0 10.5 6.5 14.0 19.0 6.0 14.0 5.0 5.5 14.0 9.0 12.5 10.679
BTFSD 16.0 14.0 2.5 14.5 6.5 8.0 9.0 4.0 15.5 14.0 15.0 11.0 5.0 9.5 10.321
FSACC 2.5 6.5 8.5 2.0 14.0 8.0 6.0 15.0 7.5 1.0 3.0 8.0 13.0 4.0 7.071
FSCOM 2.5 9.0 15.5 6.0 14.0 8.0 6.0 13.5 7.5 10.0 8.0 4.0 13.0 4.0 8.643
FSCON 2.5 2.5 15.5 6.0 14.0 8.0 11.0 13.5 7.5 8.0 4.0 4.0 13.0 4.0 8.107
FSMAR 13.0 8.0 12.5 2.0 19.0 8.0 11.0 9.0 13.0 11.5 7.0 4.0 5.0 14.0 9.786
FSFSD 2.5 10.5 12.5 2.0 14.0 8.0 6.0 12.0 7.5 2.0 1.0 4.0 13.0 4.0 7.071
FTACC 7.0 18.5 18.5 18.0 14.0 18.5 15.5 18.5 2.5 18.0 18.0 18.0 18.5 18.5 15.857
FTCOM 7.0 18.5 18.5 18.0 14.0 18.5 15.5 18.5 2.5 18.0 18.0 18.0 18.5 18.5 15.857
FTCON 7.0 18.5 18.5 18.0 14.0 18.5 15.5 18.5 2.5 18.0 18.0 18.0 18.5 18.5 15.857
FTMAR 11.5 16.0 14.0 9.0 14.0 16.0 13.0 16.0 5.0 18.0 12.0 18.0 2.0 15.0 12.821
FTFSD 7.0 18.5 18.5 18.0 14.0 18.5 15.5 18.5 2.5 18.0 18.0 18.0 18.5 18.5 15.857

Table 10: Corresponding ranks for each algorithm on each dataset for heterogeneous models.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 Avrg
BSACC 21.7 13.0 16.6 3.0 1.0 13.0 50.9 35.3 9.6 17.0 15.0 16.0 1.0 9.0 15.8
BSCOM 43.0 29.0 16.8 10.0 8.0 14.0 15.9 27.8 19.2 40.0 56.0 18.0 19.0 34.0 25.0
BSCON 27.9 19.0 28.3 7.0 16.0 41.0 14.1 21.5 14.1 29.0 18.0 2.0 26.0 11.0 19.6
BSMAR 44.7 22.0 53.7 29.0 38.0 80.0 69.3 80.5 43.6 47.0 90.0 66.0 1.0 7.0 47.9
BSFSD 31.4 7.0 18.2 10.0 13.0 41.0 14.9 24.5 8.0 10.0 11.0 7.0 25.0 6.0 16.2
BTACC 99.9 49.0 9.9 4.0 11.0 4.0 97.4 178.2 58.6 10.0 10.0 39.0 1.0 4.0 41.0
BTCOM 142.9 18.0 72.2 10.0 12.0 122.0 140.5 184.6 59.7 24.0 9.0 143.0 60.0 60.0 75.5
BTCON 155.7 30.0 69.1 6.0 16.0 86.0 120.7 181.4 50.0 22.0 6.0 119.0 58.0 50.0 69.2
BTMAR 95.2 48.0 69.9 28.0 164.0 93.0 94.7 175.4 79.5 53.0 29.0 55.0 1.0 38.0 73.1
BTFSD 159.3 31.0 69.9 6.0 16.0 87.0 141.5 181.6 49.6 23.0 8.0 127.0 59.0 51.0 72.1
FSACC 1.0 45.0 11.0 2.0 2.0 5.0 3.0 2.0 5.0 55.0 9.0 12.0 2.0 4.0 11.2
FSCOM 1.0 59.0 1.0 4.0 1.0 1.0 9.0 6.0 10.0 36.0 12.0 1.0 1.0 1.0 10.2
FSCON 1.0 38.0 1.0 9.0 1.0 1.0 1.0 12.0 7.0 16.0 5.0 1.0 1.0 5.0 7.0
FSMAR 9.7 17.0 38.3 6.0 2.0 43.0 8.8 27.1 11.2 48.0 7.0 3.0 16.0 33.0 19.2
FSFSD 1.0 3.0 18.0 1.0 1.0 1.0 3.0 21.0 13.0 18.0 8.0 1.0 1.0 4.0 6.7
FTACC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
FTCOM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
FTCON 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
FTMAR 4.8 2.0 44.5 17.0 2.0 23.0 8.9 2.1 3.2 2.0 3.0 3.0 11.0 14.0 10.0
FTFSD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 11: Size of each selected ensemble for heterogeneous models.
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