

Object-Oriented Modeling of RDF Schema
Ontologies

Efstratios Kontopoulos, Kalliopi Kravari and Nick Bassiliades

Department of Informatics, Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

{skontopo, kkravari, nbassili}@csd.auth.gr

Abstract
Ontologies are the primary knowledge representation tool in the Semantic Web and are mainly
used in defining common vocabularies, used in the exchange of information among Semantic
Web applications. In the process of encoding ontologies, appropriate ontology languages are
applied; such a language is RDF Schema, one of the dominant standards. A variety of
commercial and educational tools that address the tasks of developing and manipulating RDF
Schema ontologies has been developed. None of them, however, is specifically destined for
the inexperienced Semantic Web user. In this paper we present RDFSbuilder, a Java-built
visual authoring tool for developing RDF Schema ontologies. The system helps users to
develop their model quickly and efficiently, without being concerned about syntax or semantic
errors. Furthermore, it adopts a purely object-oriented representation of the RDF Schema
model, emphasizing on functional flexibility and simplicity of use. As a result, the model
produced is easy to understand and equally easy to handle.

Keywords: RDF Schema, editor, ontology, semantic web, object-oriented modeling.

1. Introduction
The Semantic Web (SW) represents a relatively recent initiative to improve the
potential of the existing Web [Berners-Lee et. al. (2001)]. The key idea is the
creation of a universal medium for information exchange, by putting documents with
computer – accessible meaning on the web. Thus, the organization and inter-
connection of all the data found scattered on the web are essential for their efficient
use by web applications.

The development of the SW is substantially based on ontologies. The ontology is a
data model that represents a given domain and is used to reason about the objects in
that domain and the relations between them. Contemporary ontologies share many
structural similarities, regardless of the language in which they are expressed. An
ontology language, on the other hand, is a formal language used to encode the
ontology. There exist a number of such languages for ontologies, both proprietary and

11th Panhellenic Conference in Informatics

480

standards-based, which provide descriptions that supplement or replace the content of
Web documents. XML provides a surface syntax for structured documents, but
imposes no semantic constraints on the meaning of these documents. RDF, on the
other hand, is a simple XML-based data model for referring to objects and how they
are related [Beckett (2006)]. Finally, RDF Schema (RDFS) is a vocabulary for
describing properties and classes of RDF resources [Brickley and Guha (2006)], with
semantics for generalization hierarchies of such properties and classes, while OWL
(Web Ontology Language) adds more capabilities for describing and constraining
properties and classes [OWL (2006)].

Within the Semantic Web environment, developing and manipulating RDF Schema
ontologies is a substantial but often tedious and error-prone task. Thus, the need for
tools that assist end-users during the development of such ontologies is evident.
Although several implementations exist of editors that create or manipulate RDF
Schema ontologies, end-users, especially the unfamiliar ones, consider them difficult
to handle. They are, thus, discouraged from developing their own ontologies, turning
the vision of the SW into something most people are not able to conceive yet.

In this paper we present RDFSbuilder, a Java-built visual authoring tool for
developing RDF Schema ontologies. The system helps users to develop their model
quickly and efficiently, preventing them from syntax or semantic errors. RDFSbuilder
emphasizes on offering a familiar development approach that closely assimilates
visual object-oriented programming, i.e. using a variety of on-screen tools and drag &
drop controls, contrary to graphic aids that focus on practical buttons and menus.

The rest of the paper is organized as follows: Section 2 introduces the syntax and
semantics of RDF. Section 3 presents ontologies and RDF Schema, a primary
ontology language in the SW domain. The next section introduces the object-oriented
RDF Schema representation, adopted by RDFSbuilder, while section 5 presents the
design and functionality of the system. Finally, section 6 discusses related work and
section 7 concludes the paper, also discussing potential directions for future work.

2. RDF – A Common Information Exchange Model in the SW
Towards augmenting the available information in the Web with semantic content,
RDF (Resource Description Framework) gave the solution; a common information
exchange model for supporting resource description, or metadata (data about data),
for the Web, usable by all SW applications.

The basic idea behind RDF is a model, consisting of a number of statements and
connections between these statements. Thus, the statement is the basic building block
of an RDF document and it consists of a resource-property-value triple:

• Resources are the objects we want to refer to or talk about. Every resource is
uniquely identified by a Uniform Resource Identifier (URI).

AI/Knowledge bases

481

• Properties are used to describe relations between resources, but, in practice,
they are a special kind of resources, also identified by URIs.

• Values can either be resources or simply literals (strings).

An example of a statement is: The person http://www.example.org/people.
rdf#john has a property http:// www.example.org/people.rdf#age with
value “26”. This statement declares that a specific person named John is 26 years old.
Here “http://www.example.org/people.rdf#john” is the resource (or
subject), “www.example.org/people.rdf#age” is the property (or predicate) and
the value (or object) is “26”.

There are various ways to represent an RDF statement, with the most important of
them being the XML-based representation, which allows the re-usability of the
various tools available for XML processing (syntactic interoperability). The XML
fragment that expresses the above statement can be seen in Figure 1.

 <rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:people=”http://www.example.org/people.rdf”>
 <rdf:Description rdf:about=”&people;john”>
 <people:age> 26 </people:age>
 </rdf:Description>
</rdf:RDF>

Figure 1. XML-based syntax of an RDF statement

Every statement is represented by an rdf:Description element. The subject of the
statement is being referred to in the rdf:about attribute, the predicate is used as a
tag and the object is the content of the tag.

Finally, namespaces should also be pointed out. Namespaces define a mechanism for
resolving name clashes if more than one document is imported [Antoniou and van
Harmelen (2004)]. According to namespaces, the names (actually URIs) of the
elements in an XML/RDF document are defined, using a prefix declared with the
command: xmlns:prefix=”URI”, and a local name that is unique within the base
URI. Τhis way, the same local name can be used freely in many RDF/RDF Schema
documents, since the existence of the prefix disambiguates things. The namespaces
defined in an element can be used by that element and its descendants.

In RDF, external namespaces do not only offer disambiguation, as in XML, but they
are also expected to be RDF documents defining resources, which are then used in the
importing RDF document. This mechanism allows the reuse of resources by other
people who may decide to insert additional features into these resources. The result is
the emergence of large, distributed collections of knowledge.

In the example above (Figure 1), two namespaces are declared: rdf and people. The
first contains the necessary vocabulary for RDF statements, while the other includes
domain-specific vocabulary for representing people.

11th Panhellenic Conference in Informatics

482

3. Ontologies and RDF Schema
The main knowledge representation tool in the SW is the ontology, which is simply a
structured representational formalism that shares a lot of common elements with
frames and semantic nets in AI. The ontologies are mainly used in defining common
vocabularies, used in the exchange of information among SW applications.

However, ontologies also offer interoperability among the available information and
the various WWW applications like search engines, portals, intelligent agents and
Web services. For example, today’s search engines have a low precision and high
recall. If there existed the possibility to perform an ontology-based search, then the
input keywords would be associated with the intended meaning. The search results
would not only be more accurate, but a number of results that would contain
conceptual synonyms of the inserted keyword would also be returned.

The main ontology languages in the SW today are RDF Schema and OWL. The
former is a vocabulary description language for describing properties and classes of
RDF resources, while the latter is a richer vocabulary description language that can
also describe relations between classes, cardinality, equality etc. As its name implies,
RDFSbuilder handles RDF Schema ontologies only.

Thus, although RDF lets the user describe resources using a custom vocabulary, as
seen in the previous section, apparently the level of expressivity it offers is not
sufficient. RDF Schema, RDF’s “semantic extension”, equips users with mechanisms
for describing domains and correlations among resources, namely the allowed
vocabulary for resources and properties, i.e. resources types and property types.

Though there are significant differences between RDF Schema and conventional
object-oriented programming languages, the former is also based on classes and
properties, similarly to the latter. Therefore, classes are sets of resources, while
members of classes are called instances. On the other hand, users can also describe
specific properties of class instances; properties impose a relation between subject
and object resources and are characterized by their domain (the class of resources that
may appear as subjects in a triple with the property as predicate) and range (the class
of resources that may appear as values in a triple with the property as predicate).

Instances are associated with the corresponding classes by declaring their type, using
a statement like: people:john rdf:type people:person. This statement
declares that instance john belongs to the class person. However, this is also
indirectly extracted by the fact that rdf:type has rdfs:Class as range, which
immediately results in person being a class, according to the descriptional nature of
the RDF semantics.

Naturally, the notions of hierarchy and inheritance are also applied in RDF Schema.
However, they are not only applied in the case of classes but in the case of properties

AI/Knowledge bases

483

as well. Thus, there can be defined super- and subclasses of a specific class, but there
can also exist super- and subproperties of a specific property.

An example of all the above can be seen in Figure 2. Two classes are described: class
“person” and its subclass “parent”. Similarly, two properties are also described:
“hasParent”, which has class “person” as its domain and class “parent” as its
range and “hasFather”, which is a subproperty of “hasParent” and, thus, inherits
from the latter the domain and range. Note here that, contrary to traditional object-
oriented programming, properties are not part of a class description, but are
“globally” visible in RDF Schema ontology. This not only imposes a different
programming approach, but also offers flexibility in extending ontologies.

 <rdfs:Class rdf:ID="person"/>
<rdfs:Class rdf:ID="parent">

<rdfs:subClassOf rdf:resource="#person"/>
</rdfs:Class>
<rdf:Property rdf:ID="hasParent">

<rdfs:domain rdf:resource="#person"/>
<rdfs:range rdf:resource="#parent"/>

</rdf:Property>
<rdf:Property rdf:ID="hasFather">

<rdfs:subPropertyOf rdf:resource="#hasParent"/>
</rdf:Property>

Figure 2. Classes and Properties in RDF Schema

4. The Object-Oriented RDF Schema Representation
RDFSbuilder adopts a purely object-oriented model for RDF Schema, adopted from
the R-DEVICE system [Bassiliades and Vlahavas (2006)]. According to this model,
properties are encapsulated as attributes in classes, resulting in a representation that
appears dissimilar from the standards of the RDFS model, but is not very
differentiated from UML class diagrams [UML (2006)]. Classes are represented as
rectangles, properties are encompassed by the classes and the subclass relationship is
represented by an arrow that commences from the subclass and ends on the superclass
rectangle. Users can also define globally visible properties, by declaring
rdfs:Resource as the property domain. Figure 3 displays an example of two
classes in RDFSbuilder that share a super-/subclass relationship, accompanied by the
corresponding RDF Schema fragment.

Developing an ontology following this practice accomplishes the primary design goal
of the system, i.e. to make it directly usable by users that are not accustomed to the
particular modelling style of RDF Schema. A development approach is applied,
which is very similar to common visual object-oriented programming. Nevertheless,
this approach is superficial and the final result, namely the ontology eventually
developed, remains compliant with the specifications of the RDF Schema model,
according to which, properties have a global scope and are not strictly encapsulated
by classes.

11th Panhellenic Conference in Informatics

484

 <rdfs:Class rdf:about=”&ex;person”/>
<rdfs:Class rdf:about=”&cmp;employee”>
 <rdfs:subClassOf rdf:resource=”&ex;person”/>
</rdfs:Class>
<rdf:Property rdf:about=”&ex;name”>
 <rdfs:domain>ex:person</rdfs:domain>

<rdfs:range>xsd:string</rdfs:range>
</rdf:Property>
<rdf:Property rdf:about=”&cmp;salary”>
 <rdfs:domain>cmp:employee</rdfs:domain>

<rdfs:range>xsd:integer</rdfs:range>
</rdf:Property>

Figure 3. Example of two classes in RDFSbuilder, accompanied by the
corresponding RDF Schema fragment

5. RDFSbuilder Design and Functionality
RDFSbuilder is a Java-built visual development tool that allows users to develop and
deploy RDF Schema ontologies in a visual fashion. By using the system, users can
develop their model quickly and efficiently, without being concerned about syntax or
semantic errors. An overview of the system is depicted in Figure 4.

Figure 4. RDFSbuilder system overview

As can be observed, RDFSbuilder consists of the following subsystems: (a) the GUI
(Graphical User Interface), concerned with the interaction between the system and the
end-user. It constitutes the tool for modelling and viewing the ontologies developed
as well as those imported from the Web, (b) the Pre-Processor, the module
responsible for translating the graph drawn (or modified) by the user into vectors of
classes and properties and vice-versa, i.e. convert the ontologies loaded into a sound
RDFSbuilder graph and (c) Jena Semantic Web Framework [McBride (2001)], a
flexible Java API for processing RDF documents, primarily concerned with
transforming the data regarding the graph (number and type of classes and properties
etc.) into a valid RDF Schema model, as well as for parsing the ontologies loaded or
those imported from the Web.

5.1 The User Interface
Figure 5 displays the main window of the system, which is composed of two major
parts: the upper part includes the toolbar, which contains icons, representing the most

AI/Knowledge bases

485

common utilities of the editor, while the central part comprises the drawing panel of
the main window, where the user can design the ontology model.

Figure 5. The main window of the system and the properties dialog box

By right-clicking on a spare space within this drawing panel, a popup menu with the
choice “Insert Class” appears. The user has the option of (a) creating a completely
new “empty” class, which can then be manipulated and “filled” with properties or,
alternatively, (b) importing a class that belongs to an existing ontology. The process
behind the second option is more extensively described in the following section. The
new class is drawn at the point, over which the mouse button was initially clicked.

The characteristics of each class can be easily modified, by right-clicking on the
appropriate class. A second popup menu shows up, which includes a variety of
choices that can be notionally divided into two groups: the first group is concerned
with the classes and includes the “Class Name” and “Delete Class” options, while the
second group is concerned with the properties and includes the “Add Property” and
“Class Properties” options.

• The functionality behind the “Class Name” and “Delete Class” options is
quite straightforward, allowing the user to modify the class name and delete
the class respectively.

• “Add Property” allows users to add a new property to the class, by declaring
its name, namely prefix and id, and its range. The class domain is
automatically set to the corresponding class.

• “Class Properties” let the user modify the name and/or range of a property
and remove properties from the class. Moreover, the user is allowed to set the
relation of “subPropertyOf” between this property and one or more other
properties.

Defining subclass relationships is equally easy. By clicking on the “Define Subclass”
toolbar button, the mouse cursor automatically changes to a “hand” cursor, waiting

11th Panhellenic Conference in Informatics

486

for the user to indicate the subclass and the superclass. All the user has to do is drag a
line from the subclass towards the superclass and, on the release of the mouse button,
a “subclass” arrow, similar to the one in Figure 3, is drawn that connects the two
classes. Classes that have no superclass in the graph are considered to be direct
subclasses of rdfs:Resource, which represents the class of all resources.

Furthermore, although the default size of the drawing panel is relatively limited (i.e.
640x480 pixels), the user is offered the capability of dynamically adjust its size, when
the ontology model developed becomes too big to fit. At this case, the changes in the
panel size are not directly visible, but the user can traverse the newly-created parts of
the graph, by using the scroll-bar controls located at the edges of the main window of
the program.

5.2 Importing Classes and Properties from an Existing Ontology
One of the important aspects of the RDF model is the namespaces. As explained in a
previous section, namespaces introduce a means to resolve name clashes (that would
otherwise be inevitable) among ontologies from different sources. However,
RDFSbuilder gives namespaces an extra meaning, by treating them as addresses of
input RDF Schema ontologies that contain essential vocabulary for the modeling of
the ontology under development. The namespaces applied are used in pull-down
menus and lists, in order to prevent potential errors on behalf of the user.

Figure 6. Importing an RDFS ontology

Thus, importing classes and properties from an existing RDF Schema ontology is
quite simple: by clicking on the appropriate toolbar button a frame appears (see
Figure 6), where the user can insert the URL of the ontology to be imported as well as
a corresponding prefix. Note that a default system-defined namespace
(ex:http://www. example.org/) is already declared.

By clicking on the “Add” button, the ontology is added to the list of imported
ontologies, but is not yet loaded. The user now has the choice of loading the ontology
either locked or unlocked; the former allows no modifications to the classes and
properties imported from the specific ontology, while the latter performs exactly the
opposite functionality, allowing the user to modify the imported elements.

AI/Knowledge bases

487

Alternatively, users can keep the ontology in an unloaded status (i.e. ontologies
simply appear in the list, but do not affect the ontology under development).

When the user selects ontology to be loaded (either locked or unlocked), the selected
ontology is downloaded and parsed by Jena, which collects all the classes and
properties contained in the loaded RDFS document. The elements collected will then
be available during the modeling of the ontology developed and the user is offered the
capability either to insert an imported class (see previous section), including the
corresponding properties (properties that have the specific class as their domain), or
to apply an imported property, through the “Class Properties” menu (also described in
the previous section).

Imported classes that belong to a loaded ontology can then be added to the current
model, with their locked/unlocked status indicating whether they can be modified,
enhanced or extended. Visually, imported classes are distinguished from the rest by
their outline color, which is red for the “locked” classes and blue for the “unlocked”.

The user can also manually “discover” more namespaces, by pressing the “Explore”
button in the bottom of the window. The system then downloads the namespace
documents contained within the specific document and displays them in the
namespaces list, accompanied by an “Unloaded” flag.

5.3 Exporting the RDF Schema Ontology
Besides RDF/XML syntax (normal and abbreviated), the RDFS ontology developed
can also be exported to Notation 3 and N-Triple formats:

• Notation 3 (N3) comprises a compact and easily readable alternative to RDF's
XML syntax, extended to allow greater expressiveness. N3 files typically
have the extension ‘.n3’.

• N-Triples is a line-based, plain text format for encoding an RDF graph. It was
designed to be a fixed subset of N3. N-Triples content is typically stored in
files with an ‘.nt’ suffix to distinguish them from N3.

6. Related Work
There exist several implementations of editors that create or manipulate RDF Schema
documents. MR3 [Takeshi et. al. (2006)] is such a tool for editing RDF-based
content. It is efficient and supports all the basic functions of the RDFS model, but
follows the traditional RDF visual representation, namely, the graph is created by
drawing a distinct geometrical figure (i.e. ellipses and boxes) for each entity, which
finally leads to a quite confusing graph. Furthermore, its utilities are complicated to
use by an unfamiliar user and, thus, comprises a limited solution, suitable only for
experienced users.

11th Panhellenic Conference in Informatics

488

Altova SemanticWorks [Altova (2006)] is a commercial product, which also offers all
the basic functions of the RDFS model. Users can visually design Semantic Web
instance documents, vocabularies, and ontologies and then output them in either
RDF/XML or N-triples formats. Its RDF representation and utilities, however, are
extremely sophisticated even for familiar with RDF and RDF Schema users.
Furthermore, it is an obscure system, difficult to use, as the representation of the
graph is too complicated to understand and to handle.

Protégé [Protege (2006)], also a commercial product, is an open-source ontology
editor and knowledge base framework. It supports the creation, visualization, and
manipulation of ontologies not only in RDFS but also in OWL, RDF and XML
Schema. Protégé also features flexible plug-in mechanisms that add extensibility to
the system as well as a wide user community, involved in a variety of research and
industrial projects. However, Protégé features a modeling environment, based on
graphical aids and mainly a tree representation of the ontologies developed, while
RDFSbuilder is purely visual. Nevertheless, there also exists OWLViz, one of
Protégé’s plug-ins, but it is merely a visualization tool for OWL ontologies, not
allowing development or modeling of ontologies.

IsaViz [Pietriga (2006)] and RDFSViz [Sintek (2006)] are two more similar systems.
The former represents models as directed graphs, using the traditional representation
of a model. It is simple to use but with limited functionality. The latter is a web
implementation of an RDFS visualisation service. Its online demo allows users to
enter the URL of their own RDFS files and the corresponding graph is generated. The
main drawback of both systems is that they are not editors but visualization tools.

7. Conclusions and Future Work
In this paper we argued that ontologies are the fundamental representation tool in the
Semantic Web and RDF Schema is one of the dominant ontology languages. RDF
Schema ontologies are extremely useful in the exchange of information among SW
applications. However, there is a lack of ontology developing and manipulating tools,
particularly destined for non-experienced users. We have developed RDFSbuilder, a
visual authoring tool to facilitate users in developing RDF Schema ontologies.
RDFSbuilder allows users to develop their model quickly and efficiently, without
being concerned about syntax or semantic errors. Furthermore, contrary to the
majority of similar systems, it adopts a completely object-oriented representation of
the model, which enhances functional flexibility and simplicity of use. As a result, the
graph produced is not only easy to understand but also extremely easy to handle.

Our future plans for RDFSbuilder include enhancing it further with RDF editing, so
that the next version of the tool will constitute a full visual RDF and RDF Schema
development environment. We also plan to proceed to an extensive user evaluation,
which will identify what the users really need and prefer and the results will be used

AI/Knowledge bases

489

to provide an even more user-friendly environment. However, our ultimate aim
concerning RDFSbuilder involves its integration with an existing system we have
developed, called VDR-DEVICE [Bassiliades et. al. (2005)]. VDR-DEVICE is a
visual, integrated development environment for modeling and using defeasible logic
rule bases on top of RDF ontologies in the SW environment.

7. Acknowledgements
This work was partially supported by the PYTHAGORAS II program which is jointly
funded by the Greek Ministry of Education (EPEAEK) and the European Union.

References
Altova, SemanticWorks (2006), Visual Semantic Web design tool for RDF and OWL,

http://www.altova.com/products/semanticworks/semantic_web_rd
f_owl_editor.html, last accessed: November 20, 2006.

Antoniou G., Harmelen F. van (2004), A Semantic Web Primer, MIT Press.
Bassiliades N., Kontopoulos E., Antoniou G. (2005), A Visual Environment for

Developing Defeasible Rule Bases for the Semantic Web, in Proc. RuleML-2005:
International Conference on Rules and Rule Markup Languages for the Semantic
Web, (pp. 172-186), Springer-Verlag, LNCS 3791, Galway, Ireland.

Bassiliades N., Vlahavas I. (2006), R-DEVICE: An Object-Oriented Knowledge Base
System for RDF Metadata, International Journal on Semantic Web and
Information Systems, Idea Group, Vol. 2, No. 2, pp. 24-90.

Beckett D. (ed.) (2006), RDF/XML Syntax Specification, http://www.w3.org/
TR/rdf-syntax-grammar/, last accessed: November 29, 2006.

Berners-Lee T., Hendler J., Lassila O. (2001), The Semantic Web, Scientific
American, 284(5), pp. 34-43.

Brickley D., Guha R.V. (eds.) (2006), RDF Vocabulary Description Language 1.0:
RDF Schema, http://www.w3.org/TR/rdf-schema/, last accessed:
November 29, 2006.

McBride B. (2001), Jena: Implementing the RDF Model and Syntax Specification, in
Proc. 2nd Int. Workshop on the Semantic Web.

OWL (2006), Web Ontology Language, http://www.w3.org/2004/OWL/, last
accessed: November 25, 2006.

Pietriga E. (2006), IsaViz: A Visual Authoring Tool for RDF,
http://www.w3.org/2001/11/IsaViz/, last accessed: November 20, 2006.

Protégé (2006), Ontology Editor and Knowledge Acquisition System,
http://protege.stanford.edu/, last accessed: December 4, 2006.

Sintek M., Lauer A. (2006), The FRODO RDFSViz Tool, http://www.dfki.uni-
kl.de/frodo/RDFSViz/, last accessed: November 20, 2006.

11th Panhellenic Conference in Informatics

490

Takeshi M., Noriaki I., Naoki F., Takahira Y. (2006), A Graphical RDF-based Meta-
Model Management Tool, IEICE Transactions on Information and Systems,
Special Issue on Knowledge-Based Software Engineering, Vol.E89-D, No.4, pp
1368-1377.

UML (2006), Unified Modeling Language, http://www.uml.org/, last accessed:
November 6, 2006.

