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Abstract. This paper presents the two winning approaches that we de-
veloped for the instrument recognition track of the ISMIS 2011 contest
on Music Information. The solution that ranked first was based on the
Binary Relevance approach and built a separate model for each instru-
ment on a selected subset of the available training data. Moreover, a
new ranking approach was utilized to produce an ordering of the in-
struments according to their degree of relevance to a given track. The
solution that ranked second was based on the idea of constraining the
number of pairs that were being predicted. It applied a transformation
to the original dataset and utilized a variety of post-processing filters
based on domain knowledge and exploratory analysis of the evaluation
set. Both solutions were developed using the Mulan open-source software
for multi-label learning.

1 Introduction

With the explosion of multimedia Internet services, such as YouTube and Last.fm,
vast amounts of multimedia data are becoming available for exchange between
Internet users. Efficiently browsing and searching in such enormous digital data-
bases requires effective indexing structures. However, content-based indexing of
multimedia objects such as music tracks is commonly based on manual anno-
tations, since automatic understanding and categorization is still too difficult
for computers. Here we focus on the challenging problem of recognizing pairs of
instruments playing together in a music track.

While the automatic recognition of a single instrument is fairly easy, when
more than one instruments play at the same time in a music track, the task
becomes much more complex. The goal of the competition was to build a model
based on training data concerning both single instruments and instrument mix-
tures in order to recognize pairs of instruments. The learning task can be viewed
as a special case of multi-label classification [5], where the output of the classifier
must be a set of exactly two labels.

Multi-label classification extends traditional single-label classification in do-
mains with overlapping class labels (i.e. where instances can be associated with
more than one labels simultaneously). More formally, in multi-label classifi-
cation X = RM denotes the input attribute space. An instance * € X can



be represented as an M-vector © = [z1,...,2p]. The set of L possible la-
bels Y = {1,...,L} for a particular instance is represented by an L-vector
y = [y1,..-,yz] = {0,1}F where y; = 1 iff the jth label is relevant (y; = 0
otherwise). A multi-label classification algorithm accepts as input a set of multi-
label training examples (x,y) and induces a model that predicts a set of relevant
labels for unknown test instances. In the domain of the contest, music instru-
ments represent the overlapping class labels and each test instance is associated
with exactly two of them.

Both solutions presented in this paper are based on the simple Binary Rel-
evance (BR) approach for multi-label classification. BR learns L binary classi-
fiers, one for each different label in Y. It transforms the original data set into
L datasets that contain all examples of the original dataset, labeled positive
if the original example was annotated with y; and negative otherwise. For the
classification of a new instance, BR outputs the union of the labels y; that are
positively predicted by the L classifiers.

The quality of predictions were evaluated by the contest organizers as follows:

— If no recognized instrument matched the actual ones, the score was 0
— If only one instrument was correctly recognized, the score was 0.5
— If both instruments matched the target ones, the score was 1.0

The final score of a solution was the average of its scores across all test instances.

The rest of the paper is organized as follows. Section 2 presents our ex-
ploratory analysis of the datasets. Sections 3 and 4 describe in detail the two
solutions that we developed. Finally, Section 5 concludes this paper.

2 The Data

2.1 The Training Sets

The training set consisted of two datasets: one containing data of single instru-
ments and one containing data of mixtures of instrument pairs. A first challenge
of the contest, was that these two datasets were significantly heterogeneous.

The single instrument data comprised 114914 recordings of 19 different in-
struments. The instrument pairs data comprised just 5422 mixtures of 21 dif-
ferent instruments. In total there were 32 distinct instruments, just 8 of which
appeared in both datasets. Table 1 presents the number and percentage of ex-
amples from each instrument in each of the two training datasets as well as in
their union.

The mixtures dataset contained the following 12 different pairs of 21 in-
struments: (SopranoSaxophone, TenorTrombone), (AltoSaxophone, TenorTrom-
bone), (TenorSaxophone, Tuba), (TenorSaxophone, B-FlatTrumpet), (Baritone-
Saxophone, CTrumpet), (BassSaxophone, CTrumpet), (AcousticBass, Piano),
(B-flatclarinet, Viola), (Cello, Oboe), (ElectricGuitar, Marimba), (Accordian,
DoubleBass), (Vibraphone, Violin).

It is interesting to notice that the pairs dataset contained instruments that
can be considered as kinds of instruments in the single instruments dataset.



Single Pairs Total Validation Test

Instrument| Examples % | Examples % | Examples %| Examples % | Examples %
SynthBass 918 0.7 0 0 918 1 595 4.0 635 4.3
EnglishHorn 1672 1.4 0 0 1672 1 0 0.0 0 0.0
Frenchhorn 2482 2.1 0 0 2482 2 364 2.4 425 2.9
Piccolo 2874 2.5 0 0 2874 2 0 0.0 0 0.0
Saxophone 4388 3.8 0 0 4388 3 0.0 0 0.0
Trombone 4503 3.9 0 0 4503 4 0 0.0 0 0.0
Bassoon 5763 5.0 0 0 5763 5 0 0.0 0 0.0

Flute 7408 6.4 0 0 7408 6 0 0.0 0 0.0

Clarinet 9492 8.2 0 0 9492 8 0 0.0 0 0.0
Trumpet 11152 9.7 0 0 11152 9 0 0.0 0 0.0

Guitar| 34723  30.2 0 0 34723 28 0 0.0 0 0.0
Vibraphone 0 0 249 4.6 249 0 622 4.2 594 4.1
SopranoSaxophone 0 0 329 6.1 329 0 586 4.0 542 3.7
AltoSaxophone 0 0 337 6.2 337 0 405 2.7 388 2.6
B-FlatTrumpet 0 0 412 4 412 0 0 0.0 0 0.0
AcousticBass 0 0 417 4 417 0 0 0.0 0 0.0
BassSaxophone 0 0 503 9.2 503 0 340 2.4 335 2.4
BaritoneSaxophone 0 0 530 9.8 530 0 346 2.3 296 2.0
B-flatclarinet 0 0 567 10.5 567 0 3528 24.1 3661 25.0
ElectricGuitar 0 0 590 10.9 590 0 4149 28.3 4222 28.8
Marimba 0 0 590 10.9 590 0 455 3.1 377 2.6
TenorTrombone 0 0 666 12.2 666 1 1293 8.8 1248 8.5
TenorSaxophone 0 0 934 17.2 934 1 2137 14.6 2160 14.7
CTrumpet 0 0 1033 19.0 1033 1 2155 14.7 2048 14.0
Oboe 1643 1.4 332 6.1 1975 2 3184 21.7 3247 22.1
Accordian 1460 1.2 634 11.7 2094 2 2466 16.8 2427 16.6
Viola 3006 2.6 567 10.4 3573 3 762 5.2 815 5.6

Tuba 3463 3.0 522 9.6 3985 3 0 0 0 0.0
DoubleBass 3849 3.3 634 11.7 4483 4 1384 9.4 1338 9.1
Violin 5010 4.4 249 4.6 5259 4 3528 22.2 3237 22.1

Cello 4964 4.3 332 6.1 5296 4 698 4.7 694 4.7

Piano 6144 5.3 417 7.7 6561 5 595 4.0 635 4.3

Table 1. Instrument distribution in the training sets and the test set.

SopranoSaxophone, AltoSaxophone, TenorSaxophone, BaritoneSaxophone and
BassSaxophone are kinds of Saxophone, CTrumpet and B-Flat Trumpet are kinds
of Trumpet, TenorTrombone is a kind of Trombone, B-FlatClarinet is a kind of
Clarinet and ElectricGuitar is a kind of Guitar. These relations complicate the
learning problem in some ways. Firstly, examples of the specialized class (e.g.
TenorTrombone) could be semantically considered as examples of the general
class (e.g. Trombone). It may be difficult to distinguish between such parent-
child pairs of classes. Secondly, different kinds of the same instrument could
be difficult to distinguish (e.g. is one of the instruments a soprano or an alto
saxophone?).

It is also interesting to notice a special property of the ElectricGuitar and
Marimba instruments. It is the only pair of instruments that satisfies both of
the following conditions: a) none of the instruments of the pair appears in the
single instruments dataset, b) none of the instruments of the pair appears to-
gether with another instrument in the mixtures dataset. This means that out of
the 32 instruments, these particular two instruments are the only ones to have
exactly the same positive and negative training examples. It would therefore be
impossible for any classifier to distinguish them.



2.2 The Test Set

Besides the heterogeneity of the training sets, the following statements about
the synthesis of the test set brought additional complexity to the learning task:

— Test and training sets contain different pairs of instruments (i.e. the pairs
from the training set do not occur in the test set).

— Not all instruments from the training data must also occur in the test part.

— There may be some instruments from the test set that only appear in the
single instruments part of the training set.

In order to have a clearer idea about the synthesis of the test set and for
other reasons which will be explained in the analysis of the respective solutions,
we queried the evaluation system for the frequency of each instrument in the
test set by submitting a prediction containing the same instrument for all test
instances. Table 1 (Column 4) contains the percentage of each label measured in
the validation set (35% of the test data) along with a projection of the expected
number of examples in the full test set. Column 5 of Table 1 contains the actual
percentage and number of examples of each label in the full test set.

By examining Table 1, we reach to the following conclusions:

— Only 20 out of the 32 instruments appear in the test set.
— The mixtures training set contained 18 of the 20 instruments of the test set

plus 3 additional instruments.

— The single instruments training set contained 9 of the 20 instruments of the
test set plus 10 additional instruments.

— There is a great discrepancy between the distribution of the labels in the
training and the test data.

2.3 Features

Each track in both the training and the test data was described by 120 pre-
computed attributes capturing various sound properties:

— Flatness coefficients: BandsCoef1-33, bandsCoefSum

— MFCC coefficients: MFCC1-13

— Harmonic peaks: HamoPk1-28

— Spectrum projection coefficients: Prj1-33, prjmin, prjmax, prjsum, prjdis,
prjstd

— Other acoustic spectral features: SpecCentroid, specSpread, energy, log spec-
tral centroid, log spectral spread, flux, rolloff, zerocrossing

— Temporal features: LogAttackTime, temporalCentroid

The single instruments set was described by the following additional five
attributes:

— Frameid - Each frame is 40ms long signal

— Note - Pitch information

— Playmethod - One schema of musical instrument classification according to
the way they are played

— Classl,class2 - Another schema of musical instrument classification according
to Hornbostel-saches



3 Investigation of Multi-Label Learning Methods

A first important issue was to determine which multi-label learning method was
the most appropriate one for our particular problem. We compared the perfor-
mance of various state-of-the-art multi-label methods that were available in our
Mulan open-source software for multi-label learning!, such as ECC [3], CLR [2]
and RAKEL [6] along with baseline methods such as the Binary Relevance (BR)
approach. In this first set of experiments the union of the two datasets (single
and mixtures) was used as the training set and the performance of the methods
was evaluated directly on the test set. The reason was that the training data
was substantially different from the test data (see Section 2) and the results of
a comparison on the training data could be misleading.

The results of a comparison using various binary base classifiers revealed that
state-of-the-art multi-label methods had little or no benefit in comparison with
the simple BR approach, especially when BR was coupled with ensemble-based
binary classifiers such as Random Forest [1]. The results were not surprising
since the main advantage of advanced multi-label learning methods over the
BR approach is their ability to capture and exploit correlations between labels.
In our case, learning the correlations which appear in the training set was not
expected to be useful since these correlations are not repeated in the test set.

4 The Solution that Ranked First

4.1 Engineering the Input

While in our initial set of experiments we used the union of the given training
sets, we were also interested in measuring the performance of the methods given
either only the mixture or only the single-instrument examples as training data.
The results showed that using only the mixture examples for training was far
better than using only the single-instrument examples, and was even better than
using all the available training examples. We gave two possible explanations for
this outcome:

— Learning from pairs of instruments is better when the task is to predict pairs
of instruments (even though the pairs appearing in the test set are different).

— The distribution of the labels in the mixtures dataset matches better to that
of the test set.

The findings regarding the nature of the test set, presented in Subsection 2.2,
were quite revealing. By using only the single-instruments set for training, we
could predict only 9 of the 20 instruments which appear in the test set, compared
to 18 when using the mixtures set. However, it was still difficult to determine
why using the mixtures set alone was better than combining all the data since,
in the latter case, all the relevant instruments were present in the training set.
To make things more clear we performed a new set of experiments.

! mulan.sourceforge.net



We first removed the training data corresponding to the 12 instruments which
were not present in the test set and then created the following training sets: a)
One that contained both mixture and single-instrument examples for the instru-
ments appearing in the test set. b) One that contained only mixture examples
for the 18 out of 20 instruments and single-instrument examples for the 2 re-
maining instruments of the test set. ¢) One that contained only single-instrument
examples for the 9 out of 20 instruments and mixture examples for the rest 11
instruments of the test set. The best results were obtained using the second
training set, and verified that learning from mixtures is better when one wants
to recognize mixtures of instruments. Note that adding single-instrument exam-
ples for the 2 instruments which had no examples in the mixtures set, slightly
improved the performance of using only examples of mixtures. This revealed
that using single-instrument data can be beneficial in the case that no mixture
data is available. The set used to train the winning method comprised of the
union of the 5422 mixture examples and the 340 single-instrument examples of
SynthBass and Frenchhorn. All the given feature attributes describing the mix-
ture examples were used, while we ignored the 5 additional attributes of the
single-instruments set since they were not present in the test set.

4.2 Base Classifier

A problem arising from the use of the one-versus-rest or BR approach for multi-
label classification is that most of the labels have much more negative than pos-
itive examples. Class imbalance is known to negatively affect the performance of
classifiers by biasing their focus towards the accurate prediction of the majority
class. This often results in poor accuracy for the minority class, which is the class
of interest in our case. For this reason, special attention was paid on selecting a
classification scheme that is able to tackle this problem.

To deal with class imbalance we extended the original Random Forest (RF)
[1] algorithm. RF creates an ensemble of unpruned decision trees where each
tree is built on a bootstrap sample of the training set. Random feature selection
is used in the tree induction process. To predict the class of an unknown object
the predictions of the individual trees are aggregated. RF has been proven to
have superior accuracy among current classification algorithms, however, it is
susceptible on imbalanced learning situations. Our idea is based on combining
RF with Asymmetric Bagging [4]. Instead of taking a bootstrap sample from
the whole training set, bootstrapping is executed only on the examples of the
majority (negative) class. The Asymmetric Bagging Random Forest (ABRF)
algorithm is given below:

1. Take a sample with replacement from the negative examples with size equal
to the number of positive examples. Use all the positive examples and the
negative bootstrap sample to form the new training set.

2. Train the original RF algorithm with the desired number of trees on the new
training set.

3. Repeat the two steps above for the desired number of times. Aggregate the
predictions of all the individual random trees and make the final prediction.



Building a forest of 10 random trees on each one of 10 balanced training sets
yielded the best evaluation results.

4.3 Informed Ranking

The output produced for each label by an ABRF classifier can be used either as a
hard classification (the decision of the majority) or transformed into a confidence
score of the label being true by dividing the number of random trees that voted
for the label with the total number of random trees. In a typical multi-label
classification problem (where the number of relevant labels for each test instance
is unknown) we would either use the first approach to select the relevant labels for
each test instance, or apply a decision threshold to the confidence scores in order
to transform them into hard classifications. In the domain of the contest though,
we a priori knew that exactly two instruments are playing on each track, thus
we followed a different approach. We focused on producing an accurate ranking
of the labels according to their relevance to each test instance and selected the
two top-ranked labels. Instead of directly using the confidence scores to produce
a ranking of the labels, we developed a novel ranking approach which takes
into account the prior probability distribution of the labels. Our approach is as
follows:

1. Use the trained classifiers to generate confidence scores for all test instances.

2. Sort the list of confidence scores given for each label.

3. Given a test instance, find its rank in the sorted list of confidences for each
label. These ranks are indicative of the relevance of the instance to each
label.

4. Normalize the ranks produced from step 3 by dividing them with the esti-
mated (based on their prior probabilities) number of relevant instances for
each label in the test set and select the n labels with the lowest normalized
rank.

We explain the effect of normalization with an example: Assume that we
have 100 test instances and an instance z; is ranked 30th for labell and label2
and 40th for label3. We further know that only one label is relevant for x; and
that the prior probabilities of the labels are P(labell) = P(label2) = 0.25 and
P(label3) = 0.5. By normalizing the ranks we get 30/25 for labell and label2
and 40/50 for label3. Thus, we would select label3 for z; although labell and
label2 have a lower absolute rank. This is rational since based on the priors we
expect that labell and label2 will have only 25 relevant instances and x;’s rank
for these labels was 30. In the context of the contest, we had the chance to use the
frequencies of the labels in the validation set to estimate the number of relevant
instances in the full test set. In a real-world situation, the prior probabilities of
the labels in the training set could be used for this purpose.

4.4 Engineering the Output

As a final step, a post-processing filter was applied which disallowed instrument
pairs that were present in the training set. In such cases, the second-ranked label



was substituted by the next label which would not produce a label pair of the
training set when combined with the first-ranked label. This substitution was
based on the assumption that the classifier is more confident for the first-ranked
label. The information for this filter was given in the description of the task by
the contest organizers (see Section 2).

5 The Solution that Ranked Second

The mixtures dataset consists of 5422 examples, yet the number of distinct
instrument pairs it contains is just 12. This observation, led us to the hypothesis
that the test set, which consists of 14663 instances, might also contain a small
number of instrument pairs. However, the number of distinct instrument pairs
predicted by our early attempts on the problem was quite large. This led to
the core idea of this solution: constraining the number of pairs that were being
predicted.

5.1 Engineering the Input

A first step was to join the two training datasets into a single one. The extra
features of the single-instruments dataset were deleted in this process, while the
label space of the datasets was expanded to cover the union of all labels. The
union of the examples of the two datasets was then considered.

We then adopted the following transformation of this dataset. We considered
a new label space consisting of all pairs of instruments. The labels of this new
label space had a positive value, whenever one of the labels in the original space,
i.e. one of the instruments, had a positive value. In other words, the new label
space applied an OR operator on all pairs of the original labels space. Figure
1 exemplifies this process with just three instruments, respecting the pairs that
appear in the training set.

Cello Oboe Piano Cello OR Oboe  Cello OR Piano  Oboe OR Piano
true true false true true true
true false false = true true false
false true false true false true
false false true false true true

Fig. 1. Transformation of the data to a new label space.

This quite strange transformation was motivated from the fact that the task
required us to predict pairs of instruments, but didn’t provide us with examples
of mixtures of these pairs. The transformation allowed the direct modeling of all
pairs, using as examples either available mixtures, or available examples of one
of the two instruments.



5.2 Learning

We applied the binary relevance approach on the transformed dataset. Each of
the binary models was trained using the random forest algorithm [1] with 200
trees, after random sub-sampling so as to have at most a 10:1 ratio between the
negative and positive class. Given a test instance, the output of this approach
was a ranking of the labels (pairs of instruments) according to relevance to each
of the test instances, based on the probability estimates of the random forest
algorithm.

5.3 Engineering the Output

As already mentioned in the beginning of this section, the key point of this
solution was constraining the instrument pairs given in the output. This was
achieved via a variety of filters operating at a post-processing step after the
learning step has ranked all possible pairs of instruments.

A first simple post-processing filter disallowed instrument pairs that were
present in the training set. The information for this filter was given in the de-
scription of the task by the contest organizers (see Section 2). A second filter
disallowed instrument pairs, where at least one of the instruments was absent
from the evaluation set, as discovered from our exploratory analysis of the eval-
uation set (see Section 2).

Then a number of filters were applied, one for each instrument that was
present in the evaluation set, which disallowed pairs of this instrument with
other instruments based on two main information sources:

— Domain knowledge, which was sought in the Internet, as our musical liter-
acy was rather limited for this task. The Vienna Symphonic Library? was a
good source of knowledge for combinations of instruments that make sense.
We also issued Google queries for pairs of instruments and considered the
number of returned documents as evidence supporting the common appear-
ance of these instruments in a music track. Sites with free music pieces for
instruments were also consulted.

— The projected instrument distribution in the test set based on the evaluation
set (see Section 2). Instruments with predicted distribution much higher than
the projected one, hinted us that pairs containing them should be candidates
for removal from the allowed set of instrument pairs. On the other hand,
instruments with predicted distribution much lower than the projected one,
hinted us that perhaps we have wrongly disallowed pairs containing them.

Constructing this last set of filters was a time-consuming iterative process,
involving several submissions of results for evaluation feedback, that in the end
led to allowing just 20 instrument pairs. After the test set was released, we found
out that it actually contained 24 instrument pairs, 13 of which were within the
allowed 20 by our approach. The remaining 11 were disallowed by our approach,
which further allowed 7 pairs that were not present in the test set.

2 http://www.vsl.co.at/



Instrument pairs were examined in the order of relevance to a test instance
as output by the learning algorithm, until a pair that was not disallowed by the
filters was reached. This was the final output of the post-processing algorithm
for that test instance.

We also included another post-processing step that led to slight improve-
ments. This step took into account the parent-child relationships of instruments
that were discussed in Section 2 and performed the following replacements of in-
struments in a predicted pair, prior to passing this pair from the filters: Clarinet
was replaced by B-FlatClarinet, Trumpet by CTrumpet, Guitar by ElectricGui-
tar and Trombone by TenorTrombone.

6 Conclusions

Our motivation for participating in the instrument recognition track of the ISMIS
2011 Contest on Music Information Retrieval was to explore the potential of
multi-label learning methods [5].

One interesting conclusion was that in multi-label learning problems, like the
one of this contest, where modeling label correlations is not useful, combining
simple multi-label learning techniques, such as Binary Relevance with strong
single-label learning techniques, such as Random Forest, can lead to better per-
formance compared to state-of-the-art multi-label learning techniques. Another
interesting conclusion derived from the solution that ranked first was that it
is better to use only mixture examples when pairs of instruments need to be
recognized.

An interesting direction for the next year’s contest would be the generaliza-
tion of the task to the recognition of an arbitrary number of instruments playing
together.
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