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ZIP code: 85867-900. Tel.: +55 45 3576-8815. Fax: +55 45 3575-2733

cMachine Learning and Knowledge Discovery Group,
Department of Informatics, Aristotle University of Thessaloniki, Greece.

ZIP code: 54124. Tel.: +30 23 1099-8145

Abstract

Each example in a multi-label dataset is associated with multiple labels,

which are often correlated. Learning from this data can be improved when

dimensionality reduction tasks, such as feature selection, are applied. The

standard approach for multi-label feature selection transforms the multi-label

dataset into single-label datasets before using traditional feature selection

algorithms. However, this approach often ignores label dependence. In this

work, we propose an alternative method, LCFS, that constructs new labels

based on relations between the original labels. By doing so, the label set

from the data is augmented with second-order information before applying
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the standard approach. To assess LCFS, an experimental evaluation using

Information Gain as a measure to estimate the importance of features was

carried out on 10 benchmark multi-label datasets. This evaluation compared

four LCFS settings with the standard approach, using random feature selec-

tion as a reference. For each dataset, the performance of a feature selection

method is estimated by the quality of the classifiers built from the data de-

scribed by the features selected by the method. The results show that a

simple LCFS setting gave rise to classifiers similar to, or better than, the

ones built using the standard approach. Furthermore, this work also pio-

neers the use of the systematic review method to survey the related work on

multi-label feature selection. The summary of the 99 papers found promotes

the idea that exploring label dependence during feature selection can lead to

good results.

Keywords: feature ranking, filter feature selection, binary relevance,

information gain, systematic review

1. Introduction1

In multi-label learning, each example is associated with multiple labels2

simultaneously. A key difference between multi-label and traditional binary3

or multi-class single-label learning is that the labels in multi-label learning4

are not mutually exclusive. Thus, in comparison with traditional single-label5

learning, multi-label learning is more general and challenging to solve. The6

issue of learning from multi-label data has attracted significant attention7

from the community, motivated by an increasing number of new applications8

in bioinformatics [1, 2], emotion analysis [3], text mining [4, 5] and image9
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analysis [6], among others.10

As other machine learning tasks, multi-label learning also suffers from11

the “curse of dimensionality”. Dimensionality reduction (feature selection),12

which aims to find a small subset of features that describes the dataset as13

well as, or even better than, the original set of features does [7], is an effective14

way to mitigate the curse of dimensionality.15

The standard approach for multi-label Feature Selection (FS), which16

transforms the multi-label dataset into single-label datasets before using tra-17

ditional FS algorithms, is implementable in the Binary Relevance (BR) ap-18

proach [8]. However, a BR drawback is that label dependence is often ignored.19

Thus, a significant challenge regarding this approach is how to explore the20

labels structure to improve multi-label learning performance simultaneously21

with dimensionality reduction.22

An alternative to overcoming this problem would be to construct labels23

based on relations among the original labels and include the new labels dur-24

ing the feature selection phase. The main idea of variable (label or feature)25

construction is to gather information about the relations among the original26

variables from data and infer additional variables [9]. Although feature con-27

struction methods are less usual than feature selection methods [10], they28

have already been used to support single-label [11, 12] and multi-label learn-29

ing [13, 14, 15]. Nevertheless, to the best of our knowledge, there is little30

research on label construction for multi-label data.31

In this work, we present the Label Construction for Feature Selection32

(LCFS ) method, originally proposed in [16], to build binary variables (new33

labels) based on label relations. These variables are then included as new34
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labels in the original dataset and the standard multi-label FS approach based35

on BR is used in the augmented dataset to select features. Afterwards, the36

dataset described by the selected features and the original labels can be37

submitted to any multi-label learning algorithm.38

The LCFS method was experimentally compared with the standard multi-39

label FS approach based on BR on 10 benchmark datasets. We also used40

Random Feature Selection (RFS ) as a reference. Both LCFS and the stan-41

dard approach consider the frequently used measure Information Gain (IG)42

to evaluate features.43

The experimental results suggest that setting LCFS with simple strate-44

gies to build binary variables (new labels) from pairs of labels gives rise to45

classifiers similar to, or better than, the ones built using the standard ap-46

proach based on BR. Good LCFS results are also observed when the number47

of features selected is small.48

Furthermore, we also applied the Systematic Review (SR) method [17]49

to survey the literature on multi-label FS. The summary of the 99 papers50

found shows that good results are obtained from research which takes into51

account label dependence. Another finding is that IG is the most frequently52

used importance measure, as can be observed in 23 out of the 99 papers.53

The rest of this paper is organized as follows: Section 2 briefly describes54

multi-label learning and feature selection. It also presents the systematic55

review method, the LCFS method and the multi-label datasets used in the56

experimental evaluation. Section 3 describes the experimental setting used57

to obtain the results discussed in Section 4. Section 5 shows the related58

work found by applying the SR method. Section 6 concludes the paper and59
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highlights future work.60

2. Material and methods61

This section briefly describes multi-label learning and feature selection,62

as well as the systematic literature review method. It also describes the63

LCFS feature selection method and the characteristics of the 10 benchmark64

multi-label datasets used in the experimental evaluation.65

2.1. Multi-label learning66

Let D be a dataset composed of N examples Ei = (xi, Yi), i = 1 . . .N .67

Each example Ei is associated with a feature vector xi = (xi1, xi2, . . . , xiM)68

described by M features (attributes) Xj, j = 1 . . .M , and its multi-label Yi,69

which consists of a subset of labels Yi ⊆ L, where L = {y1, y2, . . . , yq} is the70

set of q labels. Table 1 shows this representation. In this scenario, the multi-71

label classification task consists of generating a classifier H which, given an72

unseen example E = (x, ?), is capable of accurately predicting its multi-label73

Y , i.e., H(E) → Y .74

Table 1: Multi-label data

X1 X2 . . . XM Y
E1 x11 x12 . . . x1M Y1

E2 x21 x22 . . . x2M Y2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

EN xN1 xN2 . . . xNM YN

2.1.1. Categorizing multi-label learning algorithms75

Multi-label learning methods can be organized into two main categories [8]:76

problem transformation and algorithm adaptation. The key philosophy for77
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the former is to fit data to algorithms, while for the latter is to fit algorithms78

to data [18]. In particular:79

� Problem transformation methods decompose the multi-label learning80

problem into a set of single-label (binary or multi-class) learning tasks;81

� Algorithm adaptation methods adapt specific learning algorithms to82

handle multi-label datasets directly.83

The multi-label learning algorithm BRkNN , which modifies the single-84

label lazy k-Nearest Neighbor (kNN ) algorithm to classify multi-label ex-85

amples, belongs to the algorithm adaptation category. To better tackle the86

multi-label problem, the extensions BRkNN-a and BRkNN-b are proposed87

in [19]. Both extensions are based on a label confidence score, which is esti-88

mated for each label from the percentage of the k-Nearest Neighbors having89

this label. BRkNN-a classifies a new example E using the labels in the multi-90

labels of the k-Nearest Neighbors which have a confidence score greater than91

0.5, i.e., labels included in the multi-labels of at least half of the k-Nearest92

Neighbors of E. If no label satisfies this condition, it outputs the label with93

the greatest confidence score. On the other hand, BRkNN-b classifies E with94

the [s] (nearest integer of s) labels that have the greatest confidence score,95

where s is the average size of the multi-labels of the k-Nearest Neighbors of96

E. By conducting an experimental comparison with the state-of-the-art lazy97

algorithm MLkNN [20], the authors found that BRkNN-b achieved compet-98

itive results.99

As lazy learning algorithms are sensitive to irrelevant features, they are100

a good choice to indicate the quality of a feature selection method. Thus, in101
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this work, we use BRkNN-b to assess the quality of the classifiers built using102

the original datasets — All Features (AF) — and the classifiers built using103

the datasets described by the selected features.104

As exploring label dependence during learning could improve the classi-105

fier performance [21], Zhang and Zhou [18] proposed another categorization106

of multi-label learning methods which takes into account the degree of la-107

bel dependence exploration. First-order strategies ignore the co-existence of108

other labels. The Binary Relevance (BR) approach, a problem transforma-109

tion method, exemplifies this category by transforming a multi-label dataset110

into q single-label binary datasets, learning from each single-label problem111

separately and combining the results. Second-order strategies can consider112

pairwise relations between labels, such as interactions between any pair of113

labels, or the ranking between relevant and irrelevant labels. High-order114

strategies consider relations among more labels.115

Although high-order strategies potentially model wider label dependences,116

they are usually computationally more demanding. This work focuses on117

finding second-order relations between single labels from the multi-label dataset118

and representing them as new labels. The idea is that, by labeling examples119

with the original and the constructed labels, feature selection methods based120

on the BR approach to incorporate label pairwise information are feasible.121

2.1.2. Evaluation Measures122

Unlike single-label classification where the classification of a new exam-123

ple has only two possible outcomes, correct or incorrect, multi-label clas-124

sification should also take into account partially correct classification. As125

a consequence, multi-label evaluation measures consider the performance of126
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the classifier from diverse aspects and are, thus, of a different nature. A127

complete discussion on multi-label evaluation measures is out of the scope128

of this work and can be found in [8]. In what follows, we describe the four129

evaluation measures used in this work.130

F -measure, Hamming loss and Accuracy, defined by Equations 1 to 3,131

are example-based evaluation measures, where ∆ represents the symmetric132

difference of two sets, Yi and Zi are the true and the predicted multi-labels133

respectively.134

F -measure(H,D) =

1

∣D∣
∑

∣D∣

i=1

2∣Yi ∩Zi∣

∣Zi∣ + ∣Yi∣
. (1)

Hamming loss(H,D) =

1

∣D∣
∑

∣D∣

i=1

∣Yi∆Zi∣

∣L∣
. (2)

Accuracy(H,D) =

1

∣D∣
∑

∣D∣

i=1

∣Yi ∩Zi∣

∣Yi ∪Zi∣
. (3)

In addition, Micro-averaged F-measure (Fb), defined by Equation 4, is a135

label-based measure, where TPyi
, FPyi

, TNyi
and FNyi

represent, respectively,136

the number of true/false positives/negatives for a label yj ∈ L.137

Fb(H,D) =

2∑
q
j=1 TPyj

2
q

∑

j=1
TPyj

+

q

∑

j=1
FPyj

+

q

∑

j=1
FNyj

. (4)

All these performance measures range in the interval [0,1]. ForHamming loss,138

the smaller the value, the better the multi-label classifier performance is,139

while for the other measures, greater values indicate better performance.140
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2.2. Feature selection141

Regardless of the multi-label learning approach, any FS method addresses142

a few relevant issues, such as the interaction with the learning algorithm143

and the feature importance measure. The first issue is taken into account144

in different ways by the wrapper, embedded and filter approaches. The145

wrapper and the embedded approaches involve interaction with the learning146

algorithm, such that the features are selected for a specific learning algorithm.147

On the other hand, the filter approach uses general properties of the dataset148

to remove unimportant features from it, regardless of the learning algorithm.149

Thus, the features chosen may not be the best ones for a specific learning150

algorithm. The FS algorithms considered in this work use the filter approach.151

Many measures have been proposed to estimate the importance of features152

based on characteristics of the dataset. As Section 5 reports, a frequently153

used single-label FS measure is Information Gain (IG), which evaluates each154

feature according to the dependence between this feature and a single label,155

as defined by Equation 5 — the higher the IG value for a feature Xj, the156

stronger is the relationship between Xj and the label.157

IG (D,Xj) = entropy (D) −∑

v

∣Dv ∣ entropy (Dv)

∣D∣

. (5)

In other words, the IG of feature Xj, j = 1 . . .M , calculates the difference158

between the entropy of dataset D and the weighted sum of the entropy of159

each subset Dv ⊆ D, where Dv consists of the set of examples where Xj has160
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the value v. Therefore, if Xj has 10 distinct values1 in D, the sum would be161

applied to 10 different Dv datasets.162

Using the BR approach, any single-label FS measure can be used to select163

features from multi-label data, as shown in [22], in which the single label FS164

measures IG and ReliefF are used. The procedure is simple: initially, using165

the BR approach the multi-label dataset is transformed into q single-label166

datasets, one per label. Afterwards, the single-label FS measure is applied167

to each feature Xj having as single-label yi, i = 1 . . . q, and the q results are168

averaged to obtain the final importance value of feature Xj. Finally, the169

importance value of the M features could be ranked to guide the selection of170

the better subset of features.171

In this work, we also use Random Feature Selection (RFS ) as a reference,172

in which the features are randomly selected, i.e., no label or multi-label173

information is considered. Next , the Systematic Review (SR) method used174

to survey the literature on multi-label feature selection is briefly described.175

2.3. Systematic review176

The systematic literature review method provides a rigorous and repli-177

cable process to review the evidence relevant to a particular research ques-178

tion [17]. Although this method emerged in areas such as Medicine, currently179

there are guidelines and applications in other areas. In Computer Science,180

several applications can be found, including a systematic review that surveys181

other systematic reviews [23]. Figure 1 summarizes the workflow of the three182

systematic review steps — planning, conducting and reporting — as well as183

1Discretization is applied to numerical features before using IG .
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its main inputs and outputs.184

Figure 1: An overview of the systematic literature review method

The input of the planning step consists of a feasibility study about the sys-185

tematic review method and the background related to the research question.186

In particular, the feasibility study can be carried out by analyzing whether187

or not a systematic review is needed concerning the topic of interest.188

Planning yields a review protocol, which describes the systematic review189

components and improves the method replicability. This protocol should be190

consulted to conduct the method, which provides the data able to answer191

specific research question(s), which is (are) the SR core. In the last step,192

reporting, this data is disseminated in papers or a Ph.D. thesis, for example.193

Although there are a few surveys on multi-label learning [18, 8], to the194

best of our knowledge there is no previous SR neither on multi-label learning195

nor on multi-label feature selection. This motivated us to conduct a pioneer-196

ing systematic review to rigorously survey the related work on multi-label197

feature selection.198

The systematic review research question we aim to answer is “what are199

the publications of feature selection in multi-labeled data?”. Further details200

11



regarding the review protocol and the instantiation of the SR method for201

multi-label FS are described in [24]. The reporting step to disseminate the202

related work summary is described in Section 5.203

2.4. The LCFS method204

Given a multi-label dataset D with the set of single labels L =205

{y1, y2, y3, . . . , yq}, the main idea of LCFS is to construct q′ new single labels206

by combining the original labels within pairs (yi, yj), i ≠ j, yi ∈ L and yj ∈ L.207

In each iteration, LCFS selects a pair of labels (yi, yj) from L and combines208

the labels within this pair to generate a new label yij. After repeating this209

procedure q′ times, the q′ new labels are included in the label set L, such210

that information about pairwise relationships between original labels can be211

used by the BR approach for feature selection.212

The LCFS method consists of two steps, each one concerned with an-213

swering a different question:214

1. Selection: which pairs of labels (yi, yj) should be chosen?215

2. Generation: how to combine these labels to generate the new labels yij?216

Figure 2 illustrates these steps for q′ = 1.217

Thus, instantiating LCFS involves choosing a strategy to select label218

pairs and a strategy to combine the labels within each pair. An additional219

parameter is the number of new labels q′ that will be constructed. In what220

follows, the two LCFS steps are described.221
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Figure 2: Applying the two steps of LCFS to construct q′ = 1 new labels [16]

2.4.1. Step 1: selection222

Given the set of labels L = {y1, y2, y3, . . . , yq} of dataset D, LCFS chooses223

q′ different pairs of labels2
(yi, yj), i ≠ j, according to a selection strategy.224

The idea is that these pairs capture some pairwise relationships between the225

labels to be considered by feature selection.226

LCFS supports different selection strategies, such as the simple Random227

Selection (RS ), as well as heuristic strategies based on the number of ex-228

amples labeled by each original single label (label frequency). In particular,229

two strategies considering label frequency are Co-occurrence-based Selection230

(CS ) and related Labels Selection (LS ). CS sorts in descending order label231

pairs according to the co-occurrence cc, i.e., the number of examples labeled232

by both labels within a pair — (1,1) — , and selects the first q′ different233

pairs. On the other hand, LS counts:234

1. The number of examples in which the labels within a pair agree, ce —235

(1,1) or (0,0);236

2In this work, two label pairs are considered different if they do not have a common
label. For example, (y3, y5) and (y1, y3) are not considered different pairs because they
share the label y3.
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2. The number of examples in which the labels within a pair disagree,237

cd — (1,0) or (0,1).238

Then, the pairs are sorted, in descending order, into two lists according to239

the values of ce and cd. The pair with the greatest value is selected, removed240

from the correspondent list and the procedure is repeated until selecting q′241

different pairs.242

2.4.2. Step 2: generation243

In this step, LCFS combines both labels from all previously selected pairs244

(yi, yj), i ≠ j, to construct the new labels yij. The idea is that the values245

of yij represent a pairwise relationship between yi and yj. In the end, all246

examples inD are labeled by the q original labels and the q′ new labels. LCFS247

supports different combination strategies between binary variables (labels).248

In this work, we use three simple logical operators to generate the values of249

the new labels of each example in D. The logical operators are:250

AND : yij = 1 iff yi = yj = 1; yij = 0 otherwise.251

XOR : yij = 1 iff yi ≠ yj; yij = 0 otherwise.252

XNOR : yij = 1 iff yi = yj; yij = 0 otherwise.253

The AND operator clearly highlights co-occurring labels. XNOR, also254

known as the coincidence function, assigns the value 1 to yij iff the labels255

yi and yj agree, whereas XOR does the opposite. Although other logical256

operators, such as OR, could be included, we consider that AND, XOR and257

XNOR are enough to represent relations between the original labels.258
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Finally, after generating the q′ new labels, the traditional BR approach259

for FS can be applied to the dataset now labeled by the q + q′ labels. Note260

that, by combining BR with LCFS , any single-label FS algorithm can be261

applied to the augmented dataset with second-order label information [18].262

The LCFS method was implemented in Mulan [25], a multi-label263

learning package based on Weka [26], and is available to the community264

at http://www.labic.icmc.usp.br/pub/mcmonard/Implementations/265

Multilabel/lcfs.zip.266

2.4.3. Illustrative example of the selection strategies267

The application of the simple logical operators AND, XOR and XNOR268

to generate labels is straightforward. To illustrate the strategies to select269

different pairs of labels, consider the multi-label dataset described in Table 2,270

with L = {y1, y2, y3, y4}, and the number of new labels to be constructed271

q′ = q
2 = 2.272

Table 2: Illustrative dataset for the LCFS method

y1 y2 y3 y4

E1 1 0 1 0

E2 1 1 0 0

E3 0 0 0 1

E4 1 1 1 0

E5 1 0 0 1

E6 1 1 0 1

E7 0 1 0 1

RS randomly selects q′ = 2 different pairs. On the other hand, CS and273

LS sort the pairs of labels (yi, yj), i ≠ j, in descending order according to the274

number of examples fulfilling a specific condition — cc, ce and cd. Table 3275

shows the cc, ce and cd values calculated by CS and LS for each label pair276
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involving y1, y2, y3 and y4.277

Table 3: Number of examples fulfilling specific conditions for each label pair

(y1, y2) (y1, y3) (y1, y4) (y2, y3) (y2, y4) (y3, y4)
cc 3 2 2 1 2 0
ce 4 4 2 3 3 1
cd 3 3 5 4 4 6

First, CS selects the pair (y1, y2), which has the highest co-occurrence278

(cc value). Then it considers the next pair in its ordered list. As (y1, y3) is279

not a pair different from (y1, y2) due to the label y1, CS goes to the next280

list element, (y1, y4). This procedure is performed successively until finding281

(y3, y4), which is a pair different from the label pair previously selected. As282

q′ = 2 pairs of labels were selected, the CS selection strategy ends.283

LS compares the frequencies (numbers of examples) ce and cd from the284

first label pair in each ordered list: (y1, y2) and (y3, y4). As cd (y3, y4) >285

ce (y1, y2), only (y3, y4) is selected. The procedure goes to the next label pair286

in the list from which (y3, y4) was selected, i.e., the list sorted according287

to cd. However, as the current label pair, (y1, y4), is not different from the288

pair previously selected due to the label y4, the procedure moves to the289

next iteration. As cd (y2, y3) = ce (y1, y2) and (y1, y2) is a different pair, the290

strategy selects (y1, y2) before ending.291

2.5. Multi-label datasets292

Table 4 summarizes the characteristics of the 10 datasets used in this293

work. For each dataset, it shows: dataset name (Dataset); dataset domain294

(Domain); number of examples (N); number of features (M); feature type295

(Type); number of labels (∣L∣); label cardinality (LC), which is the average296

number of labels associated with each example; label density (LD), which is297
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the cardinality normalized by ∣L∣; and the number of different multi-labels298

(#Diff).299

Table 4: Dataset description

Dataset Domain N M Type ∣L∣ LC LD #Diff
1-Cal500 music 502 68 numeric 174 26.044 0.150 502
2-Corel5k image 5000 499 discrete 374 3.522 0.009 3175
3-Corel16k001 image 13766 500 discrete 153 2.859 0.019 4803
4-Emotions music 593 72 numeric 6 1.869 0.311 27
5-Fapesp text 332 8669 discrete 66 1.774 0.027 206
6-Genbase* biology 662 1185 discrete 27 1.252 0.046 32
7-Llog-f* text 1253 1004 discrete 75 1.375 0.018 303
8-Magtag5k music 5260 68 numeric 136 4.839 0.036 4163
9-Scene image 2407 294 numeric 6 1.074 0.179 15
10-Yeast biology 2417 103 numeric 14 4.237 0.303 198

Except for datasets 5-Fapesp and 8-Magtag5k, the other datasets are300

available in the Mulan3 and Meka4 repositories. In particular, 5-Fapesp was301

built by members of our research laboratory5 [27]. Dataset 8-Magtag5k 6 is302

further described in [28]. Furthermore, 6-Genbase* and 7-Llog-f* are pre-303

processed versions of the publicly available datasets in which an identification304

feature and unlabeled examples, respectively, were removed.305

Besides the dataset characteristics shown in Table 4, information related306

to label frequency is also important to characterize multi-label datasets. To307

this end, we use quartiles7 to describe the datasets label frequency distribu-308

tion.309

Figure 3 depicts the single label frequencies for each dataset by boxplots.310

Recall that the bottom and the top of the box are the first and third quartiles,311

3http://mulan.sourceforge.net/datasets.html
4http://meka.sourceforge.net/#datasets
5The dataset can be obtained from the authors.
6http://tl.di.fc.ul.pt/t/magtag5k.zip
7One of the three values that divides a sorted group of data into four equal parts, each

one with 25% of the data.
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and the band inside the box is the second quartile. Thus, the spacing between312

the different parts of the box indicates the degree of dispersion, as well as313

the skewness in the dataset. Moreover, the minimum and maximum label314

frequencies are also shown.315
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Figure 3: Boxplots of the single-label frequencies for each dataset
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As can be observed, there is a large variation in the label frequency316

across the 10 multi-label datasets. It is also worth observing that datasets 3-317

Corel16k001 (Figure 3(c), max.=3170, min.=25) and 5-Fapesp (Figure 3(e),318

max.=37, min.=1) show, respectively, the highest (3145) and the smallest319

(36) absolute difference between the maximum and the minimum label fre-320

quencies.321

3. Experimental setting322

The experiments were carried out on the 10 multi-label datasets described323

in Table 4. The performance of a FS method was assessed by the BRkNN-b324

classifiers built using the features selected by the method. In particular, the325

four evaluation measures described in Section 2.1.2 are used to assess the326

quality of these classifiers, as well as the classifiers built using All Features327

(AF). The evaluation measures were estimated according to the 10-fold cross-328

validation strategy.329

The number of nearest neighbors k was set as 10 for all datasets. This330

is a commonly-used value that leads lazy learning algorithms to achieve sat-331

isfactory results [20, 29]. On the other hand, this differs from our previous332

work [16], in which the goal was to find the k value of BRkNN-b that max-333

imized the Example-based F-measure value achieved by the classifier built334

from each original dataset. All the remaining parameters related to classi-335

fication and feature selection were executed with the default values used by336

the Mulan8 [25] and Weka9 [26] frameworks.337

8http://mulan.sourceforge.net
9http://www.cs.waikato.ac.nz/ml/weka

19

http://mulan.sourceforge.net
http://www.cs.waikato.ac.nz/ml/weka


In this work, a combination between Information Gain and Binary Rele-338

vance (IG-BR) is performed according to the filter approach:339

1. In the dataset annotated with the original set of labels (standard ap-340

proach);341

2. In the dataset annotated with the original labels and the ones con-342

structed by a LCFS setting.343

Figure 4 depicts some differences between these approaches. Moreover,344

by including second-order label information, LCFS is considered as a second-345

order strategy for multi-label FS, whereas the original IG-BR is considered346

as a first-order strategy.347

Figure 4: An overview of the FS process conducted by the original IG-BR (standard
approach) and by IG-BR supported by LCFS

Regardless of the label set used, IG-BR transforms a multi-label dataset348

into single-label datasets, applies IG to each single-label dataset and averages349

the IG score of each feature Xj, j = 1 . . .M , across all labels. The resulting350

feature ranking sorts the M averaged IG values in descending order. Recall351
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that the labels constructed by LCFS , which are only used to select features,352

are removed before classification.353

It should be observed that the averaging strategy used in this work to354

aggregate IG scores in BR was highlighted in an experimental comparison355

on 20 multi-label textual datasets [30].356

Table 5 shows the four settings combining different selection and genera-357

tion strategies considered by LCFS .358

Table 5: LCFS settings evaluated in this work

Setting Selection Generation
LS-X LS XOR or XNOR is chosen based on the lists sorted by the values of ce and cd
CS-A CS AND
RS-A RS AND
RS-X RS XOR or XNOR is randomly chosen

Recall that the LS selection strategy sorts the label pairs based on the359

values of ce and cd, i.e., label agreement and disagreement. For a given360

label pair (yi, yj), LS-X applies the XNOR operator to generate the new361

label yij if the pair was selected from the list sorted by ce; otherwise, it362

applies the XOR operator. It should be emphasized that LS-X and CS-A363

consider a relationship between the selection and the generation strategies,364

as they take into account label agreement/disagreement and co-occurrence365

respectively. Finally, RS-X randomly selects the XOR or XNOR operator.366

See Section 2.4.3 for an illustrative example.367

We set the number of new labels q′ = ⌊
q
2⌋, i.e., every single label is selected368

once if q is even, or one single label is left out if q is odd.369

In both cases, IG-BR and the four LCFS settings, the feature subsets370

X ′
⊂ X, ∣X ′

∣ = 10%M,20%M, . . . ,90%M , ranked by each FS method, are371

used to describe a dataset. This dataset is then submitted to the multi-label372
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learning algorithm BRkNN-b.373

Moreover, the RFS method, which was not considered in our previous374

work [16], is included as a reference. In this case 10%M up to 90%M features375

are randomly chosen from the M features. RFS is executed three times per376

fold, due to its stochasticity, and the three outputs are averaged to yield the377

result of each fold.378

As previously mentioned, multi-label evaluation measures consider the379

performance of a classifier from diverse aspects, as most algorithms learn from380

training examples by explicitly or implicitly optimizing one specific metric.381

To this end, in this work we also used GeneralB [31], a simple baseline382

learning algorithm which learns by only looking at the multi-labels of the383

dataset. As this algorithm does not necessarily concentrate on optimizing384

specific loss functions, it can be used as a global baseline for the difficult385

task of evaluating multi-label predictions.386

The rationale behind GeneralB is very simple. It consists of ranking the387

q single labels in L according to their individual relative frequencies in the388

multi-labels in order to include the σ most frequent labels in the predicted389

multi-label Z. To obtain a representative Z, GeneralB defines σ as the closest390

integer value of the label cardinality LC — Section 2.5. In case of ties (single391

labels with the same frequency), the label co-occurrence measure chooses the392

label which maximizes its co-occurrence with better ranked labels.393

4. Results and discussion394

In this section, we compare the learning performance of the BRkNN-b395

classifiers (k = 10) built from the datasets described by the features selected396

22



by three groups of FS approaches:397

1. The standard IG-BR;398

2. IG-BR after applying the four LCFS settings to construct the new sets399

of labels: LS-X , CS-A, RS-A and RS-X ;400

3. The reference Random Feature Selection (RFS ).401

The main difference between groups (1) and (2) consists in the label space402

submitted for FS (Figure 4). The four LCFS settings take into account the403

different strategies illustrated in Section 2.4.3. Finally, as is the case with404

group (1), the method in group (3) selects features directly from the original405

datasets.406

As a BRkNN-b classifier is built from a dataset described by the best 10%407

up to 90% of the features ranked by each FS method, 54 cases, i.e., 9 feature408

subsets × 6 FS methods, are evaluated for each multi-label dataset and eval-409

uation measure. All the experimental results, as well as tables and graph-410

ical representations, can be found in the supplementary material available411

at http://www.labic.icmc.usp.br/pub/mcmonard/ExperimentalResults/412

NEUCOM2015.pdf. In what follows, some of the experimental results are sum-413

marized and discussed.414

4.1. Results overview415

First of all, it is worth noticing that the datasets and measures in which416

the BRkNN-b classifiers built using all features failed to improve on the417

baseline classifier GeneralB — Table 6. It should be observed that this418

situation is not unusual in multi-label learning. In [32] we carried out the419

SR process to find papers reporting experimental evaluation measure values420
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of classifiers which were constructed using publicly available datasets, and421

reported on several statistics. From the 10 datasets most frequently used in422

the selected papers, the statistics show that 12.8% of these published results423

were worse than or equal to the ones obtained by GeneralB. Moreover,424

this percentage is unevenly distributed among the datasets. In the “worst”425

dataset, 43.0% of such results were reported, and in the “best” one only426

0.6%.427

Table 6: Cases where GeneralB outperforms the BRkNN classifier built using all features

Dataset F -measure Hamming loss Accuracy Fb

1-Cal500 ✓ ✓ ✓ ✓

2-Corel5K ✓ ✓ ✓ ✓

3-Corel16k001 ✓ ✓ ✓ ✓

5-Fapesp ✓

7-Llog-f* ✓

Nevertheless, dataset 1-Cal500 is the only one in which the FS methods428

for all feature subsets considered fails to improve on GeneralB in the four429

evaluation measures used in this work. Considering the datasets individually,430

it can be observed that, as expected, the degree of improvement of each FS431

method using different feature subsets is dependent on the particular dataset.432

One of the datasets which obtained good results in three of the four evaluation433

measures using small feature subsets, is dataset 5-Fapesp. Recall that finding434

a small number of good features is an aim of the FS task. Figure 5 shows the435

performance of the BRkNN-b classifiers according to each evaluation measure436

(y-axis) built using each feature subset (x-axis) in this dataset.437

Figures 5(a), 5(c) and 5(d) show that very good results were obtained438

by using 10% of the features selected. Moreover, there is a considerable439

difference with the RFS method used as a reference, as well as the classifier440
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built using all features (AF). For F -measure, Accuracy and Fb, the best441

results were obtained by the FS methods LS-X , followed by RS-X , RS-A,442

CS-A and IG-BR in that order.443

Hamming loss results better than the ones obtained by the baseline444

classifier GeneralB were achieved only for three feature subsets: 50%M ,445

60%M and 70%M — Figure 5(b). Nevertheless, the heuristic FS methods446

are still notably better than RFS and AF. Thus, regardless of the evaluation447

measure, the IG-BR and LCFS methods are highlighted in this dataset.448

In fact, Hamming loss is the evaluation measure which more often449

showed worse results than the ones obtained by the baseline classifierGeneralB.450

Figure 6 shows the number of datasets in which a BRkNN-b classifier, built451

using a feature subset chosen by a FS method, achieved Hamming loss val-452

ues worse than the ones obtained by GeneralB. In this figure, the horizontal453

thick line shows the number of datasets in which a classifier built using All454

Features (AF), i.e., without feature selection, was worse than GeneralB.455

Figure 6 shows that for small feature subsets (∣X ′
∣ ≤ 50%M), three LCFS456

variations (CS-A, RS-A and RS-X ) were able to reduce by one the number457

of datasets in which the BRkNN-b classifiers were worse than the baseline458

classifier GeneralB. In particular, RS-X is the one which obtained that result459

with the smallest feature subsets (∣X ′
∣ = 10%M). On the other hand, the460

original IG-BR only achieved that result when using larger feature subsets461

(∣X ′
∣ = 60%M and ∣X ′

∣ = 70%M).462

4.2. Statistical comparison among the FS methods463

To assess whether the overall differences in performance across the multi-464

label FS methods are statistically significant, we used the Friedman’s test465
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Figure 6: Number of datasets in which a BRkNN-b classifier built using a feature subset
chosen by a FS method achieved Hamming loss values worse than the ones obtained by
the baseline GeneralB

and the Nemenyi’s post-hoc test as recommended by Demšar [33]. The Fried-466

man’s test is a non-parametric test for multiple hypotheses testing. It ranks467

the methods according to their performance for each dataset separately. The468

best performing method obtains the rank of 1, the second best the rank of 2,469

and so on. In case of ties, it assigns average ranks. If a statistically significant470

difference in the performance is detected, the next step is a post-hoc test to471

detect between which methods those differences appear.472

We applied the Friedman’s statistical test under the null hypothesis that473

the performances of the classifiers built using the features selected by each474

FS method are equivalent. The statistical results can be found in the suple-475

mentary material. As the hypothesis was rejected at the significance level476

α = 0.05 for all measures, we proceed with the Nemenyi’s multiple comparison477
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post-hoc test to detect which differences among the methods are significant.478

This post-hoc test points out a significant difference whenever the average479

rank of two methods differ by more than a Critical Difference (CD). Fur-480

thermore, the results of the post-hoc test can be visually represented with481

a simple diagram. Figure 7 shows the correspondent diagrams, on the four482

evaluation measures considered in this work, for the smaller feature subsets483

evaluated — ∣X ′
∣ = 10%M,20%M,30%M . The diagrams for other feature484

subsets evaluated can be found in the supplementary material. The lines485

for the average ranks of the methods that do not differ significantly (at the486

significance level of α = 0.05) are connected with a line. Observe that for487

the Hamming loss diagrams, the higher the average ranking, the better the488

FS method is, whereas for the remaining diagrams, the lower the average489

ranking, the better the method is.490

In all cases in which a significant difference was found, at least a heuristic491

FS method outperformed RFS . Moreover, in all cases RFS was always ranked492

last. Table 7 summarizes all algorithms significantly better than RFS for each493

evaluation measure and feature subset size. For example, the first entry in494

this table shows that RS-A, LS-X and RS-X are significantly better than495

RFS when F -measure is considered.496

Table 7: Multi-label FS methods significantly better than RFS (α = 0.05)

∣X′
∣ F -measure Hamming loss Accuracy Fb

10% RS-A, LS-X , RS-X RS-A, LS-X , CS-A RS-A, LS-X , RS-X RS-A, RS-X , LS-X
20% RS-X RS-X , RS-A, CS-A, IG-BR RS-X RS-X , CS-A, IG-BR, RS-A
30% RS-X RS-X , CS-A RS-X RS-X , CS-A
70% LS-X , RS-X , IG-BR
80% RS-X RS-X RS-X RS-X

Regardless of the evaluation measure, from the 17 out of a total of 36497
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Figure 7: Nemenyi’s test comparison of the performance measure values achieved by
BRkNN-b classifiers built after selecting the best ∣X ′∣ = 10%M,20%M,30%M of the fea-
tures ranked by each FS method. Groups of classifiers that are not significantly different
according to the Critical Difference (CD) — at α = 0.05 — are connected
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cases analyzed in which significant differences were found, it can be observed498

that the LCFS setting RS-X was the one highlighted more often as being499

significantly better than RFS (15 times out of 17), followed by RS-A, LS-X500

and CS-A (5 times out of 17 each), and finally IG-BR (3 times out of 17).501

As expected, significant differences tend to diminish when the feature subset502

size is large.503

The Friedman’s test also provides information about the best method504

built after FS by the rankings averaged across all datasets — Table 8. In505

this table, each symbol identifies a FS method: − (IG-BR), ∗ (LS-X ), o (CS-506

A), × (RS-A), + (RS-X ) and ● (RFS ). The last rows and columns sum up507

the results for each method. Note that there is more than one FS method in508

some cells, as the average rankings achieved by the correspondent classifiers509

are equal.510

Table 8: Best FS method based on the Friedman’s test average rankings calculated for
each feature subset size and evaluation measure

10%M 20%M 30%M 40%M 50%M 60%M 70%M 80%M 90%M − ∗ o × + ●

F -measure × + + ∗
o

∗ ∗ + + 0 3 1 2 4 0
×

Hamming loss × +
o ∗

×
−

∗ + ∗ 1 3 1 3 4 0
+ × +

Accuracy × + +

∗

o ∗ ∗ + + 0 3 2 1 5 0o
+

Fb × + + ∗ ×
−

∗ + ∗ 1 4 0 2 3 0
∗

− 0 0 0 0 0 2 0 0 0 2
∗ 0 0 0 4 0 3 4 0 2 13
o 0 0 1 1 2 0 0 0 0 4
× 4 0 0 1 3 0 0 0 0 8
+ 0 4 4 1 0 1 0 4 2 16
● 0 0 0 0 0 0 0 0 0 0

Regardless of the evaluation measures, RS-X (+) achieved the best aver-511

age rankings more often, mainly when ∣X ′
∣ <

∣X ∣
2 , i.e., less than half of the512

features are used. This setting was already highlighted in Figure 7. In addi-513

tion, another LCFS setting, RS-A (×), obtained the best average ranking for514
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the smallest feature subsets (∣X ′
∣ = 10%M). IG-BR (−), in turn, obtained515

the best average ranking in only two cases, when a large number of features516

(∣X ′
∣ = 60%M) was selected. On the other hand, no classifier built using the517

features chosen by RFS achieved the best average ranking.518

As the LCFS setting RS-X was prominent in the statistical comparison519

and IG-BR represents the standard approach, we focused on the comparison520

of both methods.521

We applied the Wilcoxon signed-ranks test, recommended for compar-522

isons of two algorithms [33], with the null hypothesis that both methods are523

equivalent and α = 0.05. By applying this test for each evaluation measure,524

RS-X was significantly better than IG-BR twice — when the classifiers are525

built using the feature subset size ∣X ′
∣ = 80%M and evaluated by F -measure526

and Accuracy.527

4.3. LCFS RS-X versus AF528

We compared the performance of the BRkNN-b classifiers built using529

the features selected by IG-BR in the original datasets and in the datasets530

augmented by using the four LCFS settings, as well as the classifiers built531

using features randomly chosen by RFS . In this comparison, RS-X showed532

good results when fewer features were selected. However, the quality of the533

classifiers has not been taken into account. To this end, we compare the534

performance of the classifiers built by BRkNN-b, using up to 30% of the535

features selected by RS-X , with the performance achieved by the BRkNN-b536

classifiers using all features, i.e., the original dataset. Table 9 shows, for each537

dataset, and for each one of the four evaluation measures used in this work,538

whenever the classifiers built using the features selected by RS-X achieved539
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evaluation measure values better than or equal to (indicated by ☀), or at540

most 5% worse (indicated by ☆) than the ones obtained by the classifiers541

using all features. The symbol 0 indicates the other cases.542

Table 9: Classifiers built using the features selected by RS-X vs the classifiers built using
all features

Dataset ∣X′
∣ = 10%M ∣X′

∣ = 20%M ∣X′
∣ = 30%M

1-Cal500 ☆/☆/☆/☆ ☆/☆/☆/☆ ☆/☆/☆/☆
2-Corel5k ☀/☀/☀/☀ ☀/☀/☀/☀ ☀/☀/☀/☀

3-Corel16k001 ☀/☀/☀/☀ ☀/☀/☀/☀ ☀/☀/☀/☀
4-Emotions 0 / 0 / 0 / 0 ☆/ 0 /☆/☆ ☆/ 0 /☆/☆

5-Fapesp ☀/☀/☀/☀ ☀/☀/☀/☀ ☀/☀/☀/☀
6-Genbase* ☀/☀/☀/☀ ☀/☀/☀/☀ ☀/☀/☀/☀

7-Llog-f* ☀/☀/☀/☀ ☀/☀/☀/☀ ☀/☀/☀/☀
8-Magtag5k 0 / 0 / 0 / 0 0 / 0 / 0 / 0 0 / 0 / 0 / 0

9-Scene 0 / 0 / 0 / 0 0 / 0 / 0 / 0 0 / 0 / 0 / 0
10-Yeast 0 / 0 / 0 / 0 ☆/ 0 /☆/☆ ☆/☆/☆/☆

As can be observed, very good results were obtained in 5 out of the 10543

datasets, in which the four evaluation measure values of the classifiers based544

on the RS-X setting were better than or equal to the ones obtained by the545

AF classifiers. Good results were obtained in all cases in dataset 1-Cal500,546

as well as in some cases in datasets 4-Emotion and 10-Yeast when 20% and547

30% of the features are selected, as the results are at most 5% worse than548

the AF ones. On the other hand, poor results were obtained in datasets549

8-Magtag5k and 9-Scene even when 30% of the features are considered. In550

fact, it is necessary to consider 70% of the features selected in these datasets551

in order to obtain (☆/ ☆/ ☆/ ☆).552

However, the good results obtained in dataset 1-Cal500 should be con-553

sidered with care, as the classifiers built using AF are worse than the ones554

built by the baseline classifier GeneralB. In fact, this seems to be a difficult555

dataset to learn from. Table 4 shows that this dataset has N = 502 examples,556

as well as the same number of different multi-labels (#Diff), in which the557
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average number of labels associated with each example is LC = 20.044 from558

a total of ∣L∣ = 174 labels.559

5. Related work found by the systematic review method560

Feature selection has been an active research topic in supervised learning,561

and there are many related publications and comprehensive surveys [7]. Al-562

though most FS publications are related to single-label learning, a number of563

papers have recently reported results to support multi-label learning [18, 8].564

Aiming at capturing a wide, replicable and rigorous overview of the topic,565

we have instantiated the systematic literature review method [17] for multi-566

label FS in [24] and updated it in March/2015. Table 10 summarizes the 99567

publications found in terms of two categorizations described in Sections 2.1568

and 2.2: the order of label dependence and the interaction of the FS method569

with the learning algorithm. More information regarding the 99 references570

is described in the supplementary material available at http://www.labic.571

icmc.usp.br/pub/mcmonard/ExperimentalResults/NEUCOM2015.pdf.572

Table 10: Number of papers published per approach found by the systematic literature
review process (total = 99 related publications)

categorization approach #publications

order of label dependence

first-order 53
second-order 15
high-order 14
hybrid 8
unrecognized 9
filter 70

interaction with the embedded 12
learning algorithm wrapper 8

hybrid 3
unrecognized 6

As can be observed, filters and first-order strategies have been the most573

usual choices in multi-label FS. This behavior could be partly explained by574
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the relative lower computational cost in comparison with other alternatives.575

In addition, these strategies can be combined, as exemplified by IG-BR and576

some proposals from the related work [34, 35, 36, 5, 37]. In particular, these577

filter methods apply the Information Gain importance measure in binary578

data directly or indirectly transformed by the BR approach, a first-order579

strategy.580

Regarding importance measures, Information Gain has been the most581

often used measure (23 out of 99 papers). Mutual information [38], chi-582

squared [39], ReliefF [40] and correlation-based feature selection [1] come583

next.584

The method we present, LCFS , pioneers label construction as a second-585

order strategy. Other methods that take into account label relations have586

also been proposed, reporting good results [41, 42, 43, 44, 45, 46, 47, 48, 49].587

By organizing the related work according to the order of label dependence588

exploration, the SR can be useful for further research on multi-label feature589

selection.590

Although the number of papers with unrecognized and hybrid10 strategies591

in Table 10 is relatively low, it indicates the need to consider a taxonomy spe-592

cific for multi-label FS. Well established taxonomies for single-label feature593

selection would be useful as a starting point [7].594

The SR also provides information regarding the number of papers per595

publication year. Figure 8 suggests that interest in multi-label feature selec-596

tion is increasing as time goes by.597

10In this work, a hybrid strategy is considered whenever the FS method falls into two
or more categories.
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Figure 8: Number of papers published per year found by the systematic literature review
process (total = 99 related publications)

6. Conclusion598

This work presented and evaluated LCFS , a method that constructs new599

labels based on relations between the original dataset labels. The new labels600

are included in the dataset before applying the standard multi-label feature601

selection approach based on binary relevance. By doing so, LCFS considers602

second-order label information during filter feature selection.603

The experimental evaluation on 10 benchmark multi-label datasets shows604

that the LCFS setting RS-X gave rise to classifiers similar to, or better605

than, the ones built by simply combining BR and Information Gain — IG-606

BR. RS-X is a simple alternative that randomly selects a pair of labels and607

combines them by the XOR or XNOR operator to yield each new label.608

Thus, the LCFS setting is competitive with IG-BR by slightly increasing the609

computational cost due to the application of a binary operator. Moreover,610

the evaluated method contributed to outperform classifiers built using all611

features, i.e., without FS, as well as the baseline classifier GeneralB and612

random feature selection.613
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As an additional contribution, this work pioneers the use of the system-614

atic review method to survey the related work on multi-label FS. We or-615

ganized the 99 papers found in terms of two categorizations proposed for616

multi-label learning methods and single-label FS algorithms. By doing so,617

it was observed that most of them consider first-order strategies, i.e., ignore618

label dependence, and follow the filter approach. In the summary of the619

99 papers, it was also found evidence that agrees with LCFS experimental620

achievements, as some related papers reported good results when exploring621

label dependence.622

As future work, we plan to use other multi-label learning algorithms to623

evaluate FS, as exemplified in previous work [47], aiming to reduce the po-624

tential influence of a specific algorithm. Furthermore, we plan to evaluate625

LCFS strategies based on label weighting [50] in benchmark and synthetic626

datasets [51]. By applying Exploratory Data Analysis [52] in these cases, we627

expect to find relations among the quality of filter FS methods and multi-628

label datasets properties.629
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