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Abstract. Multilabel classification is a rapidly developing field of ma-
chine learning. Despite its short life, various methods for solving the task
of multilabel classification have been proposed. In this paper we focus on
a subset of these methods that adopt a lazy learning approach and are
based on the traditional k-nearest neighbor (kNN) algorithm. Two are
our main contributions. Firstly, we implement BRkNN, an adaptation
of the kNN algorithm for multilabel classification that is conceptually
equivalent to using the popular Binary Relevance problem transforma-
tion method in conjunction with the kNN algorithm, but much faster.
We also identify two useful extensions of BRkNN that improve its overall
predictive performance. Secondly, we compare this method against two
other lazy multilabel classification methods, in order to determine the
overall best performer. Experiments on different real-world multilabel
datasets, using a variety of evaluation metrics, expose the advantages
and limitations of each method with respect to specific dataset charac-
teristics.

1 Introduction

Traditional single-label classification is concerned with learning from a set of
examples that are associated with a single label λ from a set of disjoint labels
L, |L| > 1. If |L| = 2, then the learning task is called binary classification, while
if |L| > 2, then it is called multi-class classification. In multilabel classification,
each example is associated with a set of labels Y ⊆ L.

Multilabel classification methods can be categorized into two different groups
[1]: i) problem transformation methods, and ii) algorithm adaptation methods.
The first group of methods are algorithm independent. They transform the mul-
tilabel classification task into one or more single-label classification, regression
or label ranking tasks. The second group of methods extend specific learning
algorithms in order to handle multilabel data directly.

In this paper we focus on lazy multilabel classification methods of both cat-
egories that are based on the k Nearest Neighbor (kNN) algorithm. Among the
strong points of these methods is that their time complexity scales linearly with
respect to |L|. Furthermore, their main computationally intensive operation is
the calculation of nearest neighbors, which is actually independent of |L|.
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Two are our main contributions in this work. Firstly, we implement BRkNN,
an adaptation of the kNN algorithm for multilabel classification that is concep-
tually equivalent to using the popular Binary Relevance problem transformation
method in conjunction with the kNN algorithm, but |L| times faster. We also
identify two useful extensions of BRkNN that improve its overall predictive per-
formance. Secondly, we compare this method against two other lazy multilabel
classification methods, in order to determine the overall best performer.

The rest of this paper is structured as follows. Section 2 presents the BRkNN
method and its extensions. Section 3 presents the setup of the experimental work
and Section 4 discusses the results. Finally, Section 5 concludes this work.

2 BRkNN and Extensions

Binary Relevance (BR) is the most widely-used problem transformation method
for multilabel classification. It learns one binary classifier hλ : X → {¬λ, λ} for
each different label λ ∈ L. BR transforms the original data set into |L| data
sets Dλ that contain all examples of the original data set, labeled as λ if the
labels of the original example contained λ and as ¬λ otherwise. It is the same
solution used in order to deal with a multi-class problem using a binary classifier,
commonly referred to as one-against-all or one-versus-rest.

BRkNN is an adaptation of the kNN algorithm that is conceptually equiva-
lent to using BR in conjunction with the kNN algorithm. Therefore, instead of
implementing BRkNN, we could have utilized existing implementations of BR
[2] and kNN [3]. However, the problem in pairing BR with kNN is that it will
perform |L| times the same process of calculating the k nearest neighbors. To
avoid these redundant time-intensive computations, BRkNN extends the kNN
algorithm so that independent predictions are made for each label, following a
single search of the k nearest neighbors. This way BRkNN is |L| times faster than
BR plus kNN during testing, a fact that could be crucial in domains with a large
set of labels and requirements for low response times. BRkNN was implemented
within the MULAN multilabel classification software [2].

We propose two extensions to the basic BRkNN algorithm. Both are based
on the calculation of confidence scores for each label λ ∈ L from BRkNN. The
confidence for a label can be easily obtained by considering the percentage of
the k nearest neighbors that include it. Formally, let Yj , j = 1 . . . k, be the label
sets of the k nearest neighbors of a new instance x. The confidence cλ of a label
λ ∈ L is equal to:

cλ =
1
k

k∑

j=1

IYj (λ)

where IYj : L → {0, 1} is a function that outputs 1 if its input label λ belongs
to set Yj and 0 otherwise, called indicator function in set theory.

The first extension of BRkNN, called BRkNN-a, checks whether BRkNN
outputs the empty set, due to none of the labels λ ∈ L being included in at least
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half of the k nearest neighbors. If this condition holds, then it outputs the label
with the highest confidence. It so deals with a general disadvantage of BR, that
has not been raised in the past: as each label is independently predicted in BR,
there exists a possibility that the empty set is given as the overall output. We
hypothesize that better results will be obtained through the proposed extension
that outputs the most probable label when this phenomenon arises.

The second extension of BRkNN, called BRkNN-b calculates the average size
s of the label sets of the k nearest neighbors at a first step, s = 1

k

∑k
j=1 |Yj |, and

then outputs the [s] (nearest integer of s) labels with the highest confidence.

3 Experimental Setup

3.1 Datasets

We experiment with 3 datasets from 3 different application domains: The biolog-
ical dataset yeast [4] is concerned with protein function classification. The image
dataset scene [5] is concerned with semantic indexing of still scenes. The music
dataset emotions [6] is concerned with the classification of songs according to
the emotions they evoke.

Table 1 shows certain standard statistics of these datasets, such as the num-
ber of examples in the train and test sets, the number of numeric and discrete
attributes and the number of labels, along with multilabel data statistics, such as
the number of distinct label subsets, the label cardinality and the label density
[1]. Label cardinality is the average number of labels per example, while label
density is the same number divided by |L| .

Table 1. Standard and multilabel statistics for the data sets used in the experiments

Attributes Distinct Label Label
Dataset Examples Numeric Discrete Labels Subsets Cardinality Density

scene 2712 294 0 6 15 1.074 0.179
emotions 593 72 0 6 27 1.868 0.311

yeast 2417 103 0 14 198 4.327 0.302

3.2 Evaluation Methodology

We perform two sets of experiments. In the first one, we compare BRkNN to
its extensions. In the second one, we compare the best version of BRkNN in
each dataset to two other lazy multilabel classification methods, LPkNN and
MLkNN, in order to make a final recommendation.

LPkNN is simply the pairing of the Label Powerset (LP) problem transfor-
mation method [2] with the kNN algorithm. LP considers each different subset



4

of L that appears in the training set as a different label of a single-label classifi-
cation task. LPkNN has not been discussed in the related literature to the best
of our knowledge.

MLkNN [7] is another adaptation of the kNN algorithm for multilabel data.
What mainly differentiates this method from BRkNN is the use of prior and
posterior probabilities which are directly estimated from the training set based
on frequency counting. We implemented MLkNN in Java within the MULAN
multilabel classification software [2] for the purposes of this study.

Each method was executed with a varying number of nearest neighbors.
Specifically, the parameter k ranged from 1 to 30. The performance of each
method for each k was evaluated using 10-fold cross-validation, in order to ob-
tain an accurate performance estimate. In each fold, the following metrics were
calculated [2], and eventually averaged over all folds:

– Example-based. Hamming loss, accuracy, F-measure and subset accuracy
– Label-based. Micro and macro version of F-measure

4 Experimental Results

4.1 Do the proposed extensions improve BRkNN?

In this subsection we investigate whether BRkNN-a and BRkNN-b improve the
performance of BRkNN. Table 2 reports the average performance of the three
algorithms across all 30 values of the k parameter for each dataset. It presents
results for all evaluation metrics mentioned in Section 3.2. The best result on
each metric and dataset is shown with bold typeface. The last line contains
for each algorithm the number of metrics for which it achieves the best result,
while within parentheses there is the number of metrics for which BRkNN-a and
BRkNN-b are better than the base BRkNN algorithm.

scene emotions yeast
metric base ext-a ext-b base ext-a ext-b base ext-a ext-b

Hamming loss 0.0950 0.0938 0.0941 0.1976 0.1982 0.2175 0.1974 0.1975 0.2082
accuracy 0.6256 0.7226 0.7218 0.5215 0.5441 0.5430 0.5062 0.5080 0.5346

F-measure 0.6386 0.7392 0.7381 0.6275 0.6576 0.6590 0.5777 0.5795 0.6652
subset accuracy 0.5993 0.6889 0.6886 0.2895 0.2971 0.2759 0.1958 0.1959 0.1766
micro F-measure 0.6964 0.7296 0.7284 0.6499 0.6577 0.6509 0.6374 0.6380 0.6567
macro F-measure 0.6955 0.7363 0.7349 0.6224 0.6303 0.6294 0.3926 0.3931 0.4261

#wins (#better) 0 6 (6) 0 (6) 1 4 (5) 1 (4) 1 1 (5) 4 (4)
Table 2. Experimental results of BRkNN, BRkNN-a and BRkNN-b on all datasets,
averaged for all k

The results show that both extensions outperform the base BRkNN method
in more than half of the 6 metrics on all datasets. BRkNN-a outperforms BRkNN
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in 6, 5 and 5 out of the 6 metrics in the scene, emotions and yeast datasets
respectively. BRkNN-b outperforms BRkNN in 6, 4 and 4 out of the 6 metrics in
the scene, emotions and yeast datasets respectively. These two pieces of evidence
strongly support that both BRkNN-a and BRkNN-b are beneficial extensions.

Studying the performance of the algorithms at each individual dataset, we
notice that BRkNN-a dominates in scene and emotions, while BRkNN-b dom-
inates in yeast. This performance pattern correlates with the cardinality of the
datasets, which is 1.074, 1.868 and 4.327 for the scene, emotions and yeast dataset
respectively (see Table 3.1). Actually, it is natural for datasets of low cardinal-
ity, such as scene and emotions, to favor BRkNN-a over BRkNN, because the
probability that the latter outputs the empty set increases in such datasets. This
is clearly shown in Figure 1, which plots the percentage of the instances, where
BRkNN outputs the empty set, for various values of the k parameter. BRkNN-a
deals with exactly this problem of BRkNN. On the other hand, BRkNN-b works
better in datasets with larger cardinality, as it includes a mechanism to predict
the number of true labels associated with a new instance.
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Fig. 1. Percentage of new instances, where BRkNN outputs the empty set (y axis),
with respect to the number of nearest neighbors (k) (x axis) for all datasets

4.2 Comparison of BRkNN, LPkNN and MLkNN

Table 3 reports the average performance of the three algorithms across all 30
values of the k parameter for each dataset. It presents results for all evaluation
metrics mentioned in Section 3.2. The best result on each metric and dataset is
shown with bold typeface. The last line contains for each algorithm the number
of metrics for which it achieves the best result.

We notice that BRkNN-a and LPkNN dominate in the scene and emotions
datasets respectively, while in the yeast dataset there is no clear winner. However
BRkNN-b performs better in most measures, followed by LPkNN and finally
MLkNN. There is no apparent explanation on why LPkNN performs better in
the emotions dataset. We notice in Table 3.1 that this dataset has the highest
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scene emotions yeast
metric BR-a LP ML BR-a LP ML BR-b LP ML

Hamming loss 0.0938 0.0955 0.0884 0.1982 0.2094 0.2003 0.2082 0.2143 0.1950
accuracy 0.7226 0.7181 0.6720 0.5441 0.5600 0.5233 0.5346 0.5280 0.5105

F-measure 0.7392 0.7343 0.6944 0.6576 0.6662 0.6352 0.6652 0.6375 0.5823
subset accuracy 0.6889 0.6854 0.6272 0.2971 0.3287 0.2780 0.1766 0.2452 0.1780
micro F-measure 0.7296 0.7249 0.7316 0.6577 0.6649 0.6509 0.6567 0.6415 0.6422
macro F-measure 0.7363 0.7323 0.7341 0.6303 0.6505 0.6110 0.4261 0.4322 0.3701

#wins 4 0 2 1 5 0 3 2 1

Table 3. Experimental results of best version of BRkNN, LPkNN and MLkNN with
normalization on all datasets, averaged for all k

label density, while the scene dataset where LPkNN has the worst performance
has the lowest label density. However we cannot safely argue that high density
datasets lead to improved performance of the LPkNN algorithm.

5 Conclusions

This paper has studied how the k Nearest Neighbor (kNN) algorithm is used
for the classification of multilabel data. It presented BRkNN, an efficient imple-
mentation of the pairing of BR with kNN, along with two interesting extensions.
Experimental results indicated that the proposed extensions are in the right di-
rection. In addition, the paper compared experimentally BRkNN with two other
methods (LPkNN and MLkNN) and reached to some interesting conclusions as
to what kind of evaluation metrics and what kind of datasets are well-suited to
the different methods.

References

1. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3 (2007) 1–13

2. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multi-
label classification. In: Proceedings of the 18th European Conference on Machine
Learning (ECML 2007), Warsaw, Poland (2007) 406–417

3. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques (2nd Edition). Morgan Kaufmann (2005)

4. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In:
Advances in Neural Information Processing Systems 14. (2002)

5. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recognition 37 (2004) 1757–1771

6. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of
music into emotions. In: Proc. 9th International Conference on Music Information
Retrieval (ISMIR 2008), Philadelphia, PA, USA, 2008. (2008)

7. Zhang, M.L., Zhou, Z.H.: A k-nearest neighbor based algorithm for multi-label
classification. In: Proceedings of the 1st IEEE International Conference on Granular
Computing. (2005) 718–721


