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ABSTRACT

Nowadays, most answers to natural language questions can be
found in the first few results of web search engines. We describe
the WAMBY question answering system that attempts to extract
answers from the top 10 results of Google. We propose a new
ranking method for factoid answers that among others takes into
account the semantic similarity of the context of each answer can-
didate with the question and named entities found in the titles and
the snippets of search results. The proposed method gave very
promising results in a variety of questions. Also we describe the
methods used for non-factoid answer extraction and ranking. An
important part of the system is a new text similarity measure that
extends TF-IDF by utilizing word vectors. The new text similarity
measure solves the problem of synonyms and improves the perfor-
mance of TF-IDF in the paraphrase identification task. The source
code of WAMBY is publicly available as well as two datasets that
were created for question classification and factoid question an-
swering evaluation.
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1 INTRODUCTION

The last few years, question answering has received a lot of atten-
tion thanks to the appearance of personal assistant applications
and hardware. The firsts attempts focused on developing domain
specific question answering systems (BASEBALL [6] in 1961 and
LUNAR [23] in 1977). Later, we saw the development of informa-
tion retrieval based open domain systems. In Textract [22] system
they investigated the role of information extraction in question an-
swering. The question classification was based on rules extracted
with syntactic analysis from a set of questions and a smaller set of
handcrafted rules. In [24] there was an attempt to improve ques-
tion answering by using and extending lexical semantic sources
like Wordnet. Another system, GuruQA [20], used predictive an-
notation. The question classification was based on predefined rules.
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In [21] a probabilistic translation model was created with one mil-
lion question and answer pairs for non-factoid question answering.
In NSIR [19] a probabilistic method was used for re-ranking the an-
swer candidates based on the expected answer type.

There have been many attempts to create web-based question
answering systems that utilize web search engines to retrieve doc-
uments for answer extraction. One of these was the AskMSR [2]
system that used answer patterns to extract factoid answers from
the snippets of web search results. A similar approach can be seen
in [4] and in the WSQA [3] system that also used question and an-
swer patterns and information from snippets. In WAG [15] system
the named entities received scores based on their frequency and
based on these scores paragraphs and answers were extracted.

The only open-source question answering system, YodaQA [1],
isknowledge-based and extracts answers from structured databases
like DBPedia and Freebase.

One of the most developed systems is START !. It consists of
a text analysis module that creates a knowledge base and another
module that generates sentences. These two together with a nat-
ural language annotation technique extract answers from many
websites. The most recent progress in web-based open domain
question answering was made by Google with featured snippets;
chunks of text on top of the search results that answer the user’s
question. From granted patents [16] [25] it seems that a trained
model is used for the extraction of possible answer snippets. Then
many techniques are used like POS tagging, named entity recogni-
tion and a knowledge base is created that connects entities. Proba-
bly, the most complex question answering system is the Watson 2
system by IBM. It uses more than 100 different techniques for natu-
ral language analysis, finding sources and extracting answers. The
main innovation of the system was its ability to run many different
algorithms at once to find the most suitable answer.

Most question answering systems that have been proposed are
either too limited and rely on question and answer patterns, or
too complex and need to run on many computers. In this paper,
we describe the architecture of the WAMBY (Web-based Answer
Mining Bot) question answering system. WAMBY uses an infor-
mation retrieval approach to rank answers from the top 10 results
of Google and can run in real-time on a single computer giving
very promising results especially in factoid questions. The system
can be relatively easily modified to work in any language and its
source code is publicly available as well as two datasets for ques-
tion clasification and factoid question answering evaluation.

Uhttp://start.csail. mit.edu
Zhttp://www.research.ibm.com/deepqa/deepqa.shtml



[ Query ]

Y
™y

Question Classifier

|

h 4

Top 10 results

- —

Named Entities
Extractor

— A

Factoid Ranker

|

' ™y
Search Engine Community Answers .
(Google) 4{ Extractor H Snippets Extractor}

Snippet Ranker

Figure 1: The architecture of WAMBY system.

2 SYSTEM ARCHITECTURE

Figure 1 depicts the architecture of the developed question answer-
ing system. The extraction pipeline of answer candidates consists
of 4 or 5 steps. In the first step we classify the question to deter-
mine the expected answer type; factoid (person, location, number,
date etc.) or non-factoid (description). Then we retrieve the first
10 results from Google for the given question. We remove the boil-
erplate from the downloaded web pages and proceed with the ex-
traction process. If the expected answer type is factoid, we extract
named entities, rank them and return the top k with the highest
score. For non-factoid answers we first extract possible answer
chunks, we rank them and then return the top k.

3 QUESTION CLASSIFICATION

One of the most important parts of a question answering system is
the question classification module. Our system recognizes 11 types
of questions: date, duration, location, money, ordinal, organiza-
tion, percent, person, set, time and description (non-factoid). For
classification we used a hybrid model that uses a set of predefined
rules in the first stage and a recurrent neural network classifier in
the second stage to cover more complex question forms.

3.1 Classification rules

The rules used in the first stage can be seen in Table 1.

3.2 LSTM classifier

3.2.1 The dataset. The only available dataset for question clas-
sification 3 [12] had 5500 questions (from TREC tracks) with their
type. That was far from enough to train a model that can han-
dle many forms of questions. That is why we created a new one
from the SQUAD dataset ¢. SQUAD is a reading comprehension
dataset, consisting of questions posed by crowdworkers on a set

3http://cogcomp.cs.illinois.edu/Data/QA/QC
4https://rajpurkar.github.io/SQuAD-explorer

Question starts with Question Type
WHO + To Be Verb + PERSON  DESCRIPTION

WHO PERSON
WHEN DATE

WHERE LOCATION
WHY DESCRIPTION
WHAT + To Be Verb + Noun DESCRIPTION
Modal Verb DESCRIPTION
To Be Verb DESCRIPTION
HOW + Verb DESCRIPTION

Table 1: Simple classification rules

of Wikipedia articles where the answer to every question is a seg-
ment of text from the corresponding reading passage. However
the answers do not have any label for their type. We assigned a
type to every answer using the Stanford Named Entity Recognizer
[13]. The new dataset has 40,197 question - answer type pairs. This
method for determining the type of the answer is not always ac-
curate thus some assigned labels are incorrect. Questions that are
covered with rules are removed from the final dataset.

3.22 The model. The cases not covered in the first stage are
classified by a Long Short Term Memory Network [7] with one hid-
den recurrent layer of 20 memory units and a softmax output layer
as seen in Figure 2. At each time step we give as input the vector
of each word of the question (Figure 3). We used pretrained word
vectors with the GloVe model [17] on the Wikipedia 2014 and Gi-
gaword 5 datasets. We trained the model with 50d, 100d and 300d
vectors and did not notice any difference in accuracy, so we chose
the 50d vectors. We used the ADAM optimizer, batch size 25 and
learning rate 0.15 and trained the network for 150 epochs.

In Table 2 we can see the performance of the network on the two
datasets with the questions covered by rules removed and with all
the questions. If we test the final question classifier that uses both
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Figure 3: Unfolded LSTM unit in time.

Dataset Accuracy Precision Recall F1

TREC 59.33% 59.92% 44.27% 50.91%
TREC (all questions) 77.03% 77.72%  58.23% 66.58%
SQUAD 48.78% 42.21% 29.81% 34.94%
SQUAD (all questions)  68.24% 68.67%  55.45% 61.35%

Table 2: Performance of LSTM question classifier

the rules and the LSTM network we get 78.8% accuracy in the two
datasets combined.

4 TEXT SIMILARITY MEASURES

The proposed answer ranking method uses some text similarity
measures for semantic relatedness and common words order. For
semantic relatedness we propose a new extension of TF-IDF that
utilizes word embeddings to solve the problem of synonyms. We
tested the new text similarity measure with other TF-IDF variants
in Microsoft Research Paraphrase Corpus ® and noticed an improve-
ment in paraphrase identification with our variant.

4.1 An extension of TF-IDF

In TF-IDF each text (or document) is represented as a vector of TF-
IDF weights. Each weight is proportional to the importance (term
frequency) of each word in the text:

tf(w,d)=|{ted:t=w}|

Shttps://www.microsoft.com/en-us/download/details.aspx?id=52398

The inverse document frequency (IDF) lowers the weight of words
that are common in many texts and is usually defined as:

D]

idf(w.D) = log e p e ar

where D is the collection of all documents.
The similarity of two texts is calculated by taking the cosine simi-
larity of their TF-IDF vectors:

. g d_
sim(.d) =iy =
Do (tf(w.q) - idf(w))(tf (w.d) - idf (w))
_ weW (q)NW (d)
Do tf(wg)-idf(w)? D (tf(w,d)-idf(w))?
weWw(q) wew(d)

where W(q), W(d) the sets of words of ¢ and d. The main problem
with this approach is that it calculates similarity based on exact
matches of words between the two texts. Synonyms and closely
related words are not considered. There have been some attempts
to extend TF-IDF with the use of word embeddings. The first simi-
larity measure was proposed in [14]:

max cos(w,u) - idf(w
L gy 145
sim(q,d) = +
2 > idf(w)

weW(q)

uemuz}%(q) cos(w,u) - idf(w)

2 > idf(w)

weW(d)

weW (d)

(1)

This measure does not consider the term frequencies and gives
high similarity score even when the two texts are not similar at
all. It was proposed mainly for short texts. Another measure was
proposed in [9] and is a variation of the BM25 formula where the
term frequency is replaced by the maximum cosine similarity of
the word with the words in the query g:

idf(w) -ugraz]iz(q) cos(w,u) - (ky +1)

sim(q,d) = Z (@)

wew(d)  Max )cos(w, u)+ki-(1-b+b-

lal
eW(q )

avg length of d

This measure also does not consider the term frequencies and has
two parameters, b and ki, that must be properly defined. An-
other measure proposed in [5] uses the similarity matrix S between
words and calculates cosine similarity as follows:

q'sd

R 3
lg" S| - |d] ®

sim(q,d) =

In their approach they used a word similarity measure based on
Wordnet. However, because we want to find a measure that can



be easily used in any language, we replaced in our tests the Word-
net based word similarity with the cosine similarity of the word
vectors. The last similarity measure we tested, calculates the co-
sine similarity of the average word embeddings of the two texts.
Instead of just taking the average word embedding for each text,
we can take a weighted average, where each weight is the TF-IDF
weight of each word. With this change we can capture the distri-
butional characteristics of words:

Z tf(w,q) - idf(w) - vector(w)

weW(q)

DT (tf(wq) - idf (w))

weW(q)

©

vq:

We propose a new text similarity measure. The basic idea is that we
define the term frequency (TF) differently. If a word is not present
in one text, then its frequency is defined as a percentage of the
frequency of the closest word. The percentage is the maximum
cosine similarity of the word embedding of the non existent word
with the words of the text. We also set a synonymy threshold k so
that only closely related words contribute to the similarity score:

simp(q.d) + simp(d, q)
2

sim(q,d) = ©)

D (tf(w, q) - idf(w)(tfs(w, d) - idf (w))

weW(q)

simy(q, d) =
\/ DT (tf(woq) - ddf (w)? Y (tfi(w, d) - idf (w)?
wew(q)

weW(q)

tf(w, d)

uen‘}gz;d) cos(w, u) - (tf (u, d))

w e W(d)
tfs(w,d) =

0 w¢ W(d), max cos(w,u) <k
uew(d)

After experiments, we found that a good value for the synonymy
threshold k is 0.75. We compared our proposed measure with the
other four in the paraphrase identification task (Table 3) after defin-
ing the optimal paraphrase threshold for each of them. The new
measure performed better than most proposed unsupervised mod-
els in this task ® achieving 81.8% F1 score.

4.2 Common words order similarity

In some parts of our answer ranking method we use a similarity
measure for the order of common words between two texts [8]:

5
2 Z i = yil
1- ':1—2 if § is even
1)
simo(q,d) = s (6)
22 lxi — yil
1-—4=L ifSisoddand & > 1
52-1
1 ifé6=1

Let C be the common words (§ in total) of two texts g and d. x;

w ¢ W(d), n‘}&z(d) cos(w,u) >k
ue

®https://aclweb.org/aclwiki/index.php?title=Paraphrase_Identification_(State_of_the_art)
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are the positions of the words of gq. Each y; is the position of x;-th
word from q in d.

4.3 n-grams similarity

The last measure used in our ranking indicates the percentage of
common n-grams between two texts. It is based on the measure
proposed in [10]:

|ngrams(q, n) N ngrams(d, n)|

|ngrams(q, n)|

4
ngsim(q,d) = Z Wn (7)

We count the percentages of 2-grams, 3-grams and 4-grams of the
shorter text q found in the longer text d. We give greater weights
to longer n-grams so that longer common sequences contribute
more to the similarity score. In our system we used the following
weights: wg = 0.14, w3 = 0.28, wqg = 0.58.

5 ANSWERS EXTRACTION

5.1 Boilerplate removal

All websites contain, apart from their main content, many other el-
ements like navigation links and advertisements. These elements
make up the boilerplate, which does not contain useful informa-
tion for the answer extraction process. In fact, if we do not remove
the boilerplate, we may select incorrect answers. WAMBYy removes
boilerplate with Algorithm 1, which is quite similar to jusText’ [18],
with the only difference being that we do not check the stopwords
density. The algorithm iterates through all the blocks (div, p, h1-6,
...) of the given web page and classifies each block as content if
it has link density below a threshold and number of words above
a threshold. Otherwise, the block is classified as boilerplate. The
link density of a block is the percentage of words that are inside
anchor tags (links). In our system we used maxLinksDensity=0.9
and minWordsNumber=2. Figure 4 presents the output of the al-
gorithm for a Wikipedia article.

5.2 Extracting factoid answers

After removing the boilerplate from the web pages, we use the
Named Entity Recognizer of the Stanford CoreNLP library [13] to
extract named entities of the expected type. The next step is the
ranking and merging of the factoid answers.

5.3 Ranking factoid answers

The ranking of factoid answers is done in three steps. In the first
step we give an initial score based on four measures: context score,
title score, web position score and n-grams score. If F is the group
of factoids with the same value f then:

"http://corpus.tools/wiki/Justext



Model Accuracy Precision Recall F1

TF-IDF 71.07% 76.49% 81.5% 78.91%
TF-IDF variant (Rada Mihalcea et. al 2006) (1) 63.76% 70.79% 77.39% 73.94%
BM25 variant (Tom Kenter et. al 2015) (2) 70.14% 71.41%  91.79% 80.33%
Our TF-IDF variant (5) 72.63% 73.27%  92.58% 81.8%
Matrix Similarity (Samuel Fernando et. al 2008) (3)  67.01% 67.51%  97.03% 79.62%
Average word vectors (4) 66.43% 66.43% 100%  79.83%

Table 3: Comparison of unsupervised text similarity models

Algorithm 1 Boilerplate removal algorithm

2%

1: String blockText =7,
2: int linkedWords = 0;

3: for each htmlTag ¢t do

4: if t.type € {div, p, h1,h2, ..., h6,tr,ul,ol} then

5 if blockText not empty then

6: Block b = new Block(blockText);

7: linkDensity = b.linkedW ords/b.wordsCount;

8 if b.linkDensity < maxLinksDensity then

9 if b.wordsCount > MinWordsNumber then

10: content = content U {b}

11 else

12: boilerplate = boilerplate U {b}
13: blockText ="7;

14: linkedWords = 0;

15: else if t.type = a and ¢ is opening tag then

16: linkedWords += t.wordsCount;

17: else if t.type = text and t is opening tag then
18: blockText += t.text;

context-score(f) = h1(f) =
2 fs(w)-idf(w)/dist(w, f’)

max weC(f")
er S idf (w)/dist(w, ')

weC(f")

®)

fs(w) = max (maxSim(w, query), maxSim(w, features)) (9)

maxSim(w,S) = rr‘/l‘?(%g) cos(w,s) (10)
s€E

dist(w, f') = |{v € C(f’) : vbetweenwand f'}| +1 (11)

C(f") is a window of words left and right to f”. In our system we
use a window of 200, that is 100 words left and 100 words right.
query is the question posed by the user and features is a trans-
formation of the query that keeps only verbs, nouns and numbers
and adds keywords based on the query (using rules). For instance
if the query starts with the words ’how tall’ then we add to the
features the words: height, m, metre, ft, foot, in, inch. We use the
features as an alternative to a more complete named entity recog-
nizer. maxSim(w, S) calculates the maximum cosine similarity of

Alan Turing

Figure 4: Sample output of the boilerplate removal algo-
rithm. Retained content is highlighted in green.

the word embedding w with the set of word embeddings S. The
logic behind the context score is that we give high scores to an-
swer candidates with context relevant to the question. Words that
are closer to the factoid in the context window contribute more to
the context score. For example a word right next to the answer
(with zero distance) has weight 1, while a word that has a distance
of 3 words from the answer has weight 0.25. The title score cal-
culates the similarity of the question with the title of the website
containing each answer candidate:

title-score(f) = ha(f) =
}r,la? (w1 - sim(query, title(f')) + wa - simo (query, title(f”)))
(12)

wi+wg =1

where sim is (5), sim, is (6), title(f’) is the title of the web page
containing the factoid answer f’ and w1, wo are weights to be de-
fined. In our system we used w; = 0.8 and wo = 0.2. The web



position score gives a number between 0 and 1 based on the po-
sition of the website that contains each answer candidate in the
search engine results:

bPositi -1
web-position-score(f) = h3(f) = Jrcr,rg 1- 2 t;):;lll;r;glcts)

(13)

where totalResults is the total number of web results processed
by the system (10 in our implementation) and webPosition(f’) the
position of the web page that contains the factoid f’ inside the
web results (from 1 to totalResults). The ngrams score calculates
the ngrams similarity between the question and the context of each
factoid answer candidate:

ngrams-score(f) = ha(f) = Jrrnag (ngsim(query,C(£'))) (14)
‘e
where ngsim is (7). The final score of a factoid in the first step is a
weighted average of the four measures:

4

f-score(f) = Z wi - hi(f) (15)

4
Zwi =1
i=1

In our system we have w; = 0.5, wo = w3 = 0.2 and wq = 0.1.
Every group of factoids F with the same value f is represented
once with the above score in the merged factoids set Fps. This set
contains the top k best merged factoids (k=100 in our system). If
the expected answer type is person, organization, location or date,
we have a second step of re-ranking. In this step every factoid
gets a new score based on its similarity with all the other factoids.
This helps when we have many factoids that refer to the same en-
tity. The most common example is names that can appear as full
names, like Einstein and Albert Einstein. Another example is when
the answers must be cities in a specific country. The new score is
calculated as follows:

Z sim(f, ') - f-score(f")
sty TP Y

wi+wo =1

f-score(f) = wy - f-score(f) + wo - (16)

All the new scores are calculated using the old ones only. In the
final step we have re-ranking based on the factoids found on the
titles and snippets of the search results. At first we extract factoids
from titles and snippets and rank them as follows:

f-score-r(f) = wi-h1(f)+wa-h3(f)+ws-results-score(f) (17)

_ {reR:fewW(r)}
[R|

results-score( f)

(18)

3

where R is the set of web results processed by the system and W (r)

the set of words of the web page r. In our implementation we have
wi = 0.25, wo = 0.45 and w3 = 0.3. The final score is:

f-score-final(f) =

s(f) f-score(f) - (w1 +wa - (ws - (f-score-r(f) in T)+wy - (f-score-r(f) in S)))(lg)

1 de(f) ze
s() = {O ic(f)<e (20
ic(f) = |W?f)| e 1 — maxSim(w, query) (21)

wi +w2=w3+wg =1

where T the set of factoids found in titles, S the set of factoids
found in snippets and W (f) the set of words of the factoid f. The
factor s(f) becomes 0 when a factoid has low information content
ic(f), that is it contains words that already exist in the question
(query) or closely related words to the words in the question. In
our system we defined w; = wg = w3 = wyq = 0.5 and e = 0.05.

5.4 Extracting non-factoid answers

When the expected answer type is description (non-factoid), we
first try to detect answers from online communities. Most commu-
nity question answering websites, use the type attribute with value
’schema.org/Answer’ to determine the block that contains an an-
swer. We search for this type of blocks. If at least one is found,
we rank only these blocks. If not, we follow a simple process to
extract chunks of text (snippets). The snippets extraction process
is done in two steps. In the first step we select a set S of sentences
from each website that have a similarity above a threshold with
the question:

S = {s : sim(query,s) > k} (22)

where k = 0.1 in our implementation. In the second step, we
iterate through the sentences in order of their appearance in each
web page and cluster the sentences that have a distance bellow a
threshold. The distance considers the similarity of the sentences as
well as the number of words between them. The distance is defined
as follows:

sd(s1,s2) = (23)

Z {w:weW(s)}
seStonsa) max(sim(s1,s),sim(s2,s)) + b

where S(s1, s2) is the set of sentences between s; and s3 and W (s)
the set of words of the sentence s. b = 1 in our case. When
sd(s1,s2) < k (k = 50 in our system) the sentences s1, s2 and
the ones between them are clustered in one answer candidate.

5.5 Ranking non-factoid answers

The ranking of the non-factoid answers is done using (24):

5

s-score(s) = Z wi - gi(s) (24)

i=1



> sim(query, t)

tes

relevance-score(s) = g1 (s) = (25)

max( >, sim(query, t))

s’eS \reg’

title-similarity (s) = ga2(s) = sim(query, title(s)) (26)

max-sentence-similarity(s) = g3(s) = max (sim(query,s’))

s’€s
(27)
webPosition(s) — 1
b- ition- = =-1-—— 28
web-position-score(s) = ga(s) rotalResults (28)
ngrams-score(s) = gs(s) = ngsim(query,s) (29)
5
Z wi =1
i=1

where s is the set of sentences of the non-factoid answer candidate,
S the set of all non-factoid answer candidates, title(s) the title of
the web page that contains s. In our system we used w; = 0.25,
wo = 0.3, wg = 0.2, wg = 0.2 and ws = 0.05.

6 EVALUATION

The evaluation of WAMBY was done only with factoid questions.
We created a dataset of 120 questions and answers, 30 from each of
the following categories: person, date, location, number. We used
the Mean Reciprocal Rank (MRR) for the top 20 ranked answers.
MRR gives values from 0 to 1. The closer it is to 1 the higher the
correct answer is ranked. For example if the correct answer to
a question is ranked 5th, then this question gets 0.2 score. We
calculate the score for all the questions and take the average:

N

>

~ rank;

MRR = ——— (30)
N

where N is the number of questions and rank; the position of the
correct answer to the i-th question. The results can be seen bellow:

Question Type MRR  Correct answers

PERSON 0.934 27/30
DATE 0.739 19/30
LOCATION 0.809 21/30
NUMBER 0.674 16/30
ALL 0.789 83/120

Table 5: Evaluation of factoid answers

We observe that the number category has the lowest MRR. We
could greatly improve the performance in this category by extend-
ing the named entity recognizer so that it recognizes many differ-
ent types of numbers like height, weight and distance. In the date

category we can have an improvement if we remove answers like:
today, now, tomorrow, that are unlikely to be the correct answer.
In Table 4 we can see some examples of factoid questions that have
the correct answer ranked first.

7 CONCLUSIONS

We developed a web-based open domain question answering sys-
tem that extracts answers from the top 10 results of Google. The
system gave very promising results in factoid answers, especially
in person category achieving 0.934 MRR in our test dataset. In
the other categories it can reach higher accuracy by extending the
named entity recognizer. In non-factoid questions, it can provide
relevant answers from community question answering websites.
An important result of our work is also a new way to calculate
the text similarity between two texts that extends TF-IDF by uti-
lizing word embeddings. The proposed measure improves the per-
formance of TF-IDF in the paraphrase identification task achieving
81.8% F1 score, higher than almost all the proposed unsupervised
models. The source code of the developed system is publicly avail-
able as well as the two datasets that were created for question clas-
sification and factoid question answering evaluation.

8 FUTURE WORK

As we already mentioned, the first improvement can be done by ex-
tending the named entity recognizer so that it detects other types
of factoids like height, weight and distance. Of course this would
also require to train the question classifier with more question
types. Our ranking method uses weights for different measures
that were defined experimentally. After creating a larger test set of
questions, we could automatically learn these weights with a logis-
tic regression model. We could further improve the accuracy of our
system by using knowledge bases like Wikidata or DBPedia. How-
ever, these sources contain information mainly in English. The fi-
nal answer selection, after getting a ranking of 20 questions, could
be done using a recurrent neural model like a dynamic memory net-
work [11]. The network could be trained on the SQUAD dataset.
Each time for the final answer selection (out of the top 20), we
would feed the sentences that contain the answers (maybe with
some more sentences before and after the ones that contain the
answer) and the network would output the final answer.
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