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Abstract

We consider the problem of scheduling Electric Vehicle (EV) charging within
a set of multiple charging stations. Each station aims to maximize the
amount of charged energy and the number of charged EVs. We propose
an agent-based simulation scheme, where the EVs announce their requests
to the stations and each station computes an optimal solution using Integer
Linear Programming (ILP) techniques. We propose two variations of the
problem, namely the Offline Mode and the Online Mode. In the first one,
all the EVs send their charging requests simultaneously at the beginning of
the simulation and the stations compute their charging schedules at once,
while in the second one each EV may send a charging request at whichever
time point and the stations compute their charging schedules incrementally.
Moreover, we apply agent-based negotiation techniques between the stations
and the EVs to service EVs when the ILP problem is initially unsolvable due
to insufficient resources at some stations. Finally, we insert delays in the
Online Mode, meaning that an EV that came to an agreement with a station
may cancel this agreement and request charging anew. We test our scheme
for both variations, Offline and Online, for a diverse set of stations and EVs
and show the outcomes of the different scenarios in the system.
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1. Introduction

The increasingly negative impact of climate change on society has forced
several countries to instigate national plans to reduce carbon emissions [1].
The electrification of transport is one of the main pathways to significantly
reduce CO2 emissions, improve quality of driving and reduce running costs
for owners [2]. However, the successful introduction of EVs into the market
lies upon the acceptance of the new type of vehicle by the customers. Cur-
rently, three main problems prevent the spread of EVs: 1) the relatively small
driving range, 2) the long charging times and the unavailability of charging
stations, and 3) the higher cost of buying an EV compared to a conventional
car [3]. Given that these limitations demand several years before they can
potentially be removed, ways of making EVs attractive to customers given
the current situation must be developed. For example, the flexible charging
of many EVs given the available stations and the balanced distribution of
them across the stations, can soften limitations 1 and 2.

Moreover, in order to ensure that the large-scale deployment of EVs re-
sults in a significant reduction of CO2 emissions, it is important that they are
charged using energy from renewable sources (e.g., wind, solar). Crucially,
given the intermittency of these sources, mechanisms (e.g., [4], [5]), as part
of a Smart Grid [6], need to be developed to ensure the smooth integration
of such sources in our energy systems. EVs could potentially help by storing
energy when there is a surplus, and feed this energy back to the grid when
there is demand for it [7], [8].

In this paper, we study an agent-based simulation scheme in which agents
try to optimally satisfy their needs. In our setting, a number of charging
stations with limited chargers and available energy exist. In this domain,
EVs send requests to the charging stations and need to charge. The stations
reply by accepting or declining the EVs’ requests. For the scheduling of
EVs to charging stations, Integer Linear Programming (ILP) techniques are
being used. In case the ILP problem is initially unsolvable due to insufficient
resources at some stations, a negotiation procedure between the EVs and the
station takes place. In so doing, the stations propose changes (i.e., offers)
to the EVs’ initial preferences and EVs can accept or reject these offers.
As [9] states, usually, different classes of agents are used to represent those
actors in such systems. In our case, we assume that each EV carries its
own intelligent agent which autonomously communicates the EV’s initial
preferences, and later participates in the negotiation with the stations. In
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this domain, the EVs are self-interested agents that need to maximize their
utility (i.e., maximize energy charged and minimize charging time), while
the charging stations aim to maximize the number of serviced EVs and the
utilization of the available (renewable) energy.

We advance the state of the art as follows:

1. We propose a multi-agent system which consists of multiple stations,
that receive charging requests from EVs and compute a schedule, trying
to reach their goals, and maximize the EVs’ utility.

2. We present a simulation scheme, which consists of two modes, one
offline, where all the EVs send their requests simultaneously and the
stations have full knowledge on the data, and one online, i.e. stohastic,
where the requests may arrive at any time point at a station.

3. We propose a negotiation scheme, where the stations make alternative
proposals to the EVs that could not fit in their initial optimal schedule.

4. Finally, we insert the notion of delays in our system, which means that
an EV that accepted to charge in a station may change its requirements
and ask to move its charging in the future. By doing so, we showcase
how our algorithms are affected when EVs delay, which is a possible
scenario in a real-world deployment.

The rest of the paper is structured as follows: In Section 2 we present
related work to our problem. We continue, in Section 3 by defining our
problem and giving details about the multi-agent system we propose. In
Section 4, we present several algorithms used by our simulations, such as
the Linear Model, that the stations solve in order to compute their local
schedule or to compute the alternative offers. In Section 5, we present the
two execution variations of our system, namely the Offline Mode and the
Online Mode. Finally, we present our experimental study, in Section 6, and
conclude our paper in Section 7.

2. Related Work

To date, a number of papers trying to solve similar problems exist in
the literature [10]. For example, Bayram et al. [11] assume a large num-
ber of charging points, each of them having pre-ordered a certain amount
of energy. They use a centralized mathematical programming algorithm to
optimally allocate the energy to EVs, so as to service the maximum number
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of EVs. The authors evaluate the mechanism in a setting where both selfish
(want to charge at the nearest charging point), and cooperative EVs exist,
and verify the performance of their algorithms. In turn, [12] propose dy-
namic programming algorithms that schedule the charging of EVs according
to the availability of energy while guaranteeing the intended journeys can be
completed. They also show that their solutions can adapt to fluctuations in
energy generation from renewable sources thus increasing EV penetration to
the grid. In a similar vein, [13] propose an optimal charging decision making
framework for connected and automated electric vehicles. The authors use a
large scale electric vehicle data set to establish a stochastic energy consump-
tion prediction model with consideration of realistic uncertainties. Based on
this model, multi-stage optimal charging decision making models are intro-
duced. Later, a dynamic programming algorithm is used to calculate the
optimal charging strategies. In [14] the authors are taking a more complete
approach, trying to schedule EVs’ charging in the Smart Grid, while taking
into consideration other components of the system, such as power plants and
storage systems. A problem is formulated, where the cost relevant to the de-
lay of the satisfaction of the EVs’ and the income from the service provided is
optimized. Finally, the authors in [15] are taking into consideration the load
of the grid and the cost of the electricity at each time interval, which may be
dynamic. In their scenario an aggregator tries to schedule EVs, while min-
imizing the energy cost. In doing so, they propose a Pursuit algorithm and
a Reinforcement Learning algorithm, in combination with a simple offline
placement algorithm, so the schedule will adapt in the fluctuations of the
energy cost, while using past knowledge.

Instead, in [16] agents state time windows within which they will be avail-
able to charge, and bid for units of electricity in a periodic multi-unit auction
(one auction per time step). In order to ensure truthfulness, the authors de-
veloped a mechanism that occasionally leaves units of electricity unallocated
(burned), even if there is demand for them. In a similar vein, Chung et al.
[17] study the problem of the distribution of a set of EVs across several charg-
ing stations. In so doing, they model the (possibly contradicting) preferences
of the stations and the EVs as a bi-objective optimization one and the Pareto
optimality of the proposed solution is proven. In addition, using more tra-
ditional agent-based negotiation techniques, Gan et al. [18], implement an
iterative procedure to allow EVs to negotiate the charging rate (at different
time points) with a utility company (that broadcasts a price signal to control
charging). Crucially, they show that, should the charging characteristics of
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all EVs be known, an optimal solution is reached in a decentralized fash-
ion. Furthermore, the authors in [19] study a setting where EV charging
stations participate in energy, reserve and regulation distribution markets by
optimally managing their EVs. In doing so, the technical constraints in the
distribution networks are met and the overall system cost is minimized. In
[20], the authors suppose a day-ahead market and using a Mixed Integer Pro-
gramming (MIP) technique and a bidding strategy, they try to minimize the
charging costs and satisfy the EVs’ need for charging. Finally, the authors
in [21] propose a mechanism to increase the social welfare of the EVs in a
self-interest agent system. Specifically, it is pledged that an EV will charge
by its departure, but the time points that will be allocated to it are flexible.
In contrast, in our work, a fixed schedule for each EV is decided and cannot
change.

Additionally, research based on simulations also exist. In [22], the authors
create a multi-agent simulation EV charging which consists of a suite of mod-
ules that simulate vehicle traffic, electric vehicles, charging stations and the
electrical power grid. Moreover, they take into consideration the impact of
the temperature on the discharging of the EVs during their trips. For the
charging of the EVs, two types of strategies are compared, one uncontrolled
where the EVs charge without limitations as long as they are connected in
the grid and one limited to the maximum energy used from the grid, which
is more efficient and exploits V2G charging. In the same vein, [23] suggests
a centralized algorithm that optimizes electric vehicle charging, combining
V2G and G2V, while paying special attention to the energy coming from
renewable resources. Forecast data for the power demand as well as the re-
newable energy generation is used along with the preferences of the drivers
about their charging schedule. By running a simulation of their system the
efficiency of the algorithm is proved in terms of power imbalance. [24] pro-
poses an algorithm to facilitate the construction of an optimal micro-grid in
terms of CO2 emissions. To do so, the authors assume several EV charging
schemes and use the load curves generated in order to find the best parame-
ters for the micro-grid. Moreover, the authors in [25] simulate an e-carsharing
scenario, supported by a fast-charging station, to provide technical specifica-
tions about their system. Finally, tools have been developed which simulate
a wide range of EV charging such as the EVLibSim ([26]). EVLibSim is a
simulation tool with efficient user interface that covers a lot of functions for
EV charging in a station like slow and fast charging, battery exchange etc.
The tool is based on the EVLib library ([27]), written in JAVA, which is used
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to create and manage charging events in a station. The authors provide a
simple algorithm for scheduling, however more sophisticated algorithms can
be combined with it. Simulation-based approaches are a feasible way of test-
ing systems without investing valuable resources and, also, facilitate in the
avoidance of design errors in time [28].

The common characteristic of the majority of the work in this field is that
the preferences of the EVs, once communicated to the charging station(s) do
not change. The main difference of our approach is that here, we propose
an agent-based scheme where in case an EV’s preferences cannot be fulfilled,
a station can negotiate with it and propose a different charging plan. In
contrast to [18], charging characteristics of all EVs are not assumed to be
known.

Negotiation between intelligent agents is a very common procedure amongst
multi-agent systems. When agents negotiate, they may change their local
plans or relax their constraints so as to come to an agreement with other
agents in the system. Agent negotiation is used in various problems such
as the assemblance of a supply chain [29] as well as the allocation of routes
to cars in order to alleviate the traffic on the streets [30]. Negotiation tech-
niques have already been considered as an efficient method to increase the
participation of various actors within the Smart Grid [31] as well. Specifi-
cally, in [32] agents negotiate energy over a peer-to-peer overlay in order to
schedule the energy flows between producers and consumers.

Due to the nature of the problem, most of the papers, described above,
differ in the way they model the distribution of energy to EVs, thus an ex-
plicit comparison between metrics is meaningless. In terms of an abstract
comparison, the negotiation layer we propose improves the metrics of ser-
viced EVs in a station as well as the energy utilization, however, this can
lead to additional load on the Smart Grid. Compared to our previous work
[33], where we assumed that there is a unique station in the system, which
computes an optimal charging schedule, in this paper we consider multiple
charging stations. In addition, the negotiation phase is more efficient from
the perspective of a station and the EVs have more sophisticated strategies.

3. Problem Definition

In this paper, we study a setting where several EVs send requests for
charging in multiple charging stations over time. We assume that each EV is
modeled as an agent which communicates to the charging stations the EV’s
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needs and constraints and tries to satisfy them in the best possible way. An
intelligent agent is a computer system that is capable of flexible autonomous
action in some environment in order to meet its design objectives [34]. In
this case, the EV agent receives as input the demand and constraints of the
driver and acts autonomously in terms of communicating with the charging
station, which is also represented by an agent, and reach the best agreement
based on the availability of the stations and the demand of other EV agents.
In a real scenario, such an agent could reside on the on-board computer of
the electric vehicle. Each station receives requests from the EVs and aims to
achieve its goals, which are maximizing its own profit as well as maximizing
serviced EVs. The first goal is linked to the amount of energy that will be
charged to the EVs and the second goal is linked to the number of the EVs
that the station will charge. In so doing, each station takes into consideration
its available resources (i.e., chargers and available energy), as well as the EVs’
constraints. Each EV agent will choose at most one station to charge. After
the decision is made, the pilot of the vehicle is informed and drives to the
destination.

In more detail, we denote the set of EV-agents i ∈ I ⊆ N and the set of
charging station agents j ∈ J ⊆ N. Each station j has a number of chargers
sj ∈ Sj ⊆ N. Moreover, we assume a set of discrete time points t ∈ T ⊆ N
to exist. At each time point each charging slot has one energy unit esj (note
that energy storage is not supported). The number of chargers constraints
the maximum number of EVs that can charge simultaneously. Now, the
agent type for each EV is a tuple pi = 〈tinfi , tarri , tdepi , ei, ui〉. In more detail,
each EV sends a charging request to the stations at tinfi (inform time) about
its arrival time at tarri ≥ tinfi , the preferred departure time tdepi as well as
the ei energy that needs to charge. Additionally, each EV i has utility of ui

value, which shows how much of its needs are satisfied.
Now, once the stations receive the requests, containing the EVs’ pref-

erences, they apply a scheduling algorithm to decide on their local charg-
ing schedules and finally, each station j produces an offer oj,i, if possible,
for each EV i that requested charging from it. The procedure continues
in rounds: In the first round, each station j sends to each EV i that re-
quested charging from it the offer oj,i, or in case that given the EV’s and
station’s constraints, an offer is impossible to be computed, the station in-
forms the EV about its unavailability. Each EV evaluates its incoming offers
and has two available options: 1) either to accept a station’s offer, and in
that case it notifies the rest of the stations to stop sending offers to it, or
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2) in the case that an acceptable offer has been made by none of the sta-
tions it asks for a better offer from them. In the next round, the stations
recompute their schedules, considering solely the EVs that accepted their
offer and those that demanded a better offer in the previous round. If a sta-
tion, still cannot charge an EV, it computes an alternative proposal which
is as close as possible to the EV’s initial preferences. We should note that
an alternative proposal is an offer, but not within the initial preferences of
an EV. The EV, based on the bounds that are set within its own strategy
strpi = 〈tarri,min, t

dep
i,max, windowi,max, ei,min, roundsi,max〉, which is unknown to

the stations, evaluates the offers and alternative proposals. In more detail, an
EV will not accept any proposal prop = 〈tarrprop, t

dep
prop, eprop〉 with tarrprop < tarri,min,

tdepprop > tdepi,max, eprop < ei,min or tdepprop − tarrprop > windowi,max. Additionally, an
EV i will reject any incoming alternative proposal after roundsi,max of the
negotiation and will notify the stations to stop sending offers to it. This
procedure lasts one time point and goes on until there are no pending EVs
which means, each EV has accepted an offer, or rejected all possible stations.

Figure 1: Agent Communication

Based on the categorization of agents architecture, described in [35], both
types of our agents can be characterized as Utility-Based Agents, as all of the
stations and EVs choose actions that maximize their utility. As mentioned
before, a station’s utility is a combination of how many charging slots are used
and how many EVs are serviced. Moreover, an EV’s utility is computed by
the difference between its initial preferences and the deal made with a station.
Furthermore, the station agents can be described as Limited Rational Agents,
due to the fact that the ILP problem may be complicated and require long
computational time, so a suboptimal solution may emerge. On the other
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hand, the EV agents can be considered Perfect Rational Agents, because
their decisions depend on simple if-then rules, hence are always the best
possible.

4. Algorithms

Here, the basic algorithms of our solutions are described. We begin with
the algorithm that the stations use to compute their initial schedule, followed
by the algorithm that the stations use to compute the alternative proposals.
Additionally, we present how the EVs make a choice on whether they accept
the offer of a station or not and how their utility is computed. Finally, more
information is provided on the delays.

4.1. EV Scheduling Algorithm

Each station j computes its optimal schedule of EV charging using an
optimal Integer Linear Programming (ILP) formulation of the problem (de-
veloped using IBM ILOG CPLEX 12.6.2). The aim of this formulation is
to find the optimal charging plan such that it leads the station closer to its
goal. Thus, the formulation contains two decision variables and an objective
function that is maximized under a number of constraints. The fact that
the decision variables in our problem take integer values and the objective
functions and constraints are all linear, renders ILP as the most appropriate
technique to be used. Each part of the formulation is presented thoroughly
below.

4.1.1. Decision Variables

Here, we present the two decision variables, that the objective functions
and the constraints may use. The first variable, denoted as ai,t ∈ {0, 1},
represents if the EV i will charge in the specific time point t. Its type is
Boolean and it receives the value 1 if i will charge at t, or 0 in the opposite
case. The second variable is denoted as bi ∈ {0, 1} and represents whether
an EV i is serviced or not. Again, if i is serviced the variable bi receives the
value 1 and the value 0 in any other case. From now on, we are going to call
the first variable profit variable, because each time a charging slot is used in a
station its monetary income is increased, and the second one service variable,
because it represents how many EVs will be serviced.
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4.1.2. Objective Functions

A charging station uses the Objective Function given by equation 1. The
objective function makes use of the profit variable as it tries to maximize its
profit, which means use as many charging slots as possible. We should note
that a charging slot represents a charger at a specific time point. This, also,
increases the number of the serviced EVs while keeping the profit high. In
the case where the second variable was used as well in the objective function
the station would choose EVs with smaller energy demand in order to achieve
its goal (service as many EVs as possible), which may lead to smaller profit,
which is the station’s main goal.

maximize{
∑
i∈I

∑
t∈T

ai,t} (1)

4.1.3. Constraints

As for the constraints, every vehicle i must charge the number of energy
units that it needs between its preferred time points (Equation 2), while
the number of vehicles that charge simultaneously must not exceed the total
number of charging slots (Equation 3). In the first constraint, the amount
of energy ei the EV requested is multiplied by service variable for the EV,
because if there is not enough energy for the station to charge the EV for
the demanded energy, the sum in the left side of the equation must be equal
to zero and thus bi becomes equal to zero so as to make the linear problem
solvable.

∀i ∈ I,

tdepi∑
t=tarri

ai,t = ei × bi (2)

∀t,
∑
i∈I

ai,t ≤ |Sj| (3)

4.2. Alternative Proposals Computation

As mentioned before, stations compute alternative proposals when they
cannot fit an EV in their schedule using their initial preferences. In this
subsection, we present in detail how a station calculates alternative propos-
als. Each station’s objective is to use as many as possible charging slots by

10



changing as little as possible the initial preferences of the EVs. To achieve
this, the stations solve the Linear Programming problem, presented below:

profit sum =
∑
i∈I

∑
t∈T

w1× z × ai,t (4)

closeness sum =
∑
i∈I

∑
t∈T

w2× di,t × ai,t (5)

maximize{profit sum− closeness sum} (6)

constrainted to:

∀i ∈ I, 1× bi ≤
tdepi∑

t=tarri

ai,t ≤ ei × bi (7)

where at a time point t, for an EV i, if t < tarri then di,t = tarri − t and if

t > tdepi then di,t = t− tdepi , is the distance of the time point from the initial
window. The problem is also constrained by the inequation 3. In more detail,
the station tries to fill as many remaining chargers as possible (Equation 4)
giving priority to the time points with the smallest distance from the EVs’
initial window (Equation 5), while trying to give to each EV less or equal
energy to the initial demand (Inequation 7). The two weights, w1 and w2, are
used so that the two sums are transformed to the same scale. To compute
each weight, we first calculate the maximum value of the corresponding sum
and then we divide a constant number with this value. By multiplying each
sum with its weight we make sure that the two sums in the objective function
are going to be of equal importance. Then we multiply the first sum with
z > 1 to make maximizing profit the first priority.

4.3. EVs Strategy

In this section we present the algorithm (Algorithm 1) that the EVs use
in order to produce the answers they provide to the stations. An EV receives
offers from the stations and sorts them from best to worst (line 1). Then
it picks the first offer in the list (line 2). If the rounds of the conversation
are less or equal to the EV’s roundsmax and the selected offer is within its
initial preferences or the rounds of the conversation are equal to the EV’s
roundsmax and the selected proposal is an alternative to its initial preferences
(but inside the bounds of the EV’s strategy) it accepts the offer and rejects
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all other stations (lines 5-7). In contrast, if the number of rounds of the
conversation is less than the EV’s roundsmax (but there is not an offer within
the initial preferences), the EV asks for a new offer (lines 8-9). Finally, if
the rounds of the conversation are equal to the EV’s roundsmax and there is
no available offer (i.e., out of acceptable bounds of EV’s strategy, or station
could not find one) the EV rejects all the stations (lines 10-12).

Algorithm 1 EV Strategy

1: ev.sort(incoming offers)
2: first← ev.offers.first
3: st← first.getStation
4: Define ev’s patience as roundsmax

5: if (first.withinInitial and roundsconv ≤ roundsmax) or
(first.isAltProposal and roundsconv == roundsmax) then

6: ev.send(”ACCEPT”, st)
7: ev.send(”REJECT”, {allStations - st})
8: else if (first.notAvailable or first.isAltProposal) and roundsconv <

roundsmax then
9: ev.send(”PENDING”, allStations)

10: else if roundsconv == roundsmax then
11: ev.send(”REJECT”, allStations)
12: ev.offers.clear

4.4. Utility Computation

At this point, we should present how the utility of an EV is computed,
after it accepts an offer from a station. An EV will have utility of 1 if it
is scheduled to be charged with its initial preferences, while if it rejected
all the stations its utility is equal to 0. However, if an EV accepted an
alternative proposal, then it means that it had to compromise and alter its
initial preferences. In that case, the utility of the EV is computed as shown
below:

ui = 1− (w3
energyDif

maxEnergyDif
+ w4

windowDif

maxWindowDif
), (8)

where energyDif is how much energy the EV sacrificed, windowDif
is the count of how many time points the arrival and the departure time
points were moved out of the initial window, maxEnergyDif represents
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how much is the worst loss of energy (all the energy asked minus 1) and
maxWindowDif is computed in the same way as windowDif when the
window has undergone maximum displacement. Below, an example compu-
tation of the utility of an EV is presented:

In a system with 5 time points, an EV demands 2 energy units and would
like to charge at time window [2−3]. A station proposes to the EV to charge
for 2 energy units, but in a different time window. The new time window is
[1−2]. The EV accepts the proposal. The utility of the EV then is computed
this way: First the energyDif is computed. The EV has not sacrificed any
energy units so energyDif is equal to 0. Also, maxEnergyDif is equal to
1 (maximum loss of energy). After that, windowDif is computed. The new
arrival time point differs 1 time point form the initial time window. The
new departure time point remains into the initial time window, making its
distance equal to 0. So, windowDif is the sum of those two numbers and it
is equal to 1. Then, maxWindowDif is computed, in the same way, except
that the distance between the initial and the worst time window is computed.
The worst time window for the EV, is [0 − 1] (the initial window is slided
the furthest distance to the left. If the slide to the right is larger, then that
window will be considered). The worst arrival time point differs 2 time points
and the worst departure time point differs 1 time point form the initial time
window. So maxWindowDif would be equal to 3. The utility then is:

ui = 1− (0.5× 0

1
+ 0.5× 1

3
) = 0.83 (9)

4.5. Delays

Finally, in the Online Mode there is a possibility that an EV delays its
arrival to the station with which it came to an agreement about its charging.
When an EV knows that it is going to delay, it informs the station about this
change by communicating its new preferences. The station, then, removes
the EV from its schedule and treats it like a totally new entry. The delayed
EV will not have priority over the other EVs, meaning that it may end up
altering its preferences or not being charged at all. Continuing, we provide
information about EV delays and how the delayed EVs calculate their new
preferences.

At a random time point tinfi < t < tarri , an EV that reserved charging
slots in a station at time point tinfi may announce its inability to be punctual.
When this happens, the EV sends a new charging request with its updated
preferences only to the station in which it was about to charge. The new
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preferences result from the initially accepted charging preferences slided to
the right for a random number of time points. The energy demand remains
the same unless |T | − tarr

′
i < ei, where |T | is the total number of the time

points in a simulation and tarr
′

i is the new arrival time point. This means that
if the EV arrives at the station on its new arrival time point, there will not be
enough time points until the end of the simulation to satisfy its initial energy
demand. Thus, in that case energy demand is equal to |T | − tarr

′
i in order

for it to be as close a possible to ei. Apart from their new preferences, the
EVs also update their strategy by simply sliding the acceptable time window
by the same amount of time points as the one of the initial preferences. We
assume that each EV can declare one delay, maximum.

5. Offline & Online Mode

The scheme described in Section 3 has two modes - Offline and Online.
In the Offline Mode, the negotiation between the stations and the EVs runs
only once after all the EVs have informed the stations about their requests.
In our implementation of the Offline Mode we assume that the negotiation
takes place in t = 0, including t = 0 in the generated schedules, because
when the requests were accumulated is not of importance. In the Online
Mode, the EVs send charging requests at any time point t = tinfi .

The Offline Mode is used as a benchmark to evaluate the results of the
Online Mode. However, a realistic scenario for the Offline mode is that the
stations gather the charging requests for a day d at day d− 1 and calculate
their schedules at the end of d−1. In the next subsections the two alternative
variations are presented in algorithmic manner.

5.1. Offline Mode

At the beginning of the simulation (t = 0), and as can be seen in Algo-
rithm 2, each EV broadcasts a charging request (lines 1-2) to the stations.
Each station receives its requests and adds the EVs requested charging into
its pending list (lines 3-4). While there are pending vehicles in the system
(line 6), which means that there are EVs waiting for a better offer from the
stations, each station computes its optimal charging schedule for the EVs in
its pending list, as described in Section 4.1 (line 8). If there are any EVs
that could not fit in the optimal schedule of a station, then this station in-
forms them about its unavailability (line 10). Continuing with the algorithm,
each station, sends a message containing its offer to each EV that requested
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charging from it (line 12). Each EV sends an answer based on its strategy
(lines 14-15). Then, the stations receive the answers of the EVs. Each sta-
tion, having cleared its pending list, (line 13) fills it again with the EVs that
asked for a better offer (lines 19-20). Also, the EVs that accepted a station’s
offer are locked into the schedule, so the decision of their charging will not
change (lines 21-23). If there are still pending EVs, then the conversation
rounds count is increased by 1 (line 24) and the procedure is repeated (lines
6 - 24).

Algorithm 2 Offline Mode Algorithm

1: for all ev ∈ A do
2: ev.request(stations)
3: for all station ∈ C do
4: station.pendingList.addAll(EVs requested)
{Conversation part}

5: Define rounds of conversation as roundsconv = 0
6: while pendingEVs do
7: for all station ∈ C do
8: Optimal(station.pendingList)
9: if Not charged then

10: station.informUnavailable (not Charged EVs)
11: station.pendingList.remove(not Charged EVs)
12: station.sendOffers(station.pendingList)
13: station.pendingList.clear
14: for all ev ∈ A do
15: Send answers based on Algorithm 1
16: for all station ∈ C do
17: station.receive(replies)
18: for (r of EV: ev) ∈ replies do
19: if r equals ”PENDING” then
20: station.pendingList.add(ev)
21: else if r equals ”ACCEPT” then
22: station.lock(ev)
23: station.updateResources
24: Increase roundsconv by 1

15



5.2. Online Mode

In the Online Mode (Algorithm 3), charging requests can arrive at the
stations at any time point t. We define a set of time points that the simulation
is going to last (line 2). While the current time point tc of the execution is
less than the total number of time points (line 4), EVs that their tinf is equal
to tc send requests to the stations. Additionally, EVs which have already
made a reservation at a station, however, in tc realize that they will delay,
also inform the corresponding station (lines 5-7). Each station receives its
requests and adds the EVs that requested charging into its pending list (line
9). Stations, then, are going to make offers at that time point and the
Conversation Part of the Offline Mode Algorithm takes place but only for
the EVs that requested at this time point (line 12). So that means that the
Conversation Part is going to run more than one time, but using only a little
proportion of the EVs in the system. The decision for the EVs that have
accepted an offer at some time point and are scheduled to be charged in a
station, won’t change when new EVs arrive and a new optimal schedule is
computed by the stations. So, the new optimal schedule in a station will be
computed using only the resources that haven’t been allocated yet.

Algorithm 3 Online Mode Algorithm

1: Define slot of the execution as currentT imeSlot = 0
2: Define total time slots of the execution as timeSlots
3: Define an empty set of stations as activeStations
4: while currentT imeSlot ≤ |T | do
5: for all ev ∈ A do
6: if ev.tinf == currentT imeSlot then
7: ev.request(Stations)
8: for all station ∈ C do
9: station.pendingList.addAll(EVs requested)

10: if station.makesOffers then
11: activeStations.add(station)
12: Execute Offline Conversation Part with only activeStations
13: activeStations.clear
14: Increase currentT imeSlot by 1
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6. Evaluation

In this section we present simulations which demonstrate the way the EVs
distribute to stations, at which point stations achieve their goals, what impact
the alternative proposals have on the outcome and how the delays affect the
goals of a station. Additionally, we report the execution time for various
simulations. The evaluation begins by running Offline and Online Mode
simulations of a system with a single station and observing the difference
between the two variations as well as the effect of the alternative proposals
and delays on the metrics. Then another station is added and various metrics
are monitored. Finally, a large scale simulation with a system of four stations
takes place.

The parameters used in our experiments are based on the specification of
the well-known Nissan Leaf1 and its four variants. In more detail, the battery
capacity of the four Nissan Leaf models ranges from 40kWh (Accenta, N-
Connecta, Tekna) to 62kWh (e+ Tekna) and they all use a 6.6kW charger2,
therefore, we assume that the chargers in our experiments output the same
power in kWs. We define that all of the charging EVs consume the same
amount of energy at each time point and this amount equals to one energy
unit. Moreover, we assume that the time is divided in discrete time points
and the experiments simulate the duration of one day, so we have 288 time
points each of which represents 5 minutes, making an energy unit equal to
0.55kWh. This means that a single station can offer at maximum 7920kWh
in the duration of a day. In each experiment, the EVs require heavy charging,
so their energy demand ranges in [50, 75] energy units and their preferences
are drawn from a Uniform Distribution (other distributions can be used too)
because we want the stations to be agnostic about possible traffic patterns.
In addition, we should state that in the experiments containing negotiations,
for each station, we study the utility of the EVs that accepted an offer.
The weights for the utility computation are 0.5 for the energy difference and
0.5 for the window difference. Finally, in experiments with more than one
station, we assume that all the stations are on close locations on the map.

1https://europe.nissannews.com/en-GB/releases/release-426214149-the-

new-nissan-leaf-the-world-s-best-selling-zero-emissions-electric-vehicle-

now-most-advanced-and-accessible-on-the-planet
2https://www-europe.nissan-cdn.net/content/dam/Nissan/gb/brochures/

Vehicles/Nissan_Leaf_UK.pdf
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[36] proposes a mathematical model to place the stations optimally on a
map. However, in our work, we want to compare the traffic attracted in each
station based on its strategy and not on its location (some stations might be
out of the maximum distance an EV is willing to traverse).

6.1. Single Station

In this section we present the results obtained with simulations ran on a
single station to point out the differences between our various approaches.
We compare the Offline and Online Mode on how many EVs are serviced
and how many charging slots of the station are used. For the Online Mode
we consider a case where the suggestions of alternative proposals do not take
place and another case where they do. By doing so, we show the impact of
the alternative proposals in our system. Finally, the utility of the EVs in our
third scenario is presented. The station contains 50 chargers and there are
250 EVs in the system.

Figure 2: Single Station - Service, Profit & EVs Utility

As seen in Figure 2, the Offline Mode dominates the other two on both of
our metrics. The Online Mode without alternative proposals comes last, as
expected, charging 2.84% less EVs and using 2.5% less charging slots than
the optimal solution. By applying the alternative proposals technique the
station manages to increase these values and achieve a better result, which
is closer to the optimal one. Specifically, the station charges 1.84% more
EVs and uses 1.33% more charging slots than the simple Online Mode. So,
alternative proposals improve the service and profit of a single station.
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Figure 3: Single Station - Alternative Proposals Acceptance

Another point worth mentioning is why the stations do not use more of
their charging slots. Because the arrival time of the EVs is randomly gener-
ated there is not much concentration in single time points so the earlier time
points of the execution have not been demanded by many EVs. However, the
following time points are requested by both EVs that informed earlier than
their arrival time and EVs that demanded charging slots in early time points
but their energy needs required many of the future slots, too. In Figure 4 the
usage of chargers in each time point for the three simulations is showcased.
In parallel with Figure 2 it is noticed that the Offline Mode makes the best
usage of charging slots, the Online Mode the worse and the Online Mode
with alternative proposals lies in the midst of the other two.

When an EV accepts an offer which diverges from its initial preferences,
it loses some of its utility. In Figure 2 we notice that the overall utility of
the EVs - that is, the utility of all the EVs that charged in the station either
using an alternative proposal or not - remains high at 99.38%. However, the
isolated utility of the EVs that their preferences were altered have a lower
utility 91.48%, which is still satisfactory. From the total number of EVs in
our system, 6.2% accepted an alternative proposal, while 5.6% rejected one
(Figure 3). As one can notice, even though 6.2% of the EVs accepted an
alternative proposal, the overall service was not increased by this number.
This happens because an EV that altered its preferences in order to charge
may occupy future charging slots that were going to be used by another EV.
So the improvement in service is not absolutely equal to the number of EVs
with altered preferences.
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Figure 4: Single Station - Slots Usage

6.2. Delays

Here, we present the impact that the delays of EVs have on a station.
As mentioned before, EVs that came to an agreement about their charging
at a station, may eventually be unable to arrive to the station on time so
they declare delay and request charging with their new preferences. To show
that, we run experiments for different quotas of EVs that declare delay. In
more detail, we start by setting 10% of EVs to delay. Then, we increase this
percentage by 10, until we reach 50% of the EVs in the system. However,
these percentages are not absolute because an EV that is set to declare delay
may not be charged by the station in the first place so it will never have the
possibility to do it.

As one can notice in Figure 5 when there are delays in the system the
two metrics tend to diminish. In the Online Mode without alternatives the
difference is initially insignificant starting from 0.3% for service and 0.08%
for profit at 10% delays but reaching 12.88% for service and 12.7% for profit
at 50% delays. However, when the station suggests alternative proposals it
attains higher metric values increasing service by 1.82% and profit by 1.74%
in average. Additionally, Figure 6 shows that the total number of alternative
proposals is increased. Moreover, the number of the acceptance of alternative
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Figure 5: Single Station - Delays: Service & Profit

Figure 6: Single Station - Delays: Alt. Proposals Acceptance & EVs Utility

proposals decreases while the rejections are increased. This is due to the fact
that when the number of delays increases more EVs request charging in future
slots thus congestion emerges. This means that the station has to calculate
more alternative proposals as it does not have the required availability. The
alternative proposals, however, are far from the EVs’ preferences, again,
because of limited availability.

6.3. Two Stations Simulation

After the single station simulation in the previous sections, we now add
a second station into the system. The second station is identical to the
first one, meaning that it has the same number of chargers. The stations
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may behave differently concerning the proposal of alternative offers. First,
we begin with no alternative proposals from any of the stations. We then
modify the behavior of one station to suggest alternative proposal and finally
we run a simulation in which both stations make alternative proposals. Along
with these simulations the results of the Offline Mode simulation are also
presented. Table 1 presents these simulations in a more clear manner and
sets a name for each one. The number of chargers in each station is 50 and
the number of EVs in the system is set to 500.

Table 1: Two Stations - Simulations Setup

Offline
Online
Alternatives

Station 1 No No Yes
Station 2 No Yes Yes
Sim. Name Sim1 Sim2 Sim3 Sim4

Figure 7: Two Stations - Service & Profit

When the stations compete in the Offline Mode their basic metrics (ser-
vice, profit) are very close to each other (Figure 7). Both stations make
optimal use of their resources and charge as many EVs as possible. The
small difference between them results from the random choices of the EVs
about which station they will choose. Comparing the Online Mode in Sim2
to Sim1 we notice that the service and profit have increased (Figure 7). In
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the Offline Mode the stations compute their schedule only once so when EVs
reject them they don’t have the chance to fill the charging slots that left
empty. However, in the Online Mode the station has the chance to fill that
kind of slots as new EVs will request in future time points.

Figure 8: Two Stations - Alt. Proposals Acceptance & EVs Utility

In the variations of the Online Mode both stations are pretty close in
terms of services. However, there is noticeable difference in their profits.
This relies on the fact that one station concentrates EVs with more energy
demands so as a result more charging slots are used. In Sim3, when one of the
two stations suggests alternative proposals, the collective service of the two
stations as well as the average profit is increased. Specifically, the collective
service in Sim3 is 91.58%, 1% more than that of Sim2 and the average profit
in Sim3 is 88.51%, 1.41% more than that of Sim2 (Figure 7). This happens
because the one station attracts more EVs and thus it increases its metrics
and this way more space emerges in the other station to service more EVs.
The EVs that accepted an alternative proposal are the 9.3% of the total EVs
that charged in that station and their utility is at 99.46%. In Sim4 the two
stations manifest very similar metrics. Collective service is similar to that
of the other three setups and the average profit remains high at 88.1%. The
number of EVs that accepted an alternative in both stations are very close
and their average utility is 99.45% (Figure 8).
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6.4. Four Stations Simulation

In this section, we add two more stations in the system and increase
the number of the EVs to 1000. First, the results of the Offline Mode are
given and then two more experiments follow up where in the one none of
the stations applies alternative proposals and in the second one all of the
stations do. As in the previous sections, the results for service and profit are
displayed. In the Online Mode 30% of the EVs are set to declare a delay in
case they accept to charge in a station.

Figure 9: Four Stations - Service & Profit

Similarly with the two stations simulation the stations showcase lower
values in service and profit for the reason mentioned in the previous section.
In the Offline Mode the average service is very close to the one of the Online
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Mode. On the other hand, the average profit increases by 1.62% in the
Online Mode without alternative proposals and by 2.21% when alternative
proposals are applied. Even though the total profit increases, the number of
the EVs that accepted an alternative proposal is below 1% but still offers a
small boost, because unused charging slots are being exploited. In contrast,
the number of the EVs that rejected equals to 44.2% (for all stations). This
means that the stations try to service EVs by calculating new offers for them,
however, the EVs have a large pool of choices for their charging so they are
likely to select a station which offers to charge them at their initial preference.
This discourages the use of alternative proposals when the number of the
stations is large. Finally, as in the previous experiments it is noticed that
the EVs tend to be equally distributed among the stations.

6.5. Simulation Time

Finally, we present a comparison on the execution times of our proposed
algorithms. We run tests for the three modes of this paper (Offline, Online,
Online with Alternatives) for different number of EVs. The time is measured
at the level of one station, which means that it is the average value of the
time that each station needs to compute its final charging schedule. The
parameters of the simulations are the same as those in the previous section,
but the number of EVs varies.

As we notice (Figure 10), both versions of the online algorithms are much
faster than the offline one. In more detail, at 1000 EVs the online algo-
rithms have a mean value of 2.16 seconds, while the offline has a value of
14.95 seconds. This happens because when there is a large number of EVs
in the system, in the Offline Mode, each station has to solve a much more
complicated problem than the online solutions as it tries to find the optimal
schedule for all these EVs at once. However, time is not a major problem
in the Offline Mode as there is no need for immediate response from the
station. In contrast, the Online Mode simulations solve sub-problems of the
main problem at each time point and thus they are much faster. This, how-
ever, is not observed when the number of EVs is very small, in our case below
300. In that case, the stations have more charging slots than needed so there
are less collisions between the EVs and the schedule is computed much faster.
Comparing the two online modes, it is noticed that they are very close but
the one with the alternative proposals gets slower as the number of the EVs
increases. Having less availability than demand a station has to compute

25



Figure 10: Simulation Time

more alternative proposals and this adds more time to the simulation. How-
ever, at 1000 EVs, the difference between the two online simulations is just
0.28 seconds.

6.6. Evaluation Discussion

In this section, we presented various simulations based on the problem
definition given in Section 3. We first showcased how the different scenarios
we proposed work for a single station, then we moved on by presenting a
two-station and a four-station environment and how the number of the sta-
tions affect aspects of the simulations such as the suggestion of alternative
proposals.

In our single-station simulation we showed that the Offline Mode is the
optimal one and that the Online ones are pretty close to it. However, the
Online Mode with alternative proposals is even closer to the optimal, in both
terms of service and profit. Additionally, it was explained that alternative
proposals do not increase the metrics by an absolute number, but they con-
tribute in improving the final result. In addition, the usage of the charging
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slots was commented. Moving on, we showed how the proposed Online algo-
rithms react when the EVs declare delay. The service and profit decreased
as the number of delays increased, but the use of alternative proposals al-
leviated this decrease. In the two-stations and four-stations simulation we
showed how the EVs are distributed in the stations and how the application
of alternative proposals affect the overall service and profit. Finally, we com-
pared the time that the simulations need to be completed, showing that the
Offline Mode takes longer time and that the alternative proposals cost little
time.

7. Conclusions and Future Work

In this paper, we proposed a multiagent methodology for the problem
of scheduling EV charging at multiple charging stations. In more detail,
we present an agent-based simulation scheme which consists of an Offline
Mode where an optimal charging schedule is computed, and an online one,
which incrementally calls the Offline Mode’s scheduling algorithm, when EVs
send requests at the stations. Moreover, we use agent-based negotiation
techniques between the charging stations and the EV-agents. Finally, we
inserted the possibility of an EV delaying its arrival and shifting it to a
later time point. Through an empirical evaluation, we show that the use of
alternative proposals improves the metrics of a single station and brings them
closer to those of the optimal scenario. It is also observed that when more
stations are added in the system the negotiations have less contribution and
the Online scenarios manifest better results than the Offline one. Moreover,
delays proved to have negative impact on the metrics of a station, however,
alternative proposals soothe this problem. When there are more than one
stations in the system, alternative proposals tend to increase the collective
metrics of the stations. Finally, based on the execution times, we observe
that the use of Offline Mode is not encouraged in systems with a large number
of EVs as it will not increase significantly the metrics of a station, while it
adds extra computation time. On the other hand, the Online Mode manifests
better results and takes far less time.

Future work will look at applying learning techniques so as EVs’ profiles
to be modeled [37]. In this way, personalized alternative proposals can be
made from the station to the EVs during the negotiation procedure in order
to increase the probability of an EV accepting an offer, as well as stations will
be able to predict the amount of energy demanded by the EVs. In this vein,
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the ability of EVs to store energy when being parked, within a vehicle-to-Grid
scheme [38], will be considered in order to increase the storage capacity of the
stations. In addition, a more efficient mechanism to participate in electricity
markets using electronic auctions and mechanism design will be considered.
Mechanism design techniques can also be applied so as to force EVs to always
report their preferences truthfully. Additionally, the location of the stations
on the map will be considered [39] as well as sophisticated load balancing
techniques will be investigated so as the integration of the charging stations
and the EVs to the smart grid to take place in the most efficient manner.
Finally, an important matter is the integration of our simulation scheme into
EVLibSim [26] as well as the redesign of our system in accordance to some
generic framework for agent-based simulation of electricity markets such as
the one proposed by [35].
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[13] Z. Yi, M. Shirk, Data-driven optimal charging decision making for con-
nected and automated electric vehicles: A personal usage scenario,
Transportation Research Part C: Emerging Technologies 86 (2018) 37 –
58. doi:https://doi.org/10.1016/j.trc.2017.10.014.

29



[14] G. Ferro, F. Laureri, R. Minciardi, M. Robba, An optimiza-
tion model for electrical vehicles scheduling in a smart grid,
Sustainable Energy, Grids and Networks 14 (2018) 62 – 70.
doi:https://doi.org/10.1016/j.segan.2018.04.002.

[15] A. Arif, M. Babar, T. I. Ahamed, E. Al-Ammar, P. Nguyen, I. R. Kam-
phuis, N. Malik, Online scheduling of plug-in vehicles in dynamic pric-
ing schemes, Sustainable Energy, Grids and Networks 7 (2016) 25 – 36.
doi:https://doi.org/10.1016/j.segan.2016.05.001.

[16] E. Gerding, V. Robu, S. Stein, D. C. Parkes, A. Rogers, N. R. Jennings,
Online mechanism design for electric vehicle charging, Vol. 2, 2011, pp.
811–818.

[17] H. M. Chung, W. T. Li, C. Yuen, C. K. Wen, N. Crespi, Electric ve-
hicle charge scheduling mechanism to maximize cost efficiency and user
convenience, IEEE Transactions on Smart Grid PP (99) (2018) 1–1.
doi:10.1109/TSG.2018.2817067.

[18] L. Gan, U. Topcu, S. Low, Optimal decentralized protocol for electric
vehicle charging, Power Systems, IEEE Transactions on 28 (2) (2013)
940–951. doi:10.1109/TPWRS.2012.2210288.

[19] M. Shafie-Khah, P. Siano, D. Z. Fitiwi, N. Mahmoudi, J. P. S. Catalão,
An innovative two-level model for electric vehicle parking lots in dis-
tribution systems with renewable energy, IEEE Transactions on Smart
Grid 9 (2) (2018) 1506–1520. doi:10.1109/TSG.2017.2715259.

[20] M. G. Vayá, G. Andersson, Locational marginal pricing based smart
charging of plug-in hybrid vehicle fleets, in: Smart Energy Strategies
Conference, 2011, pp. 21–23.

[21] S. Stein, E. Gerding, V. Robu, N. R. Jennings, A model-based online
mechanism with pre-commitment and its application to electric vehi-
cle charging, in: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2, International
Foundation for Autonomous Agents and Multiagent Systems, 2012, pp.
669–676.
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