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Abstract. Real world prediction problems often involve the simultane-
ous prediction of multiple target variables using the same set of predic-
tive variables. When the target variables are binary, the prediction task is
called multi-label classification while when the target variables are real-
valued the task is called multi-target regression. Although multi-target
regression attracted the attention of the research community prior to
multi-label classification, the recent advances in this field motivate a
study of whether newer state-of-the-art algorithms developed for multi-
label classification are applicable and equally successful in the domain
of multi-target regression. In this paper we introduce two new multi-
target regression algorithms: multi-target stacking (MTS) and ensemble
of regressor chains (ERC), inspired by two popular multi-label classi-
fication approaches that are based on a single-target decomposition of
the multi-target problem and the idea of treating the other prediction
targets as additional input variables that augment the input space. Fur-
thermore, we detect an important shortcoming on both methods related
to the methodology used to create the additional input variables and de-
velop modified versions of the algorithms (MTSC and ERCC) to tackle
it. All methods are empirically evaluated on 12 real-world multi-target
regression datasets, 8 of which are first introduced in this paper and are
made publicly available for future benchmarks. The experimental results
show that ERCC performs significantly better than both a strong base-
line that learns a single model for each target using bagging of regression
trees and the state-of-the-art multi-objective random forest approach.
Also, the proposed modification results in significant performance gains
for both MTS and ERC.

Keywords: multi-target regression, multi-output regression, multivari-
ate regression, multi-label classification, regressor chains, stacking

1 Introduction

Learning from multi-label data has recently received increased attention by re-
searchers working on machine learning and data mining for two main reasons.
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The first one is the ubiquitous presence of multi-label data in application do-
mains ranging from multimedia information retrieval to tag recommendation,
query categorization, gene function prediction, medical diagnosis, drug discovery
and marketing. The other reason is a number of challenging research problems
involved in multi-label learning, such as dealing with label rarity, scaling to large
number of labels and exploiting label relationships (e.g. hierarchies), with the
most prominent one being the explicit modeling of label dependencies [11].

Multi-label learning is closely related to multi-target regression, also known
as multivariate or multi-output regression, which aims at predicting multiple
real-valued target variables instead of binary ones. Despite that multi-target
regression is a less popular task, it still arises in several interesting domains, such
as predicting the wind noise of vehicle components [22], stock price prediction
and ecological modeling [20]. Multi-label learning is often treated as a special
case of multi-target regression in statistics [18]. However, we could more precisely
state that both are instances of the more general learning task of predicting
multiple targets, which could be real-valued, binary, ordinal, categorical or even
of mixed type. The baseline approach of learning a separate model for each
target applies to both learning tasks. Furthermore, there exist techniques, such
as [5,28,23], that can naturally handle both tasks. Most importantly, they share
the same core challenge of modeling dependencies among the different targets.

Given this tight connection between these two learning tasks, it would be
interesting to investigate whether recent advances in the more popular multi-
label learning task can be successfully transferred to multi-target regression. In
particular, this paper adapts two multi-label learning methods that successfully
model label dependencies [15,27] to multi-target regression. The results of an
empirical evaluation on several real-world datasets, some firstly introduced here,
show that the benefits of these two multi-label algorithms apply also to the
multi-target regression setting.

Furthermore, by studying the relationship between these two learning tasks,
this work aims to increase our understanding in their shared challenge of model-
ing target dependencies and widen the applicability of existing specialized tech-
niques for either task. This kind of abstraction of key ideas from solutions tailored
to related problems offers additional advantages, such as improving the modu-
larity and conceptual simplicity of learning techniques and avoiding reinvention
of the same solutions3.

The rest of the paper is organized as follows: Section 2 discusses related
work in the field of multi-label classification and gives some insight into which
multi-label classification methods would be more appropriate for multi-target
regression. Section 3 gives detailed descriptions of the proposed methods and
Section 4 presents the evaluation methodology and introduces the datasets used
in the empirical evaluation. The experimental results are shown in Section 5 and
finally, Section 6 concludes our study and points to directions for future work.

3 See the motivation of the NIPS 2011 workshop on relations among machine learning
problems at http://rml.anu.edu.au/

http://rml.anu.edu.au/
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2 From Multi-Label Classification to Multi-Target
Regression

Multi-label learning methods are often categorized into those that adapt a spe-
cific learning approach (e.g. k nearest neighbors, decision tree, support vector
machine) for handling multi-label data and those that transform the multi-label
task into one or more single-label tasks that can be solved with off-the-shelf
learning algorithms [31]. The latter can be further categorized to those that
model single labels, pairs of labels and sets of labels [36].

Approaches that model single labels include the typical one-versus-all (also
known as binary relevance) baseline, methods based on stacked generalization
[15,30,7] and the classifier chains algorithm [27,10]. Such approaches are almost
straightforward to adapt to multi-target regression by employing a regression
instead of a classification algorithm. It is this kind of approaches that we extend
in this work.

Approaches that model pairs of labels [14] follow the paradigm of the one-
versus-one decomposition for using binary classifiers on multi-class learning tasks.
This concept however is not transferable to multi-target regression. The same
holds for approaches that consider sets of labels as different values of a single-
label multi-class task [26,32].

The extension of multi-label algorithm adaptation methods for handling
multi-target data mainly depends on how easy it is for the underlying learning
algorithm to handle classification and regression data interchangeably. For ex-
ample, decision trees can handle both classification and regression data through
different functions for calculating the impurity of internal nodes and the output
of leaves. It thus comes as no surprise that there exist decision tree algorithms for
both multi-label classification [8] and multi-target regression [3], with the most
representative and well-developed ones being based on the predictive clustering
trees framework [5,21]. It is interesting to note that the predictive clustering
framework is an example of a technique that originally focused on multi-target
regression, and only recently showcased its effectiveness on multi-label classifi-
cation [34,24].

Several multi-label algorithm adaptation methods are based on the definition
and optimization of alternative loss functions, compared to the algorithms they
extend. For example, the core idea in [37] was the optimization of a ranking loss
function that takes into account label pairs, instead of the typical logistic loss of
neural networks that looks at individual labels. Similarly, [9] defines a family of
online algorithms based on different loss functions considering label relationships.
To the best of our knowledge, this type of reasoning for algorithm design has
not been transferred to multi-target regression. We believe that it could be an
interesting avenue to investigate. For example, consider an application of food
sales prediction [38], in particular pastry sales prediction for a patisserie in order
to minimize the amount of pastries with short expiration date that are thrown
away. In this application, we may like to minimize the sum of prediction errors,
but we might also want to minimize the maximum individual prediction error,
to avoid for example an early run-out of any of the pastries.
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Finally, we would like to note that there exist approaches, such as [28,23],
that have recognized this dual applicability (classification and regression) of their
multi-target approach and have given a general formulation of their key ideas.

3 Methods

We first formally describe the multi-target regression task and provide the nota-
tion that will be used subsequently for the description of the methods. Let X and
Y be two random vectors where X consists of d input variables X1, .., Xd and
Y consists of m target variables Y1, .., Ym. We assume that samples of the form
(x, y) are generated iid by some source according to a joint probability distribu-
tion P (X,Y ) on X ×Y where X = Rd and Y = Rm are the domains of X and Y
and are often referred to as the input and the output space. In a sample (x, y),
x = [x1, .., xd] is the input vector and y = [y1, .., ym] is the output vector which
are realizations of X and Y respectively. Given a set D = {(x1, y1), .., (xn, yn)}
of n training examples, the goal in multi-target regression is to learn a model
h : X → Y which given an input vector xq, is able to predict an output vector
ŷq = h(xq) which best approximates the true output vector yq.

In the baseline Single-Target (ST) method, a multi-target model h is com-
prised of m single-target models hj : X → R where each model hj is trained on
a transformed training set Dj = {(x1, y1j ), .., (xn, ynj )} to predict the value of a
single target variable Yj . This way, target variables are predicted independently
and potential relations between them cannot be exploited.

3.1 Multi-Target Stacking

The first method that we consider is inspired from [15] where the idea of stacked
generalization was applied in a multi-label classification context. That method
works by expanding the original input space of each training example with m
additional binary variables, corresponding to the predictions of m binary clas-
sifiers, one for each label, for that example. This expanded training set is fed
to a second layer of binary classifiers which produce the final decisions. These
second layer classifiers can detect and exploit label dependencies. Variations of
this core idea appear in [7,30,2].

Here, we adapt this problem transformation method for multi-target regres-
sion and denote it as Multi-Target Stacking (MTS). The training of MTS consists
of two stages. In the first stage, m independent single-target models hj : X → R
are learned as in ST. However, instead of directly using these models for predic-
tion, MTS involves an additional training stage where a second set of m meta
models h∗j : X ×Rm−1 → R are learned, one for each target Yj . Each meta model

h∗j is learned on a transformed training set D∗j = {(x∗1, y1j ), .., (x∗n, ynj )}, where

x∗ij = [xi
1, .., x

i
n, ŷ

i
1, .., ŷ

i
j−1, ŷ

i
j+1, .., ŷ

i
m] are expanded input vectors consisting of

the original input vectors of the training examples augmented by m− 1 predic-
tions (estimates) of the rest of the target variables obtained by the first stage
models. We intentionally differentiate slightly our method from the multi-label
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method to the point of not including the predictions of the first stage model for
target variable Yj in the input space of the second stage model for this vari-
able as in [2], since this would add redundant information to the second stage
models. To obtain predictions for an unknown instance xq, the first stage mod-
els are first applied and an output vector ŷq = [ŷq1, .., ŷ

q
m] = [h1(xq), .., hm(xq)]

is obtained. Then the second stage models are applied on a transformed input
vector x∗qj = [xq

1, .., x
q
n, ŷ

q
1, .., ŷ

q
j−1, ŷ

q
j+1, .., ŷ

q
m] to produce the final output vector

ˆ̂y
q

j = [h∗1(x∗q), ..., h∗m(x∗q)].

3.2 Ensemble of Regressor Chains

The second method that we consider is inspired by the recently proposed Clas-
sifier Chains (CC) method [27] and we henceforth denote it as Regressor Chains
(RC). RC is another problem transformation method, based on the idea of chain-
ing single-target models. The training of RC consists of selecting a random chain
(permutation) of the set of target variables and then building a separate regres-
sion model for each target. Assuming that the default chain C = {Y1, Y2, .., Ym}
(where C is represented as an ordered set) is selected, the first model concerns
the prediction of Y1, has the form h1 : X → R and is the same as the model
built by the ST method for this target. The difference in RC is that subsequent
models hj,j>1 are trained on transformed datasets D∗j = {(x∗1j , y1j ), .., (x∗nj , ynj )},
where x∗ij = [xi

1, .., x
i
1, y

i
1, .., y

i
j−1] are transformed input vectors consisting of the

original input vectors of the training examples augmented by the actual values
of all previous targets in the chain. Thus, the models built for targets Yj,j>1 have
the form hj : X × Rj−1 → R. Given such a chain of models, the output vector
ŷq of an unknown instance xq is obtained by sequentially applying the models
hj , thus ŷq = [h1(xq), h2(x∗q2 ), .., hm(x∗qm )] where x∗qj,j>1 = [xq

1, .., x
q
d, ŷ

q
1, .., ŷ

q
j−1].

Note that since the true values yq1, .., y
q
j−1 of the target variables are not available

at prediction time, the method relies on estimates of these values obtained by
applying the models h1, .., hj−1.

One notable property of RC is that it is sensitive in the selected chain or-
dering. The main problem arising from the use of a single random chain, is
that targets which appear earlier in a chain cannot model potential statistical
relationships with targets appearing later in that chain. Additionally, predic-
tion error is likely to by propagated and amplified along a chain when making
predictions for a new test instance. To mitigate these effects, [27] proposed an
ensemble scheme called Ensemble of Classifier Chains where a set of k (typically
k=10) CC models with differently ordered chains are built on bootstrap samples
of the training set and the final predictions come from majority voting. This
scheme has proven to consistently improve the accuracy of a single CC in the
classification domain. We apply the same idea (without sampling) on RC and
compute the final predictions by taking the mean of the k estimates for each
target. The resulting method is called Ensemble of Regressor Chains (ERC).
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3.3 MTS and ERC Corrected

Both MTS and ERC are based on the same core idea of treating the other
prediction targets as additional input variables which augment the original input
space. These meta-variables differ from ordinary input variables in the sense that
while their actual values are available at training time, they are missing during
prediction. Thus, during prediction, both methods have to rely on estimates of
these values which come either from ST (in MTS) or from RC (in ERC) models
built on the training set. An important question, which is answered differently
by each method, is what type of values should be used at training time for these
meta-variables. MTS uses estimates of these variables obtained by applying the
first stage models on the training examples, while ERC uses the actual values of
these variables to train the RC models. We observe that in both cases, however, a
core assumption of supervised learning is violated: that the training and testing
data should be identically and independently distributed. In the MTS case, the
in-sample estimates, which are used to form the second stage training examples,
are expected to be more accurate than the out-of-sample estimates, which will
be obtained at prediction time and thus follow a different distribution. The
situation is expected to be even more problematic in the case of RC as the
distribution of the actual target values is expected to diverge more radically
from the distribution of the predicted values. In both cases, the employed single-
target regression algorithm is trained using meta-variables that become noisy (or
noisier for the MTS case) at prediction time. As a result, the actual importance
and relationship of these meta-variables to the prediction target will be falsely
estimated by a learning algorithm. The impact that this discrepancy in the
distributions has on model accuracy has been recently studied for CC in [29],
where factors such as the length and order of the chain, the accuracy of the binary
classifiers and the degree of dependence between the labels have been identified.
The latter two factors also apply to MTS. A systematic study of these factors
is out of the scope of this paper where we instead present a solution to this
problem for both methods.

An alternative to the above approaches is to use only a part of the training
set for learning the first stage ST models (in MTS) or the RC models (in ERC),
which will then be applied to the hold-out part in order to obtain out-of-sample
estimates of the meta-variables. While the distribution of the estimates obtained
using this approach is expected to be more representative of the distribution of
the estimates obtained during prediction, it would lead to reduced second stage
training sets for MTS as only the examples of the hold-out set can be used for
training the second stage models. The same holds for ERC where the chained
RC models would be trained on training sets of decreasing size.

Here, we propose the use of an internal f -fold cross-validation approach (for
both MTS and ERC) to obtain out-of-sample estimates for the target variables.
The internal cross-validation approach avoids the aforementioned problem of the
hold-out approach as all training examples are used in the second stage ST mod-
els of MTS and the RC models of ERC. The cross-validation estimates may be
less accurate than those obtained during prediction because the models are built
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using f−1
f % of the full training set. Nevertheless, we expect that compared to

using the actual values or in-sample estimates, the cross-validation estimates will
approximate the distribution of the estimates obtained at prediction time more
accurately and thus will be more useful for the model. In Section 5 we empiri-
cally evaluate the original MTS and ERC methods with the proposed corrected
versions denoted as MTS Corrected (MTSC) and ERC Corrected (ERCC).

4 Experimental Setup

This section describes our experimental setup. We first present the participating
methods and their parameters and provide details about their implementation
in order to facilitate reproducibility of the experiments. Next, we describe the
evaluation measure and justify the process that was followed for the statistical
comparison of the methods. Finally, we present the datasets that we used, 8 of
which are firstly introduced in this paper.

4.1 Methods, Parameters and Implementation

The empirical evaluation compares the performance of the basic MTS and ERC
methods against the performance of their corrected versions MTSC and ERCC.
All the proposed methods are also compared against the ST baseline as well as
the state-of-the-art multi-objective random forest algorithm [21] (MORF).

Since all the proposed methods (including ST) transform the multi-target
prediction problem into several single-target problems, they have the advantage
of being combinable with any single-target regression algorithm. To facilitate a
fair comparison and to simplify the analysis we use bagging [6] of 100 regression
trees as the base regression algorithm in all methods. MTSC and ERCC are run
with f = 10 internal cross-validation folds and the ensemble size of ERC and
ERCC is set to 10 models, each one trained using a different random chain (in
cases where the number of distinct chains is smaller than 10 we create exactly
as many models as the number of distinct label chains). In order to ensure a
fair comparison of ERC and ERCC with the non-ensemble methods, we do not
perform bootstrap sampling (i.e. each ensemble model is build using all training
examples). Finally, for MORF we use an ensemble size of 100 trees and the values
suggested in [21] for the rest of its parameters.

All the proposed methods and the evaluation framework were implemented
within the open-source multi-label learning Java library Mulan4 [33] by expand-
ing the library to handle multi-target prediction tasks. Mulan is built on top of
Weka5 [35], which includes implementations of bagging and regression tree (via
the REPTree class). A wrapper of the CLUS6 software, which includes support
for MORF, was also implemented and included in Mulan, enabling the eval-
uation of all methods under a single software framework. In support of open

4 http://mulan.sourceforge.net
5 http://www.cs.waikato.ac.nz/ml/weka
6 http://dtai.cs.kuleuven.be/clus/

http://mulan.sourceforge.net
http://www.cs.waikato.ac.nz/ml/weka
http://dtai.cs.kuleuven.be/clus/
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science and to ease replication of the experimental results of this paper, we have
included a class called ExperimentMTR in Mulan’s experiments package.

4.2 Evaluation

We use Relative Root Mean Squared Error (RRMSE) to measure the accuracy
of a multi-target model on each target variable. The RRMSE of a multi-target
model h that has been induced from a train set Dtrain is estimated based on a
test set Dtest according to the following equation:

RRMSE(h,Dtest) =

√√√√∑
(x,yj)∈Dtest

(ŷj − yj)2∑
(x,yj)∈Dtest

(Ȳj − yj)2
(1)

where Ȳj is the mean value of target variable Yj over Dtrain and ŷj is the
estimation of h(x) for Yj . More intuitively, RRMSE for a target is equal to
the Root Mean Squared Error (RMSE) for that target divided by the RMSE
of predicting the average value of that target in the training set. The RRMSE
measure is estimated using the hold-out approach for large datasets, while 10-
fold cross-validation is employed for small datasets.

To test the statistical significance of the observed differences between the
methods, we follow the methodology suggested in [12]. When comparing two
methods on multiple datasets we use the Wilcoxon signed-ranks test. When the
comparison involves multiple methods we first apply the non-parametric Fried-
man test that operates on the average ranks of the methods and checks the
validity of the hypothesis (null-hypothesis) that all methods are equivalent. If
the null-hypothesis is rejected, we proceed to the Nemenyi post-hoc test that
computes the critical distance (between average ranks) required in order for two
methods to be considered significantly different. Finally, we graphically present
the results with appropriate diagrams which plot the average ranks of the meth-
ods and show groups of methods whose average rank differences are less than
the critical distance for a p-value of 0.05.

As the above methodology requires a single performance measurement for
each method on each dataset, it is not directly applicable to multi-target evalu-
ation where we have multiple performance measurements (one for each target)
for each method on each dataset. One option is to take the average RRMSE
(aRRMSE) across all target variables within a dataset as a single performance
measurement. However, this may not always be a meaningful choice since: a)
different targets may represent different things and b) we may not be always
interested into the best average performance (see patisserie example in Section
2). Another option is to treat the RRMSE performance of each method on each
different target as a different measurement. In this case, however, Friedman’s
test assumption of independence between performance measurements might be
violated. In the absence of a better solution, we perform the two dimensional
analysis of [1], where statistical tests are conducted using both aRRMSE but
also considering the RRMSE value per target as an independent measurement.
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4.3 Datasets

Despite the numerous interesting applications of multi-target regression, there
are few publicly available datasets of this kind, perhaps because most applica-
tions are industrial. In fact, among the datasets used in other multi-target re-
gression studies, e.g. [1], only Solar Flare [4], Water Quality [13] and EDM [19]
are publicly available while the rest are proprietary and could not be acquired.
This lack of available data, motivated the collection of real-world multi-target re-
gression data and the composition of 8 new benchmark datasets which have been
made publicly available7. A description of each dataset follows, while Table 1
summarizes their statistics.

Table 1: Statistics of the datasets used in the evaluation. Those on the right
are firstly introduced in this paper. A two-value entry for the Examples column
indicates the sample counts for the train and test set respectively, d denotes the
number of input variables and m denotes the number of target variables.

Dataset Examples d m Dataset Examples d m

EDM 154 16 2 OES97 334 263 16
SF1 323 10 3 OES10 403 298 16
SF2 1066 10 3 ATP1d 337 411 6
WQ 1060 16 14 ATP7d 296 411 6

RF1 4108/5017 64 8
RF2 4108/5017 576 8
SCM1d 8145/1658 280 16
SCM20d 7463/1503 61 16

EDM The Electrical Discharge Machining dataset [19] represents a two-target
regression problem. The task is to shorten the machining time by reproducing
the behavior of a human operator which controls the values of two variables.
Each of the target variables takes 3 distinct numeric values (−1,0,1) and there
are 16 continuous input variables.

SF1 & SF2 The Solar Flare dataset [4] has 3 target variables that correspond
to the number of times 3 types of solar flare (common, moderate, severe) are
observed within 24 hours. There are two versions of this dataset. SF1 contains
data from year 1969 and SF2 from year 1978.

7
http://users.auth.gr/espyromi/datasets.html

http://users.auth.gr/espyromi/datasets.html
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WQ The Water Quality dataset [13] has 14 target attributes that refer to the
relative representation of plant and animal species in Slovenian rivers and 16
input attributes that refer to physical and chemical water quality parameters.

OES97 & OES10 The Occupational Employment Survey datasets were ob-
tained from years 1997 (OES97) and 2010 (OES10) of the annual Occupational
Employment Survey compiled by the US Bureau of Labor Statistics8. Each row
provides the estimated number of full-time equivalent employees across many
employment types for a specific metropolitan area. There are 334 and 403 cities
in the 1997 and May 2010 datasets, respectively. The input variables in these
datasets are a randomly sequenced subset of employment types (i.e. doctor, den-
tist, car repair technician) observed in at least 50% of the cities (some categories
had no values for particular cities). The targets for both years are randomly
selected from the entire set of categories above the 50% threshold. Missing val-
ues in both the input and the target variables were replace by sample means
for these results. To our knowledge, this is the first use of the OES dataset for
benchmarking of multi-target prediction algorithms.

ATP1d & ATP7d The Airline Ticket Price dataset concerns the prediction of
airline ticket prices. The rows are a sequence of time-ordered observations over
several days. Each sample in this dataset represents a set of observations from a
specific observation date and departure date pair. The input variables for each
sample are values that may be useful for prediction of the airline ticket prices
for a specific departure date. The target variables in these datasets are the next
day (ATP1d) price or minimum price observed over the next 7 days (ATP7d)
for 6 target flight preferences (any airline with any number of stops, any airline
non-stop only, Delta Airlines, Continental Airlines, Airtrain Airlines, and United
Airlines). The input variables include the following types: the number of days
between the observation date and the departure date (1 feature), the boolean
variables for day-of-the-week of the observation date (7 features), the complete
enumeration of the following 4 values: 1) the minimum price, mean price, and
number of quotes from 2) all airlines and from each airline quoting more than
50% of the observation days 3) for non-stop, one-stop, and two-stop flights, 4)
for the current day, previous day, and two days previous. The result is a feature
set of 411 variables. For specific details on how these datasets are constructed
please consult [17]. The nature of these datasets is heterogeneous with a mixture
of several types of variables including boolean variables, prices, and counts.

SCM1d & SCM20d The Supply Chain Management datasets are derived from
the Trading Agent Competition in Supply Chain Management (TAC SCM) tour-
nament from 2010. The precise methods for data preprocessing and normaliza-
tion are described in detail in [16]. Some benchmark values for prediction accu-
racy in this domain are available from the TAC SCM Prediction Challenge [25],

8 http://www.bls.gov/.

http://www.bls.gov/
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these datasets correspond only to the “Product Future” prediction type. Each
row corresponds to an observation day in the tournament (there are 220 days
in each game and 18 tournament games in a tournament). The input variables
in this domain are observed prices for a specific tournament day. In addition, 4
time-delayed observations are included for each observed product and compo-
nent (1,2,4 and 8 days delayed) to facilitate some anticipation of trends going
forward. The datasets contain 16 regression targets, each target corresponds
to the next day mean price (SCM1d) or mean price for 20-days in the future
(SCM20d) for each product in the simulation. Days with no target values are
excluded from the datasets (i.e. days with labels that are beyond the end of the
game are excluded).

RF1 & RF2 The river flow datasets concern the prediction of river network
flows for 48 hours in the future at specific locations. The dataset contains data
from hourly flow observations for 8 sites in the Mississippi River network in
the United States and were obtained from the US National Weather Service.
Each row includes the most recent observation for each of the 8 sites as well as
time-lagged observations from 6, 12, 18, 24, 36, 48 and 60 hours in the past. In
RF1, each site contributes 8 attribute variables to facilitate prediction. There
are a total of 64 variables plus 8 target variables.The RF2 dataset extends the
RF1 data by adding precipitation forecast information for each of the 8 sites
(expected rainfall reported as discrete values: 0.0, 0.01, 0.25, 1.0 inches). For
each observation and gauge site, the precipitation forecast for 6 hour windows
up to 48 hours in the future is added (6, 12, 18, 24, 30, 36, 42, and 48 hours).
The two datasets both contain over 1 year of hourly observations (>9,000 hours)
collected from September 2011 to September 2012. The training period is the
first 40% of observations, and the test period is the remainder. The domain is
a natural candidate for multi-target regression because there are clear physical
relationships between readings in the contiguous river network.

5 Results

Table 2 shows the aRRMSE obtained by each multi-target method on each
dataset9. The two last rows show the average rank of each method calculated
over dataset RRMSE averages (aRRMSE) and over per target RRMSE results.

We observe that in both types of analyses ERCC obtains the lowest average
rank, followed by MTSC. Surprisingly, the ST baseline obtains a lower average
rank than MORF which has the worst average rank in both cases. We also see
that both MTSC and ERCC obtain lower average ranks than the non-modified
versions. When the Friedman test is applied to compare the six algorithms, it
finds significant differences between them at p = 0.01 in both the per dataset
and the per target analysis. Thus, in both cases we proceed to the Nemenyi

9 Per target RRMSE results are not shown here due to space limitations but are
provided as supplementary material.



12 E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, I. Vlahavas

Table 2: aRRMSE obtained by each multi-target method on each dataset. In
each row, the lowest error is typeset in bold. The two last rows show the average
rank of each method calculated over dataset RRMSE averages (d) and over per
target RRMSEs (t).

Dataset MORF ST MTS MTSC ERC ERCC

EDM 73.38 74.21 74.30 73.96 74.35 74.07
SF1 128.25 113.54 112.70 106.80 105.01 108.87
SF2 142.48 114.94 94.48 105.53 105.32 108.79
WQ 89.94 90.83 91.10 90.95 90.97 90.59
OES97 54.90 52.48 52.59 52.43 52.54 52.39
OES10 45.18 42.00 42.01 42.05 42.02 41.99
ATP1d 42.22 37.35 37.16 37.17 37.10 37.24
ATP7d 55.08 52.48 51.43 50.74 53.43 51.24
SCM1d 56.63 47.75 47.41 47.01 47.09 46.63
SCM20d 77.75 77.68 78.62 78.54 77.55 75.97
RF1 85.13 69.63 82.37 69.82 79.47 69.89
RF2 91.89 69.64 81.75 69.86 79.61 69.82

Avg. rank d 5.00 3.42 4.08 2.83 3.42 2.25
Avg. rank t 4.37 3.55 3.75 3.28 3.35 2.70

post-hoc test, whose results at p = 0.05 are presented in the average rank dia-
grams of Figures 1a and 1b. In the per dataset analysis case, the performance
of ERCC is significantly better than that of MORF while the experimental data
is not sufficient to reach statistically significant conclusions regarding the per-
formance of the other methods. In the per target analysis case, the following
significant performance differences are found: ERCC > {MORF,MTS, ST}
and MORF < {ST,ERC,MTSC} where > (<) denotes a statistically signifi-
cant performance improvement (degradation).

To further study the impact of the proposed modification on MTS and ERC
we apply the Wilcoxon signed-ranks test between MTS and MTSC and between
ERC and ERCC. In the MTS/MTSC comparison, the p-value is 0.0425 and
0.0445 in the per dataset and the per target analysis respectively suggesting
that the differences are statistically significant for a = 0.05. In the ERC/ERCC
comparison, the p-value is 0.1763 and 0.0098 in the per dataset and the per target
analysis respectively suggesting that the differences are not found statistically
significant when the analysis is performed per dataset while in the per target
analysis ERCC is found significantly better for a = 0.01.

Summarizing the comparative results, we see that the novel multi-label-
inspired approaches obtain a better performance than the state-of-the-art MORF
method in 10 out of 12 datasets and 82 out of 114 targets, indicating that the
knowledge transfer between the two domains was successful. Nevertheless, the
fact that there is a large variation in relative performance between the proposed
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methods across different prediction targets, suggests that their performance re-
quires a further analysis especially compared to the performance of the ST base-
line that without taking any target dependencies into account obtains the best
performance in 2 out of 12 datasets and 12 out of 114 targets.

CD = 2.18

6 5 4 3 2 1

 2.25 ERCC

 2.83 MTSC

 3.42 ST 3.42ERC

 4.08MTS

 5.00MORF

(a) Per dataset analysis.

CD = 0.71

6 5 4 3 2 1

 2.70 ERCC

 3.28 MTSC

 3.35 ERC 3.55ST

 3.75MTS

 4.37MORF

(b) Per target analysis.

Fig. 1: Comparison of all methods with the Nemenyi test calculated on average
RRMSE per dataset (Fig 1a) and on RRMSE per target (Fig 1b). Groups of
methods that are not significantly different (at p = 0.05) are connected.

6 Conclusions and Future Work

This paper attempts to highlight the connection between multi-label classifica-
tion and multi-target regression and investigates the applicability of methods
proposed to solve the former task into the later task. The analysis of Section 2
reveals that transformation multi-label methods that model each label indepen-
dently are directly applicable to multi-target regression, simply by employing
regression models.

In Section 3 we introduce two new techniques for multi-target regression,
MTS and ERC, through straightforward adaptation of two corresponding multi-
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label learning methods that model label dependencies by using targets as inputs
to meta-models. Furthermore, we detect an important shortcoming of these tech-
niques, namely the discrepancy between the distribution of the target variables
during training and during prediction, and propose modified versions of MTS
(MTSC) and ERC (ERCC), that use cross-validation estimates of the targets
during training.

As revealed by the empirical evaluation, this modification has a significant
positive impact on the performance of the two methods. Equipped with this
modification, MTSC and ERCC exhibit better perfromance than both the ST
baseline and the state-of-the-art MORF approach. In particular, ERCC has the
best overall performance and is found statistically significantly more accurate
than both ST and MORF (when the analysis is performed per target).

Another important contribution of this paper is the introduction of 8 new
publicly available multi-target datasets. This is important as most multi-target
datasets mentioned in the literature are kept private due to their industrial
nature, a fact that hinders benchmarking techniques and advancing state-of-
the-art.

As future work, we would like to perform an analysis into why different
multi-target methods perform better on different targets/datasets and to study
the connection of these performance differences with dataset characteristics such
as the degree and type of dependence between target variables. It would also
be interesting to explore whether we could complete the circle back to multi-
label classification, by investigating to what extend the discrepancy problem in
MTS and ERC affects the corresponding multi-label classification algorithms
and whether our modification can increase the generalization performance in
this case as well.
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