
1

A Visual Environment for Developing Defeasible Rule
Bases for the Semantic Web

Nick Bassiliades1, Efstratios Kontopoulos1, Grigoris Antoniou2

1Department of Informatics, Aristotle University of Thessaloniki
GR-54124 Thessaloniki, Greece

{nbassili, skontopo}@csd.auth.gr
2Institute of Computer Science, FO.R.T.H.

P.O. Box 1385, GR-71110, Heraklion, Greece
antoniou@ics.forth.gr

Abstract. Defeasible reasoning is a rule-based approach for efficient reasoning
with incomplete and inconsistent information. Such reasoning is useful for
many applications in the Semantic Web, such as policies and business rules,
agent brokering and negotiation, ontology and knowledge merging, etc., mainly
due to interesting features, such as conflicting rules and priorities of rules.
However, the RuleML syntax of defeasible logic may appear too complex for
many users. Furthermore, the interplay between various technologies and lan-
guages, such as defeasible reasoning, RuleML, and RDF impose a demand for
using multiple, diverse tools for building rule-based applications for the Seman-
tic Web. In this paper we present VDR-Device, a visual integrated development
environment for developing and using defeasible logic rule bases on top of RDF
ontologies. VDR-Device integrates in a user-friendly graphical shell, a visual
RuleML-compliant rule editor that constrains the allowed vocabulary through
analysis of the input RDF ontologies and a defeasible reasoning system that
processes RDF data and RDF Schema ontologies.

1. Introduction

Although the Semantic Web represents a recent initiative to improve the potential of
the current Web, it undoubtedly constitutes the inspiration for a vast number of appli-
cations. However, only the basic layers of the Semantic Web [9] have achieved a cer-
tain level of maturity, with the highest one of them being the ontology layer, where
OWL [11], a description logic-based language, has become the dominant standard.
The next layers that have to become more “concrete” are the logic and proof layers.
Rule-based systems seem to possess a key role in this affair, since (a) they can serve
as extensions of, or alternatives to, description logic based ontology languages; and
(b) they can be used to develop declarative systems on top of (using) ontologies.

Defeasible reasoning [19], a member of the non-monotonic reasoning family, con-
stitutes a simple rule-based approach to reasoning with incomplete and conflicting in-
formation. This approach offers two main advantages: (a) enhanced representational
capabilities, allowing one to reason with incomplete and contradictory information,

2

coupled with (b) low computational complexity compared to mainstream non-
monotonic reasoning. Defeasible reasoning can represent facts, rules as well as priori-
ties and conflicts among rules. Such conflicts arise, among others, from rules with ex-
ceptions, which are a natural representation for policies and business rules [2]. And
priority information is often implicitly or explicitly available to resolve conflicts
among rules. Potential applications include security policies ([6], [16]), business rules
[1], personalization, brokering [5], bargaining and agent negotiations ([13], [20]).

Although defeasible logic is certainly a very promising reasoning technology for
the Semantic Web, the development of rule-based applications for the Semantic Web
can be greatly compromised by two factors. First, defeasible logic is certainly not an
end-user language but rather a developer's one, because its syntax (especially its
RuleML compliant one presented in this paper) may appear too complex. Further-
more, the interplay between various technologies and languages involved in such ap-
plications, namely defeasible reasoning, RuleML, and RDF, impose a demand for us-
ing multiple, diverse tools, which is a high burden even for the developer.

In this paper we present VDR-Device, a visual integrated development environ-
ment for developing and using defeasible logic rule bases on top of RDF ontologies.
VDR-Device integrates in a user-friendly graphical shell, a visual RuleML-compliant
rule editor and a defeasible reasoning system that processes RDF data and RDF
Schema ontologies [7]. The rule editor helps users to develop a defeasible logic rule
base by constraining the allowed vocabulary after analyzing the input RDF ontolo-
gies. Therefore, it removes from the user the burden of typing-in class and property
names and prevents potential semantical and syntactical errors. The visualization of
rules follows the tree model of RuleML.

VDR-DEVICE supports multiple rule types of defeasible logic, as well as priorities
among rules. Furthermore, it supports two types of negation (strong, negation-as-
failure) and conflicting (mutually exclusive) literals. DR-DEVICE has a RuleML-
compatible [10] syntax, which is the main standardization effort for rules on the Se-
mantic Web. Input and output of data and conclusions is performed through process-
ing of RDF data and RDF Schema ontologies. The system is built on-top of a CLIPS-
based implementation of deductive rules, namely the R-DEVICE system [8]. The core
of the system consists of a translation of defeasible knowledge into a set of deductive
rules, including derived and aggregate attributes.

The rest of the paper is organized as follows: Section 2 introduces a brokering
trade case study that is used throughout the paper. Section 3 briefly introduces the
semantics of defeasible logics. Section 4 presents the architecture and functionality of
the VDR-Device system, including the visual rule editor and the core reasoning sys-
tem. Finally, section 5 discusses related work and section 6 concludes the paper and
discusses future work.

2. A Case Study

This section briefly presents a case study, adopted from [4], that is used throughout
this paper to explicate the workings of defeasible logic and VDR-Device. The case
study deals with a brokered trade application that takes place via an independent third

3

party, the broker, and more specifically with apartment renting. A number of available
apartments reside in an RDF document along with the properties of each apartment
(Fig. 1). The potential user expresses his/her requirements in defeasible logic (as ex-
plained in the following section), regarding the apartment he/she wishes to rent. The
broker then tries to match the customer’s requirements and the apartment specifica-
tions and proposes a deal when both parties can be satisfied by the trade.

<rdf:RDF ... xmlns:carlo="&carlo;" xmlns:carlo_ex="&carlo_ex;">
 <carlo:apartment rdf:about="&carlo_ex;a1">
 <carlo:bedrooms rdf:datatype="&xsd;integer">1</carlo:bedrooms>
 <carlo:central>yes</carlo:central>
 <carlo:floor rdf:datatype="&xsd;integer">1</carlo:floor>
 <carlo:gardenSize rdf:datatype="&xsd;integer">0</carlo:gardenSize>
 <carlo:lift>no</carlo:lift>
 <carlo:name>a1</carlo:name>
 <carlo:pets>yes</carlo:pets>
 <carlo:price rdf:datatype="&xsd;integer">300</carlo:price>
 <carlo:size rdf:datatype="&xsd;integer">50</carlo:size>
 </carlo:apartment>
 ...
</rdf:RDF>

Fig. 1. RDF document excerpt for available apartments.

The potential renter is looking for an apartment of at least 45m2 with at least 2 bed-
rooms. If it is on the 3rd floor or higher, the house must have an elevator. Also, pet
animals must be allowed. He is willing to pay $300 for a centrally located 45m2
apartment, and $250 for a similar flat in the suburbs. In addition, he is willing to pay
an extra $5 per m2 for a larger apartment, and $2 per m2 for a garden. He is unable to
pay more than $400 in total. If given the choice, he would go for the cheapest option.
His 2nd priority is the presence of a garden; lowest priority is additional space.

3. Defeasible Logics - An Introduction

A defeasible theory D (i.e. a knowledge base or a program in defeasible logic) con-
sists of three basic ingredients: a set of facts (F), a set of rules (R) and a superiority re-
lationship (>). Therefore, D can be represented by the triple (F, R, >).

In defeasible logic, there are three distinct types of rules: strict rules, defeasible
rules and defeaters. Strict rules are denoted by A → p and are interpreted in the typi-
cal sense: whenever the premises are indisputable, so is the conclusion. An example
of a strict rule is: “Apartments are houses”, which, written formally, would become:

r1: apartment(X) → house(X)

Defeasible rules are rules that can be defeated by contrary evidence and are de-
noted by A ⇒ p. An example of such a rule is “Any apartment is considered to be ac-
ceptable”, which becomes r2: apartment(X) ⇒ acceptable(X).

Defeaters, denoted by A ~> p, are rules that do not actively support conclusions,
but can only prevent some of them. In other words, they are used to defeat some de-
feasible rules by producing evidence to the contrary. A defeater example is:

4

r3: ¬pets(X),gardenSize(x,y),y>0 ~> acceptable(X)

which reads as: “If pets are not allowed in the apartment, but the apartment has a
garden, then it might be acceptable”. This defeater can defeat, for example, rule
r4: ¬pets(X) ⇒ ¬acceptable(X).

Finally, a superiority relationship among the rule set R is an acyclic relation > on
R. For example, given the defeasible rules r2 and r4, no conclusive decision can be
made about whether the apartment is acceptable or not, because rules r2 and r4 con-
tradict each other. But if a superiority relation > with r4 > r2 is introduced, then r4

overrides r2 and we can indeed conclude that the apartment is considered unaccept-
able. In this case rule r4 is called superior to r2 and r2 inferior to r4.

Another important element of defeasible reasoning is conflicting literals. In appli-
cations, literals are often considered to be conflicting and at most one of a certain set
should be derived. An example of such an application is price negotiation, where an
offer should be made by the potential buyer. The offer can be determined by several
rules, whose conditions may or may not be mutually exclusive. All rules have of-
fer(X) in their head, since an offer is usually a positive literal. However, only one
offer should be made; therefore, only one of the rules should prevail, based on superi-
ority relations among them. In this case, the conflict set is determined as follows:
C(offer(x,y)) = { ¬offer(x,y) } ∪ { offer(x,z) | z ≠ y }

For example, the following two rules make an offer for an given apartment, based
on the buyer’s requirements. However, the second one is more specific and its conclu-
sion overrides the conclusion of the first one.
r5: size(X,Y),Y≥45,garden(X,Z) ⇒ offer(X,250+2+5(Y−45))
r6: size(X,Y),Y≥45,garden(X,Z),central(X) ⇒ offer(X,300+2Z+5(Y−45))
r6 > r5

4. VDR-Device System Architecture

The VDR-Device system consists of two primary components:
1. the reasoning system, named DR-Device, which performs the processing and infer-

ence and produces the results, and
2. the rule editor, named DRREd (Defeasible Reasoning Rule Editor), which serves

both as a rule authoring tool and as a graphical shell for the core reasoning system.
Although these two subsystems utilize different technologies and were developed

independently, they intercommunicate efficiently, forming a flexible and powerful in-
tegrated environment. The following subsections describe in detail these two major
parts of the system.

4.1. Architecture and Functionality of the Reasoning System

The core reasoning system of VDR-Device is DR-Device [6] and consists of two pri-
mary components (Fig. 2): The RDF loader/translator and the rule loader/translator.
The user can either develop a rule base (program, written in the RuleML-like syntax
of VDR-Device) with the help of the rule editor described in the following sections,

5

or he/she can load an already existing one. The rule base contains: (a) a set of rules,
(b) the URL(s) of the RDF input document(s), which is forwarded to the RDF loader,
(c) the names of the derived classes to be exported as results and (d) the name of the
RDF output document.

RDF triple
Loader

RDF triple
Translator

Local Disk

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

DRREd USER

Fig. 2. The architecture of the core reasoning system.

The rule base is then submitted to the rule loader which transforms it into the na-
tive CLIPS-like syntax through an XSLT stylesheet and the resulting program is then
forwarded to the rule translator, where the defeasible logic rules are compiled into a
set of CLIPS production rules. This is a two-step process: First, the defeasible logic
rules are translated into sets of deductive, derived attribute and aggregate attribute
rules of the basic deductive rule language, using the translation scheme described in
[7]. Then, all these deductive rules are translated into CLIPS production rules accord-
ing to the rule translation scheme in [8]. All compiled rule formats are also kept into
local files (structured in project workspaces), so that the next time they are needed
they can be directly loaded, improving speed considerably (running a compiled pro-
ject is up to 10 times faster).

Meanwhile, the RDF loader downloads the input RDF documents, including their
schemas, and translates RDF descriptions into CLIPS objects, according to the RDF-
to-object translation scheme in [8], which is briefly described below.

The inference engine of CLIPS performs the reasoning by running the production
rules and generates the objects that constitute the result of the initial rule program.
The compilation phase guarantees correctness of the reasoning process according to
the operational semantics of defeasible logic. Finally, the result-objects are exported

6

to the user as an RDF/XML document through the RDF extractor. The RDF docu-
ment includes the instances of the exported derived classes, which have been proven.

The Object-Oriented RDF Data Model
The DR-Device system employs an OO RDF data model, which is different than the
established triple-based data model for RDF. The main difference is that DR-Device
treats properties both as first-class objects and as normal encapsulated attributes of re-
source objects. In this way properties of resources are not scattered across several tri-
ples as in most other RDF inferencing systems, resulting in increased query perform-
ance due to less joins. For example, the apartment in Fig. 1 is transformed into the
COOL object displayed in Fig. 3.

[carlo_ex:a1] of carlo:apartment
(carlo:size 50)
(carlo:price 300)
(carlo:pets "yes")
(carlo:name "a1")
(carlo:lift "no")

(carlo:gardenSize 0)
(carlo:floor 1)
(carlo:central "yes")
(carlo:bedrooms 1)

Fig. 3. COOL object for the apartment of Fig. 1.

The Defeasible Logic Language
DR-Device supports two syntaxes for defeasible logic rules: a native CLIPS-like one
and a RuleML-compatible one. Here we focus solely on the latter, since the rule edi-
tor of the system allows the expression of rules only in this syntax. While the RuleML
syntax utilizes as many features of the official RuleML as possible, several of the fea-
tures of the rule language cannot be expressed by the existing RuleML DTDs and/or
XML Schema documents. A new DTD (v. 0.85 compatible) and new XML Schema
documents (0.86, 0.89 compatible) were, therefore, developed using the modulariza-
tion scheme of RuleML, extending the Datalog with strong negation and negation-as-
failure version of RuleML. Fig. 4 shows a self-contained simplified version of the
DTD, while the original DTD and the XML Schema documents can be found at
http://lpis.csd.auth.gr/systems/dr-device.html, along with the system
itself. Notice, that currently the system uses the v. 0.85 compatible DTD.

A defeasible logic rule is represented by an imp element and consists of three sub-
elements: the head and body of the rule (_head and _body elements respectively) as
well as a label, encoded in a _rlab element, which includes the rule’s unique ID
(ruleID attribute) and its type (ruletype attribute). The latter can only take three
distinct values (strictrule, defeasiblerule, defeater).

For example, the defeasible rule r2 of the previous section is represented as:
<imp>
 <_rlab ruleID="r2" ruletype="defeasiblerule"><ind>r2</ind></_rlab>
 <_head> <atom> <_opr><rel>acceptable</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </_head>
 <_body> <atom> <_opr><rel href="carlo:apartment"/></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </_body>

7

</imp>

The names (rel elements) of the operator (_opr) elements of atoms are class
names, since atoms actually represent CLIPS objects. RDF class names used as base
classes in the rule condition are referred to through the href attribute of the rel ele-
ment, while derived class names (e.g. acceptable) are text values of the rel ele-
ment. Atoms have named arguments, called slots, which correspond to object proper-
ties. Since RDF resources are represented as CLIPS objects, atoms correspond to
queries over RDF resources of a certain class with certain property values.

<!ENTITY % URI "CDATA">
<!ELEMENT rulebase (_rbaselab, (imp | comp_rules)*)>
<!ATTLIST rulebase rdf_import CDATA #IMPLIED
 rdf_export_classes NMTOKENS #IMPLIED
 rdf_export CDATA #IMPLIED>
<!ELEMENT _rbaselab (ind)>
<!ELEMENT imp (_rlab, _head, _body)>
<!ELEMENT comp_rules (_crlab)>
<!ATTLIST comp_rules c_rules IDREFS #REQUIRED
 slotnames NMTOKENS #IMPLIED>
<!ELEMENT _rlab (ind)> <!ELEMENT _crlab (ind)>
<!ATTLIST _rlab ruleID ID #REQUIRED
 ruletype (strictrule | defeasiblerule | defeater) #REQUIRED
 superior IDREFS #IMPLIED>
<!ELEMENT _head (calc?, (atom | neg))>
<!ELEMENT _body (atom | neg | and)>
<!ELEMENT calc (fun_call+)>
<!ELEMENT fun_call (ind|var|fun_call)*>
<!ATTLIST fun_call name CDATA #REQUIRED>
<!ELEMENT naf (atom | and)> <!ELEMENT neg (atom)>
<!ELEMENT and ((atom | naf)*)> <!ELEMENT atom (_opr, _slot*)>
<!ELEMENT _opr (rel)> <!ELEMENT rel (#PCDATA)>
<!ATTLIST rel href %URI; #IMPLIED>
<!ELEMENT _slot (ind | var | _not | _or | _and)>
<!ATTLIST _slot name CDATA #REQUIRED>
<!ELEMENT _not (ind | var)>
<!ELEMENT _or ((_not|ind|var|fun_call),(_not|ind|var|fun_call)+)>
<!ELEMENT _and ((_not|ind|var|fun_call),(_not|ind|var|fun_call)+)>
<!ELEMENT ind (#PCDATA)> <!ELEMENT var (#PCDATA)>
<!ATTLIST ind type CDATA #IMPLIED href %URI; #IMPLIED>

Fig. 4. DTD for the RuleML syntax of the defeasible logic rule language.

Superiority relations are represented as attributes of the superior rule. For example,
rule r4, which is superior to r2, is represented as follows:
<imp>
 <_rlab ruleID="r4" ruletype="defeasiblerule" superior="r2">
 <ind>r4</ind> </_rlab>
 <_head> <neg> <atom> <_opr><rel>acceptable</rel></_opr>
 <_slot name="name"><var>X</var></_slot> </atom>
 </neg> </_head>
 <_body> <atom> <_opr><rel href="carlo:apartment"/></_opr>
 <_slot name="carlo:name"><var>X</var></_slot>
 <_slot name="carlo:pets"><ind>no</ind></_slot>
 </atom> </_body>
</imp>

8

Negation is represented via a neg element that encloses an atom element. Apart
from rule declarations, there are comp_rules elements that declare groups of com-
peting rules which derive competing positive conclusions (conflicting literals). For
example, in the apartment rent case study, rules r5 and r6 are competing over the of-
fer(X,Y) conclusion, since at most one offer can be made:
<comp_rules c_rules="r5 r6">
 <_crlab> <ind>cr1</ind> </_crlab>
</comp_rules>

Further extensions to the RuleML syntax, include function calls that are used either
as constraints in the rule body or as new value calculators at the rule head. Addition-
ally, multiple constraints in the rule body can be expressed through the logical opera-
tors: _not, _and, _or. Finally, the header of the rule base, namely the rulebase
root element of the RuleML document, includes a number of important parameters,
which are implemented as attributes: rdf_import declares the input RDF file(s),
rdf_export represents the RDF file that contains the exported results and
rdf_export_classes represents the derived classes, whose instances will be ex-
ported in RDF/XML format. An example of all of the above is shown below:

<rulebase rdf_import="http://lpis.csd.auth.gr/.../carlo.rdf#"
 rdf_export="http://lpis.csd.auth.gr/.../export-carlo.rdf"
 rdf_export_classes="acceptable rent">

4.2. Rule Editor – Design and Functionality

Although RuleML syntax improves readability on behalf of human users, writing
rules in RuleML can often be a highly cumbersome task. Thus, the need for authoring
tools that assist end-users in writing and expressing rules is apparently imperative.
VDR-Device is equipped with DRREd, a Java-built visual rule editor that aims at en-
hancing user-friendliness and efficiency during the development of VDR-Device
RuleML documents. Its implementation is oriented towards simplicity of use and fa-
miliarity of interface. Other key features of the software include: (a) functional flexi-
bility - program utilities can be triggered via a variety of overhead menu actions, key-
board shortcuts or popup menus, (b) improved development speed - rule bases can be
developed with only a few steps and (c) powerful safety mechanisms – the correct
syntax is ensured and the user is protected from syntactical or semantical errors.

More specifically, and as can be observed in Fig. 5, the main window of the pro-
gram is composed of two major parts: a) the upper part includes the menu bar, which
contains the program menus, and the toolbar that includes icons, representing the
most common utilities of the rule editor, and b) the central and more “bulky” part is
the primary frame of the main window and is in turn divided into two panels:

The left panel displays the rule base in XML-tree format, which is the most intui-
tive means of displaying RuleML-like syntax, because of its hierarchical nature. The
user has the option of navigating through the entire tree and can add to or remove
elements from the tree. However, since each rule base is backed by a DTD document,
potential addition or removal of tree elements has to obey the DTD limitations. There-
fore, the rule editor allows a limited number of operations performed on each element,
according to the element's meaning within the rule tree.

9

The right panel shows a table, which contains the attributes that correspond each
time to the selected tree node in the left-hand area. The user can also perform editing
functions on the attributes, by altering the value for each attribute in the panel that ap-
pears below the attributes table on the right-hand side. The values that the user can in-
sert are obviously limited by the chosen attribute each time.

Fig. 5. The graphical rule editor and the namespace dialog window.

The development of a rule base using VDR-Device is a delicate process that de-
pends heavily on the parameters around the node that is being edited each time. First
of all, there is an underlying principle behind tree expansion and it is “triggered” each
time the user is trying to add a new element to the rule base. Namely, when a new
element is added to the tree, all the mandatory sub-elements that accompany it are
also added. In the cases where there are multiple sub-elements, none of them is added
to the rule base and the final choice is left to the user to determine which one of them
has to be added. The user has to right-click on the parent element and choose the de-
sired sub-element from the pop-up menu that appears (Fig. 5).

Another important aspect of the rule editor is the namespace dialog window (Fig.
5), where the user can determine which RDF/XML namespaces will be used by the
rule base. Actually, we treat namespace declarations as addresses of input RDF
Schema ontologies that contain the vocabulary for the input RDF documents, over
which the rules of the rule base will be run. The namespaces entered by the user, as
well as those contained in the input RDF documents (indicated by the rdf_import
attribute of the rulebase root element), are then analyzed in order to extract all the
allowed class and property names for the rule base being developed (see next section).
These names are then used throughout the authoring phase of the RuleML rule base,
constraining the corresponding allowed names that can be applied and narrowing the
possibility for errors on behalf of the user.

10

Moving on to more node-specific features of the rule editor, one of the rule base
elements that are treated in a specific manner is the atom element, which can be ei-
ther negated or not. The response of the editor to an atom negation is performed
through the wrapping/unwrapping of the atom element within a neg element and it is
performed via a toggle button, located on the overhead toolbar.

Some components that also need “special treatment” are the rule IDs, each of
which uniquely represents a rule within the rule base. Thus, the rule editor has to col-
lect all of the RuleIDs inserted, in order to prohibit the user from entering the same
RuleID twice and also equipping other IDREF attributes (e.g. superior attribute)
with the list of RuleIDs, constraining the variety of possible values.

The names of the functions that appear inside a fun_call element are also par-
tially constrained by the rule editor, since the user can either insert a custom-named
function or a CLIPS built-in function. Through radio-buttons the user determines
whether he/she is using a custom or a CLIPS function. In the latter case, a list of all
built-in functions is displayed, once again constraining possible entries.

Finally, users can examine all the exported results via an Internet Explorer win-
dow, launched by VDR-Device. Also, to improve reliability, the user can also observe
the execution trace of compilation and running, both during run-time and also after
the whole process has been terminated (Fig. 6).

Fig. 6. The Trace and Results windows.

Parsing RDF Schema Ontologies
As mentioned above, the RDF Schema documents contained in the namespace dialog
window undergo certain processing and, more specifically, they are being parsed, us-
ing the ARP parser of Jena [18], a flexible Java API for processing RDF documents.
The names of the classes found are collected in the base class vector (CVb), which al-
ready contains rdfs:Resource, the superclass of all RDF user classes. Therefore,
the CVb vector is constructed as follows:

rdfs:Resource ∈ CVb

11

∀C (C rdf:type rdfs:Class) → C ∈ CVb

where (X Y Z) represents an RDF triple found in the RDF Schema documents.
Except from the base class vector, there also exists the derived class vector (CVd),

which contains the names of the derived classes, i.e. the classes which lie at rule
heads (conclusions). CVd is initially empty and is dynamically extended every time a
new class name appears inside the rel element of the atom in a rule head. This vec-
tor is mainly used for loosely suggesting possible values for the rel elements in the
rule head, but not constraining them, since rule heads can either introduce new de-
rived classes or refer to already existing ones.

The union of the above two vectors results in CVf, which is the full class vector
(CVf = CVb ∪ CVd) and it is used for constraining the allowed class names, when edit-
ing the contents of the rel element inside atom elements of the rule body.

Furthermore, the RDF Schema documents are also being parsed for property names
and their domains. Similarly to the procedure described above, the properties detected
are placed in a base property vector (PVb), which already contains some built-in RDF
properties (BIP) whose domain is rdfs:Resource:
BIP = {rdf:type, rdfs:label, rdfs:comment, rdfs:seeAlso,
 rdfs:isDefinedBy, rdf:value} ⊆ PVb
∀P, (P rdf:type rdf:Property) → P ∈ PVb

Apparently, there also exists the derived property vector (PVd), which contains the
names of the properties of the derived classes. This vector is initially empty and is ex-
tended each time a new property name appears inside the _slot element of the atom
in a rule head. Therefore, the full property vector (PVf) is a union of the above two
vectors: PVf = PVb ∪ PVd.

Each of the properties in the PVf vector has to be equipped with the corresponding
superproperties and domains. Through the detected superproperties, the system can
retrieve the indirect domains for each property and, thus, enrich its set of domains.
The domain set of each property is needed, so that, for each atom element appearing
inside the rule body, when a specific class C is selected, the names of the properties
that can appear inside the _slot subelements are constrained only to those that have
C as their domain, either directly or inherited.

So, the superproperty set SUPP(P) of each property P initially contains only the
direct superproperties of P. The rest of the properties (including the derived class
properties) have an empty SUPP(P):

∀P∈PVb ∀SP∈PVb, (P rdfs:subPropertyOf SP) → SP ∈ SUPP(P)

In the next step, the SUPP(P) set is further populated with the indirect superproper-
ties of each property, by recursively traversing upwards the property hierarchy:

∀P∈PVb ∀SP∈SUPP(P) ∀SP'∈SUPP(SP) → SP' ∈ SUPP(P)

On the other hand, the DOM(P) set of domains for each property P initially con-
tains only the direct domain of P:

∀P∈PVb ∀C, (P rdfs:domain C) → C ∈ DOM(P)

The RDF built-in properties (BIP) have rdfs:Resource as their domain:

∀P∈BIP, rdfs:Resource ∈ DOM(P)

If a property does not have a domain, then rdfs:Resource is assumed:

12

∀ P∈(PVb-BIP), (¬∃C P rdfs:domain C) → rdfs:Resource ∈ DOM(P)

In the next step, the DOM(P) set is further populated, by inheriting the domains of
all the superproperties (both direct and indirect), according to the RDFS semantics:

∀P∈PVb ∀SP∈SUPP(P) ∀C∈DOM(SP) → C ∈ DOM(P)

Since the properties are now fully described (each one of them containing the cor-
responding superproperty and domain sets), each class C in the CVf vector has to be
linked with the allowed properties. More specifically, for each class C, five distinct
sets have to be defined: superclass set SUPC(C), subclass set SUBC(C), owned prop-
erty set OWNP(C), inherited property set INHP(C), and subsumed property set
SUBP(C).

The SUPC(C) set initially contains all the direct superclasses of C:

∀C∈CVf ∀SC∈CVf, (C rdfs:subClassOf SC) → SC ∈ SUPC(C)

If a class does not have a superclass, then it is considered to be a subclass of
rdfs:Resource. This also applies for the derived classes:

∀C∈CVf, C≠rdfs:Resource ∧ (¬∃SC SC∈CVf → (C rdfs:subClassOf SC))
 → rdfs:Resource ∈ SUPC(C)

In the next phase, the SUPC(C) set is further populated with the indirect super-
classes of each class, by recursively traversing upwards the class hierarchy:

∀C∈CVf ∀SC∈SUPC(C) ∀SC'∈SUPC(SC) → SC' ∈ SUPC(C)

The SUBC(C) set can now be easily constructed, by inversing all the subclass rela-
tionships (both direct and indirect):

∀C∈CVf ∀SC∈SUPC(C) → C ∈ SUBC(SC)

The OWNP(C) set of owned properties is constructed, by examining the domain set
of each property object in the full property vector:

∀P∈PVf ∀C∈DOM(P) → P ∈ OWNP(C)

The inherited property set INHP(C) is constructed, by inheriting the owned proper-
ties from all the superclasses (both direct and indirect), according again to the RDFS
semantics:

∀C∈CVb ∀SC∈SUPC(C) ∀ P∈OWNP(SC) → P ∈ INHP(C)

Finally, the subsumed property set SUBP(C) is constructed, by copying the owned
properties from all the subclasses (both direct and indirect):

∀C∈CVb ∀SC∈SUBC(C) ∀P∈OWNP(SC) → P ∈ SUBP(C)

Although the domain of a subsumed property of a class C is not compatible with
class C, it can still be used in the rule condition for querying objects of class C, imply-
ing that the matched objects will belong to some subclass C' of class C, which is
compatible with the domain of the subsumed property. For example, consider two
classes A and B, the latter being a subclass of the former, and a property P, whose
domain is B. It is allowed to query class A, demanding that property P satisfies a cer-
tain condition; however, only objects of class B can possibly satisfy the condition,
since direct instances of class A do not even have property P.

The above mentioned three property sets comprise the full property set FPS(C):

FPS(C) = OWNP(C) ∪ INHP(C) ∪ SUBP(C)

13

which is used to restrict the names of properties that can appear inside a _slot ele-
ment (see Fig. 5), when the class of the atom element is C.

An example of all of the above is shown in Table 1. Assume an RDF Schema on-
tology with three classes connected through a hierarchy: the class apartment is a
subclass of the house class and a superclass of the suburban-apartment class.
Some typical properties of these classes are displayed in the row “owned properties”
of Table 1.

After the RDF Schema document is parsed, these classes are detected and included
in the base class vector (CVb). Furthermore, the corresponding properties are deter-
mined and added to the base property vector (PVb). Eventually, every available class
will be linked to the respective properties, but also to the properties of its super- and
subclasses, following the rationale developed before in this section. The final status of
the class properties is displayed in Table 1.

Table 1. Example of inherited, owned and subsumed properties.

Classes house apartment suburban-apartment
size floor gardenSize

Owned Properties price lift pets
 size size, price

Inherited Properties price floor, lift
floor, lift gardenSize

Subsumed Properties gardenSize, pets pets

This logic is reflected in the rule editor, as Fig. 5 shows. If, for example, the user

wishes to formulate the rule r4 (section 4.1), then he/she selects the
carlo:apartment class as the value of the href attribute of the _opr element of an
atom in the rule body and the allowed properties to be entered at the _slot element
are all the properties included in Table 1. This facilitates the user, since he/she does
not have to worry about which properties can be applied to apartment instances.

5. Related Work

There exist several previous implementations of defeasible logics, although to the best
of our knowledge none of them is supported by a user-friendly integrated develop-
ment environment or a visual rule editor. Deimos [17] is a flexible, query processing
system based on Haskell. It implements several variants, but not conflicting literals
nor negation as failure in the object language. Also, it does not integrate with Seman-
tic Web (for example, there is no way to treat RDF data and RDFS/OWL ontologies;
nor does it use an XML-based or RDF-based syntax for syntactic interoperability).
Therefore, it is only an isolated solution. Finally, it is propositional and does not sup-
port variables.

Delores [17] is another implementation, which computes all conclusions from a de-
feasible theory. It is very efficient, exhibiting linear computational complexity.
Delores only supports ambiguity blocking propositional defeasible logic; so, it does
not support ambiguity propagation, nor conflicting literals, variables and negation as

14

failure in the object language. Also, it does not integrate with other Semantic Web
languages and systems, and is thus an isolated solution.

SweetJess [15] is another implementation of a defeasible reasoning system (situ-
ated courteous logic programs) based on Jess. It integrates well with RuleML. How-
ever, SweetJess rules can only express reasoning over ontologies expressed in
DAMLRuleML (a DAML-OIL like syntax of RuleML) and not on arbitrary RDF
data, like DR-DEVICE. Furthermore, SweetJess is restricted to simple terms (vari-
ables and atoms). This applies to DR-DEVICE to a large extent. However, the basic
R-DEVICE language [8] can support a limited form of functions in the following
sense: (a) path expressions are allowed in the rule condition, which can be seen as
complex functions, where allowed function names are object referencing slots;
(b) aggregate and sorting functions are allowed in the conclusion of aggregate rules.
Finally, DR-DEVICE can also support conclusions in non-stratified rule programs
due to the presence of truth-maintenance rules [7].

Mandarax [12] is a Java rule platform, which provides a rule mark-up language
(compatible with RuleML) for expressing rules and facts that may refer to Java ob-
jects. It is based on derivation rules with negation-as-failure, top-down rule evalua-
tion, and generating answers by logical term unification. RDF documents can be
loaded into Mandarax as triplets. Furthermore, Mandarax is supported by the Oryx
graphical rule management tool. Oryx includes a repository for managing the vocabu-
lary, a formal-natural-language-based rule editor and a graphical user interface li-
brary. Contrasted, the rule authoring tool of DR-DEVICE lies closer to the XML na-
ture of its rule syntax and follows a more traditional object-oriented view of the RDF
data model [8]. Furthermore, DR-DEVICE supports both negation-as-failure and
strong negation, and supports both deductive and defeasible logic rules.

6. Conclusions and Future Work

In this paper we argued that defeasible reasoning is useful for many applications in
the Semantic Web, mainly due to conflicting rules and rule priorities. However, the
development of defeasible rule bases on top of Semantic Web ontologies may appear
too complex for many users. To this end, we have implemented VDR-Device, a visual
integrated development environment that facilitates these processes. VDR-Device fea-
tures a user-friendly graphical shell, a visual RuleML-compliant rule editor that helps
users to develop a defeasible logic rule base by constraining the allowed vocabulary
after analyzing the input RDF ontologies and a defeasible reasoning system that sup-
ports direct import from the Web and processing of RDF data and RDF Schema on-
tologies.

In the future, we plan to delve into the proof layer of the Semantic Web architec-
ture by enhancing further the graphical environment with rule execution tracing, ex-
planation, proof exchange in an XML or RDF format, proof visualization and valida-
tion, etc. These facilities would be useful for increasing the trust of users for the
Semantic Web agents and for automating proof exchange and trust among agents in
the Semantic Web. Furthermore, we will include a graphical RDF ontology and data
editor that will comply with the user-interface of the RuleML editor.

15

Acknowledgements

This work is partially supported by the European IST Network of Excellence REWERSE and
by the PYTHAGORAS II programme which is jointly funded by the Greek Ministry of Educa-
tion (EPEAEK) and the European Union.

References

[1] Antoniou G. and Arief M., “Executable Declarative Business rules and their use in Elec-
tronic Commerce”, Proc. ACM Symposium on Applied Computing, 2002.

[2] Antoniou G., Billington D. and Maher M.J., “On the analysis of regulations using defeasi-
ble rules”, Proc. 32nd Hawaii International Conference on Systems Science, 1999.

[3] Antoniou G., Billington D., Governatori G. and Maher M.J., “Representation results for
defeasible logic”, ACM Trans. on Computational Logic, 2(2), 2001, pp. 255-287.

[4] Antoniou G., Harmelen F. van, A Semantic Web Primer, MIT Press, 2004.
[5] Antoniou G., Skylogiannis T., Bikakis A., Bassiliades N., “DR-BROKERING – A Defea-

sible Logic-Based System for Semantic Brokering”, IEEE Int. Conf. on E-Technology, E-
Commerce and E-Service, pp. 414-417, Hong Kong, 2005.

[6] Ashri R., Payne T., Marvin D., Surridge M. and Taylor S., “Towards a Semantic Web Se-
curity Infrastructure”, Proc. of Semantic Web Services, 2004 Spring Symposium Series,
Stanford University, California, 2004.

[7] Bassiliades N., Antoniou, G., Vlahavas I., “A Defeasible Logic Reasoner for the Semantic
Web”, RuleML 2004, Springer-Verlag, LNCS 3323, pp. 49-64, Hiroshima, Japan, 2004.

[8] Bassiliades N., Vlahavas I., “R-DEVICE: A Deductive RDF Rule Language”, RuleML
2004, Springer-Verlag, LNCS 3323, pp. 65-80, Hiroshima, Japan, 2004.

[9] Berners-Lee T., Hendler J., and Lassila O., “The Semantic Web”, Scientific American,
284(5), 2001, pp. 34-43.

[10] Boley H., Tabet S., The Rule Markup Initiative, www.ruleml.org/
[11] Dean M. and Schreiber G., (Eds.), OWL Web Ontology Language Reference, 2004,

www.w3.org/TR/2004/REC-owl-ref-20040210/
[12] Dietrich J., Kozlenkov A., Schroeder M., Wagner G., "Rule-based agents for the semantic

web", Electronic Commerce Research and Applications, 2(4), pp. 323–338, 2003.
[13] Governatori G., Dumas M., Hofstede A. ter and Oaks P., “A formal approach to legal ne-

gotiation”, Proc. ICAIL 2001, pp. 168-177, 2001.
[14] Grosof B. N., “Prioritized conflict handing for logic programs”, Proc. of the 1997 Int.

Symposium on Logic Programming, pp. 197-211, 1997.
[15] Grosof B.N., Gandhe M.D., Finin T.W., “SweetJess: Translating DAMLRuleML to

JESS”, Proc. Int. Workshop on Rule Markup Languages for Business Rules on the Seman-
tic Web (RuleML 2002).

[16] Li N., Grosof B. N. and Feigenbaum J., “Delegation Logic: A Logic-based Approach to
Distributed Authorization”, ACM Trans. on Information Systems Security, 6(1), 2003.

[17] Maher M.J., Rock A., Antoniou G., Billington D., Miller T., “Efficient Defeasible Reason-
ing Systems”, Int. Journal of Tools with Artificial Intelligence, 10(4), 2001, pp. 483-501.

[18] McBride B., “Jena: Implementing the RDF Model and Syntax Specification”, Proc. 2nd
Int. Workshop on the Semantic Web, 2001.

[19] Nute D., “Defeasible Reasoning”, Proc. 20th Int. Conference on Systems Science, IEEE
Press, 1987, pp. 470-477.

[20] Skylogiannis T., Antoniou G., Bassiliades N., Governatori G., “DR-NEGOTIATE – A
System for Automated Agent Negotiation with Defeasible Logic-Based Strategies”, IEEE
Int. Conf. on E-Technology, E-Commerce and E-Service, pp. 44-49, Hong Kong, 2005.

