
A Visualization Algorithm for Defeasible Logic Rule
Bases over RDF Data

Efstratios Kontopoulos1, Nick Bassiliades1, Grigoris Antoniou2

1Department of Informatics
Aristotle University of Thessaloniki

GR-54124 Thessaloniki, Greece
{skontopo,nbassili}@csd.auth.gr

2Institute of Computer Science, FO.R.T.H.
P.O. Box 1385, GR-71110,

Heraklion, Greece
antoniou@ics.forth.gr

Abstract. This work presents a visualization algorithm for defeasible logic rule
bases as well as a software tool that applies this algorithm, according to which,
a directed graph is produced that represents the rule base. The graph features
distinct node types for rules and atomic formulas and distinct connection types
for the various rule types of defeasible logic.

1. Introduction

Logic and proofs posses a key role in the acceptance of the Semantic Web on behalf
of the users. Defeasible reasoning [3] represents a rule-based approach to reasoning
with incomplete, changing and conflicting information. Nevertheless, it is based on
solid mathematical formulations and is, thus, not fully comprehensible by users, who
often need graphical trace and explanation mechanisms for the derived conclusions.

This paper presents a visualization algorithm for defeasible logic rule bases and a
software tool that applies this algorithm. For the representation of the rule base, di-
rected graphs are applied that feature distinct node and connection types. The tool is
called dl-RuleViz and is implemented as part of VDR-DEVICE [1], an environment for
modeling and deploying defeasible logic rule bases on top of RDF ontologies.

2. Visualizing a Defeasible Logic Rule Base

The full theoretical approach, regarding the graphical representation of defeasible rea-
soning elements was discussed in a previous work of ours [2]. For every class in the
rule base, a class box with the same name is constructed. Class boxes are containers,
which are dynamically populated with one or more class patterns. Class patterns ex-
press conditions on filtered subsets of instances of the specific class and are populated
with one or more slot patterns. Slot patterns represent conditions on slots (or class
properties) and they consist of a slot name and, optionally, a variable and a list of
value constraints. The variable is used for unifying the slot value, with the latter hav-
ing to satisfy the list of constraints.

For the placement of each element in the graph, an algorithm (Fig. 1) for the visu-
alization of the defeasible logic rule base is proposed that takes advantage of common
rule stratification techniques. Unlike the latter, however, that focus on computing the
minimal model of a rule set, our algorithm aims at the optimal visualization outcome.

 str:=1
foreach cb∈CBb do stratum(cb):=str
while |RS|≠0 do

RuleTemp:=∅
str:=str+1
foreach R∈RS do

if ((∀p∈premises(R) → stratum(class(p))<str) ∧
(∃p'∈premises(R) ∧ stratum(class(p'))=str-1))

then stratum(R):=str, RS:=RS-{R}, RuleTemp:=RuleTemp ∪{R}
foreach R∈RuleTemp do

foreach p∈premises(R) do
if stratum(class(p))=str-1 then Type:=plain else Type:=expandable,
in-arrow(R):=in-arrow(R)∪{<p,Type>},
out-arrow(p):=out-arrow(p)∪{<R,Type>},

str:=str+1
CbTemp:=∅
foreach R∈RuleTemp do

if unknown(stratum(class(conclusion(R))))
then stratum(class(conclusion(R))):=str, CbTemp:=CbTemp∪{class(conclusion(R))}

foreach R∈RuleTemp do
if type(R)=strictrule then Type:= strict
else if type(R)=defeasible then Type:=defeasible
else Type:=defeater,
if class(conclusion(R))∈CbTemp then Orient:=plain else Orient:=dotted,
out-arrow(R):=out-arrow(R)∪{<conclusion(R),Orient,Type>},
in-arrow(class(conclusion(R))):=in-arrow(conclusion(R))∪{<R,Orient,Type>}

Fig. 1. The rule stratification algorithm

The algorithm gives a left-to-right orientation to the flow of information in the
graph by “stratifying” the graph elements, i.e. by calculating the optimal stratum,
where each graph element has to be placed. The following steps can be distinguished:
1. All base class boxes are placed in stratum #1.
2. The algorithm enters a loop, consecutively assigning strata to rule circles and de-

rived class boxes, incrementing each time the stratum counter by 1.
a. A rule circle is assigned to a stratum, if all its premises belong to previous strata,

with at least one of them belonging to the immediately previous stratum.
b. A class box is assigned to a stratum, if it contains the conclusions of rules in the

immediately previous stratum.
When a conclusion of a rule serves as a premise for another rule in a previous stra-

tum, the conclusion is not drawn again and the arrow connecting the rule with the
conclusion is not drawn backwards. Instead, a “dotted” arrow is drawn, commencing
from the rule circle and ending in three dots “…”, to reduce complexity. By clicking
on the arrow, a pop-up window shows the rule isolated in its completeness.

Only the arcs that connect two consecutive graph elements are drawn by default.
When the stratum difference between a class pattern and a rule circle is greater than 1,
the arrow that connects them is “expandable”. To prevent graph cluttering, expand-
able arrows are drawn only at the user’s request.

For example, suppose that we have the following rule base:
r1: novel(X) → book(X)
r2: book(X) ⇒ hardcover(X) r3: novel(X) ⇒ ¬hardcover(X)

r4: novel(X),collectible(X,“yes”) ⇒ rare(X)
r5: novel(X),author(X,“Asimov”),price(X,Y),Y>18 ⇒ hardcover(X)

Fig. 2. Implementation of the visualization algorithm by dl-RuleViz

After applying the algorithm, it comes up that four strata (or columns) are needed
to display all the graph elements. The resulting graph (Fig. 2), produced by dl-
RuleViz, is compliant with the algorithm presented. The pop-up window displays the
premises and conclusion of rule r2.

3. Future Work

Potential improvements of dl-RuleViz and the visualization algorithm include enhanc-
ing the derived graph with negation-as-failure and variable unification, for simplify-
ing the display of multiple unifiable class patterns. Expressive visualization of a de-
feasible logic rule base can then lead to proof explanations. By adding visual rule
execution tracing, proof visualization and validation to the dl-RuleViz module, we
can delve deeper into the Proof layer of the Semantic Web architecture, implementing
facilities that would increase the trust of users towards the Semantic Web.

References

[1] Bassiliades N., Kontopoulos E., Antoniou G., “A Visual Environment for Developing De-
feasible Rule Bases for the Semantic Web”, Proc. RuleML-2005, Galway, Ireland,
Springer-Verlag, LNCS 3791, pp. 172-186, 2005.

[2] Kontopoulos E., Bassiliades N., Antoniou G., “Visualizing Defeasible Logic Rules for the
Semantic Web”, 1st Asian Semantic Web Conference (ASWC'06), Beijing, China,
Springer-Verlag, LNCS 4185, pp. 278-292, 2006.

[3] Nute D., “Defeasible Reasoning”. Proc. 20th Int. Conference on Systems Science, pp.
470-477, IEEE Press, 1987.

