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Abstract 
Recently, many question answering systems that derive answers from linked data repositories 
have been developed. The purpose of this survey is to identify the common features-
approaches of the semantic question answering (SQA) systems, although many different and 
prototype systems have been designed. The SQA systems use a formal query language like 
SPARQL and knowledge of a specific vocabulary. This paper analyses different frameworks, 
architectures or systems that perform semantic question answering and classifies SQA sys-
tems based on different criteria. 
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1. Introduction 
Recently, serious efforts have been made to organize both general and specialized knowledge 
in the form of RDF knowledge bases (KBs) (Mazzeo & Zaniolo, 2016a). More and more 
structured knowledge is releasing in the web (Zou et al., 2014). Examples of such knowledge 
bases are DBpedia1, Freebase and YAGO2. Knowledge bases are used, among others, for text 
summarization, opinion mining, classification, semantic search, and question answering 
(Atzori et al., 2016). There are two categories of RDF knowledge bases (KBs). In the first 
category the datasets contain a variety of knowledge in different domains and that is the rea-
son why they are so popular. For example, DBpedia encodes encyclopedic knowledge ex-
tracted from Wikipedia. On the other hand, there are datasets that specialize on a single or a 
closed domain such as Music (MusicBrainz 3, Music Ontology 4 , Biomedical datasets (such as 
SIDER5, Diseasome6, Drugbank7) or Medicine Ontology8 and Geography (LinkedGeoDat9). 

The RDF data model and the SPARQL query language are the standards for modeling and 
querying data in the semantic web10. The standard format for a knowledge base in the Web is 
RDF (Resource Description Framework) stored in a repository as a set of triples, denoted as 

 
1 http://dbpedia.org  
2 https://yago-knowledge.org  
3 http://musicbrainz.org  
4 http://musicontology.com  
5 http://sideeffects.embl.de  
6 http://wifo5-03.informatik.uni-mannheim.de/diseasome/  
7 http://www.drugbank.ca  
8 https://bioportal.bioontology.org/ontologies/OGMS  
9 http://linkedgeodata.org/About  
10 http://www.w3.org/  

http://dbpedia.org/
https://yago-knowledge.org/
http://musicbrainz.org/
http://musicontology.com/
http://sideeffects.embl.de/
http://wifo5-03.informatik.uni-mannheim.de/diseasome/
http://www.drugbank.ca/
https://bioportal.bioontology.org/ontologies/OGMS
http://linkedgeodata.org/About
http://www.w3.org/
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<subject, predicate, object>, which is called the RDF graph; in this graph, subjects and objects 
are vertices and predicates are edge labels. The standard way to access RDF data is the 
SPARQL query language. The syntax and the semantics of SPARQL query language for RDF 
are determined by RDF specification. SPARQL allow users (experts) to write queries across 
data, which can be stored according to RDF specification or are created as RDF via middle-
ware. The SPARQL syntax and the need to understand the RDF Schema for the RDF datasets 
make it difficult for common users to search and find relevant information (Zou et al., 2014).   

Question Answering (QA) systems give answers in response to questions in natural language. 
Question Answering is not only an area from Information Retrieval, but it is an area in the 
field of Information Extraction (IE) and Natural Language Processing (NLP) as well (Sas-
ikumar & Sindhu, 2014; Allam & Haggag, 2012). The three basic components of Question 
Answering are: question classification, information retrieval, and answer extraction (Allam & 
Haggag, 2012). According to Bouziane et al. (2015) the three basic components are: Question 
Analysis (included classification and extraction, extended keywords and Named Entity 
Recognition), Document Retrieval and Answer Extraction which are include in most QA sys-
tems. However, these components may have differences due to their implementation of every 
component. 

In Semantic Web, educated users can use SPARQL and can thus search for information in the 
knowledge bases. On the other hand, ordinary users that are not familiar with SPARQL, face 
difficulties in searching linked datasets. A solution to this problem is Semantic Question An-
swering (SQA) systems. In these systems, users ask questions in natural language using their 
own terminology and receive a response generated by searching in an RDF knowledge base. 
Through semantic question answering systems, users overcome two major barriers: using a 
dedicated query language, such as SPARQL and having a perfect knowledge of the 
knowledge base specific vocabulary (Höffner et al., 2017). 

The research on question answering systems using linked data is very active and there is a 
wide variety of methodologies. Many prototype semantic question answering systems have 
been developed for different datasets. The users of such systems may ask questions in natural 
language. However, because of the complexity and ambiguity of natural language, the sys-
tems need to have many different steps for achieving the task of understanding users’ infor-
mational needs.  So far, there is a survey in Höffner et al. (2017) that describes challenges and 
solutions for semantic question answering systems. Also, a survey of Diefenbach et al. 
(2018a) referred to techniques and steps used in semantic question answering systems. This 
article distinguishes categories of semantic question answering systems based on criteria in 
order to lay the groundwork for a collection of common practices as no categories of semantic 
question answering systems have been identified. This categorization can also serve as an ar-
chive of frameworks and systems where each system is classified according to the techniques 
that it uses for various criteria, such as such as types of questions, types of analysis done on 
questions, types of representations used for questions and their matching functions. This can 
help developers, or anyone interested to find out directly the technique or steps used by each 
system, or to benchmark her own system against existing ones. 
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The rest of the paper is organized as follows. In section 2 we first briefly provide related 
work. In section 3, we present and discuss the clasiffication of semantic question systems 
based on the literature surveyed of QASs. We were also inspired this classification by the cri-
teria in QASs of Mishra & Jain (2016). The classification based on types of domains, types of 
data sources, types of questions, types of analysis done on questions, types of matching func-
tions, characteristics of the ΚΒ, interaction of user, and answers. We describe semantic ques-
tion answering systems in section 4. The systems, given as an example in section 3, are pre-
sented in more detail in this section. Finally, we present the conclusions in section 5. 

2. Related work 

There have been quite few surveys on Question Answering Systems and even less in Seman-
tic Question Answering Systems. Below, we briefly present the main features that each one of 
them is focused on and then we state how our survey differs. 

Sasikumar & Sindhu (2014) present various methods of Natural Language Question Answer-
ing System (NLQA) for general languages. Kolomiyets & Moens (2011) gives an overview of 
question answering technology from an information retrieval perspective. The authors provide 
a general architecture of question answering where the complexity of the representation level 
of questions and information objects are increased. Allam & Haggag (2012) describe an over-
view Question-Answering and corresponding systems’ architecture and they also analyze the 
proposed QA models discussing their advantages, disadvantages, and the results of relevant 
experiments. 

Bouziane et al. (2015) refer various QASs and present statistics and analysis of these systems. 
The authors mention that their survey will help researchers to find the best solution to their 
issue. Also, researchers can perceive the disadvantages and create new systems for complex 
queries or even adapt or reuse QASs techniques. 

Mishra & Jain (2016) classify Question Answering Systems (QASs) based on different crite-
ria, such as application domain, types of questions dealt, types of analysis done on questions, 
types of data sources, types of matching functions, and characteristics of data sources, tech-
niques used in QASs and forms of answer generated. Also, they determine for each category 
their status (until that date) and make suggestions for future research. Fader (2014) makes a 
detailed study and extended overview of the open question systems. The author distinguishes 
two important challenges. The first concerns how systems represent knowledge in order to 
provide an answer. And the second challenge is related to how the system matches the ques-
tions of the user with the queries on the knowledge base. There is a report for open question 
answering over curated and extracted knowledge bases for the specific challenges, which, 
however, does not specialize in semantic question answering systems, on RDF triplets and 
SPARQL queries. Höffner et al. (2017) initially give an overview of QA and SQA systems. 
After reviewing the state of the art for SQASs and for QASs, the authors present some of the 
systems. They then describe the challenges faced by SQA systems, identify different tech-
niques of each challenge, and propose guidances for the systems that will be created in the 
future. 
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Diefenbach et al. (2018a) provide an overview of the techniques mentioned in the recent ques-
tion answering system over a knowledge base. Their purpose is to group techniques that im-
plement the same task and describe the advantages and disadvantages of each technique. 

Dimitrakis et al. (2020) make a review of the question answering systems over Linked Data, 
documents, and hybrid data sources (Linked Data and documents). They also describe the 
steps used in the question answering process but also methods and techniques for implement-
ing these steps. They distinguish some criteria (knowledge source, types of questions, and 
domain type) and categorize the question answering systems according to them. Finally, they 
categorize evaluation and training datasets according to some criteria, such as domain, tasks, 
evaluation metrics and knowledge source.  

Regarding surveys on semantic question answering systems, we observe that Dimitrakis et al. 
(2020) and Bouziane et al. (2015) generally refer to question answering systems. Dimitrakis 
et al. (2020) provide the main categories of question answering systems and do not specialize 
in semantic question answering systems and they cite 3 categories for question answering sys-
tems in general. On the other hand, Höffner et al. (2017) describe the challenges such as lexi-
gal gap, ambiguity, multilingualism, complex queries, distributed knowledge, procedural, 
temporal and spatial questions, and templates faced by these semantic question answering 
systems. Additionally, they depict solutions, and provide recommendations for future sys-
tems. Also, the article of Diefenbach et al. (2018a) similarly reports techniques and steps used 
in semantic question answering systems such as question analysis: recognizing named enti-
ties, POS (Part-Of-Speech) tagging, dependency analysis, phrase mapping: string similarity, 
semantic similarity, disambiguation: Hidden Markov Model, Integer Linear Program, query 
construction: semantic parsing, templates. The majority of techniques presented in works of 
Höffner et al. (2017) and Diefenbach et al. (2018a) are similar. 

Compared to the previous surveys, our survey differs in the classification of SQA systems 
based on different criteria and the effort to identify common features of SQA systems. To 
date, there are no surveys for the categorization of Semantic Question Answering Systems. 
This is the innovation and contribution of the current paper. We have augmented the criteria 
from the criteria of QASs of Mishra & Jain (2016), by adding and supplementing more ap-
propriate criteria according to the study of SQA systems that we have conducted. Summariz-
ing, the differences of our classification criteria with those of Mishra & Jain (2016) can be 
grouped into 3 categories:  

1. differentiated criteria (in terms of the values they get), which are indicated with an as-
terisk in Table 1,  

2. criteria not included in Mishra & Jain (2016) but included in our survey because    
they are used in SQAs, which are indicated with italic and boldface font in Table 1, 
and  

3. criteria included in Mishra & Jain (2016) that have been replaced in our survey with 
other, more appropriate, criteria, indicated with boldface in Table 1. 
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In this paper, we analyze SQA systems, some of which participated in the QALD competi-
tions or were evaluated with benchmarks. Our main difference with previous similar surveys, 
such as Höffner et al. (2017), is that we describe, analyze and classify several semantic ques-
tion answering systems, while Höffner et al. focus on the detailed description of the various 
components of the semantic question answering systems. Also, we distinguish and record the 
common methods or practices or architectures that these systems use. These systems have 
been evaluated and compared quantitatively with other systems through the QALD competi-
tions or benchmarks. For this reason, these systems were selected, so that their performance in 
similar tasks could be comparable. In addition, we summarize the architectures of these sys-
tems to enable the reader to study them deeply and choose the one that best suits their direc-
tion.  

3. Criteria for classifying semantic question answering systems 
In this section, we discuss details of the proposed classification of SQA systems. Α descrip-
tion of the classification will be given. Also, we provide a detailed description of the systems 
for each category or class so that researchers can see the pros and cons and suggest solutions 
for complex SPARQL queries. The systems, given as an example, are presented in more de-
tail in the next section in which there are also their references. The readers or researchers can 
also reuse or adapt SQA techniques. Finally, we compare the criteria of the QASs of Mishra 
& Jain (2016) with those we created for the semantic question answering systems. We identi-
fy criteria for classifying semantic question answering systems based on the literature sur-
veyed of QASs.Wewere also inspired this classification by the criteria in QASs of Mishra & 
Jain (2016). The classification based on types of domains, types of data sources, types of 
questions, types of analysis done on questions, types of representations used for questions and 
their matching functions, characteristics of the ΚΒ, interaction of user, and answers. Table 1 
briefly describes the criteria for classifying semantic question answering systems.   

 

Table 1:  Criteria11 for classifying SQA systems. 

Criteria Values 
Types of Domains open-domain 

closed-domain 
hybrid-domain 

Types of data sources stuctured data sources 
structured and Unstructured data sources (hybrid data sources) 

Types of questions wh-question type question or factoid type questions or factual 
questions 
list 
boolean 
count * 

Types of analysis done on questions 
 

morphological  
syntactical  
dependency 
semantic  
expected answer type  

 
11 The "*" means that a criterion, sub-criterion or value that is different from its counterpart at Mishra & Jain (2016). Bold-
face indicates a new criterion, sub-criterion, or value, in relations to Mishra & Jain (2016). 
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Criteria Values 
focus recognition of questions 
pragmatic and discourse (in hybrid SQASs) 

Types of representations used for ques-
tions and their matching functions  
 

algebraic models or feature based models* 
probability models 
semantic graph-based models* 
theoretic models (in hybrid SQASs)* 

Characteristics of the ΚΒ 
 

multilingualism 
distributed Knowledge Base 

Techniques in SQASs  machine learning* 
natural language processing 
information retrieval 
Knowledge retrieval and discovery 

Interaction of user 
 

user Interaction in disambiguation 
type of users 

Answers extracted answer  
 

date (if there is one registered in KB 
otherwise as generated)* 
resource* 
string* 

generated answer  
 

boolean 
numeral*  

 

3.1. Classification based on types of domains: open, closed or hybrid domain 

According to Mishra & Jain (2016) the above category for QASs is divided into general do-
main and restricted. Questions in Open-domain or general-domain are general. Mishra & Jain 
(2016) report (for Question Answering systems in open-domain) that the number of ordinary 
users in open-domain is greater and open-domains are more suitable for ordinary users. Open-
domain users' questions do not require special knowledge (special vocabulary or special key-
words). Another advantage of open domain is that their repositories are large. The characteris-
tics of QASs in closed-domain or restricted-domain are the high quality of the answers due to 
the restricted domain. The users are usually experts to the specific domain and the content of 
the questions is based on the vocabulary of the closed-domain (Mishra & Jain, 2016). We 
have differentiated this criterion in our survey by also adding hybrid domain because there are 
systems that accept questions for both open and closed domains. 

3.1.1. Open-domain SQA systems 

Questions in Open-domain or general-domain are general. Mishra & Jain (2016) report (for  

The above advantages in general domain of QASs apply to Semantic Question Answering 
systems in open domain. English DBpedia contains 3.5 million entities, which is extracted 
from Wikipedia, 320 classes and 1650 properties. DBpedia version 3.6 consists of approxi-
mately 280 million RDF triples and 3.7 consists of approximately 370 million RDF triples. 
DBpedia also contains links to YAGO categories. Of course, open-domain KBs can be large 
but they have several disadvantages such as ambiguity, imperfection, incomplete domain and 
range for properties, unspecified entity types, complex semantic entity labels, redundancy in 
properties, errors in the range of properties so-called modeling errors. An important drawback 
is that the quality of responses is characterized as low compared to closed domains. This is 
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because closed-domains are associated with an unambiguous ontology while open-domains 
are associated with an ambiguous ontology (Lopez et al., 2013).  

Examples of SQA systems using KB open domain are: Swipe, Casia@V2, Deanna, SMIQ, 
YagoQA, YodaQA, Qanswer, gAnswer, ISOFT, SQUALL2SPARQL, Scalewelis, Intui2, In-
tui3, OAKIS, SemSek, Alexandria, RTV, Sorokin & Gurevych (2017), Athreya et al. (2021) 
and Liang et al., (2021). The most widely used and most popular open-domain KB is DBpe-
dia. The QALD competition also evaluates the systems using Dbpedia as open-domain and 
Musicbrainz as closed-domain. Lopez et al. (2013) report that DBpedia is considered "the 
central interlinking hub for the emerging linked data cloud". Other open-domain KB are Yago 
and Freebase. 

3.1.2. Closed-domain SQA systems 

The characteristics of closed-domain in SQA systems are similar to those of QA systems. The 
content of closed-domain SQASs systems varies: geography, music, medicine and biomedi-
cine. Examples of SQA systems that use closed-domain KB are: GFMed, POMELO and 
Swip. Of course, SWIP was evaluated in open-domain however Swip can not be characterized 
as a hybrid as the results on the DBpedia dataset were not encouraging. GFMed and POME-
LO query biomedical linked data such as Diseasome, SIDER and DrugBank. The QALD 
competition also evaluates the systems using MusicBrainz as closed domain. Other closed-
domain KB are DrugBank, Diseasome, SIDER, which are derived from biology field, and 
Mooney Geoquery12 (dataset).  

3.1.3. Hybrid-domain SQA systems 

There is a third category, the hybrid-domain. This category does not exist in the QASs of 
Mishra & Jain (2016) but many SQA systems are able to use open-domain and closed do-
main. QALD competition also evaluates the systems in open-domain and closed-domain, the 
datasets that are selected are DBpedia and MusicBrainz. Some of these systems that are char-
acterized as hybrid ones are CANaLI and Freya. CANaLI has access to specific domains such 
as biology (DrugBank, Diseasome and SIDER) and music domain (MusicBrainz). This sys-
tem uses DBpedia as well. Freya system use Mooney Geoquery and MusicBrainz as closed-
domains and DBpedia as open-domain. WDAqua-core1 (Diefenbach et al., 2020· Diefenbach 
et al., 2018b) can support several open-domain KBs such as Wikidata, DBpedia and Freebase 
and closed-domain KBs such as MusicBrainz, DBLP at the same time.  

3.2. Classification based on types of data sources 

According to Mishra & Jain (2016) the above category for QASs is divided into structured, 
semi-structured and unstructured data sources. MySql, SQLite, DB2 are considered as struc-
tured data. The characteristics of structured data are as follows: they are identified as entities 
that are related to each other with relationships, have a predefined form and schema, have 

 
12 https://www.cs.utexas.edu/users/ml/nldata.html  
 

https://www.cs.utexas.edu/users/ml/nldata.html
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query language, there is a direct correlation of query with structured data, the answers are 
considered very reliable, the structured data are not subject to complex natural language pro-
cessing, the creation of structured data sources is a laborious process, the information stored 
in data structured sources is limited and for each structured data source there is a specific rep-
resentation and therefore the question conversion is based on the formula of data sources. Re-
garding the characteristics of semi-structured (such as markup languages, email, and EDI) 
they are the following: schema defines the representation of information, it is flexible as data 
exchange between different types of databases is allowed, structured data is converted to 
semi-structured data, creating semi-structured data is a time-consuming process. Finally, un-
structured data sources have different types, their representation does not have a specific for-
mat as in the previous data source, adding and updating information is easy, un-structured 
documents require natural language processing and information retrieval technologies, also 
the answers are characterized of low degree of reliability. 

SQA systems are divided into structured data and hybrid (structured data and un-structured 
data). According to the literature review and study of different and prototype systems, SQA 
systems always look for answers in structured data (linked data) and some, less in number, 
use structured data and un-structured data (documents), which are called hybrid. As the name 
of the systems (SQA) refers these systems were created to look for answers in linked data KB. 

3.2.1. Structured data sources 

The majority of semantic question answering seek answers to users' questions in open-domain 
KB (over linked data) such as are DBpedia, Yago, Freebase. But some of them are looking for 
answers in closed domains such as MusicBrainz, DrugBank, Diseasome and SIDER and 
Mooney Geoquery. And some in both open-domain KB and closed-domain KB as described 
above. Stored data in KB follow a strict structure and have a schema, they have a query lan-
guage, the creation of KB is a time consuming and demanding process. The systems accept 
users' questions and convert them into SPARQL queries to search for answers in KB. Usually, 
in order to make the conversion, the question elements must be matched with the KB ele-
ments to create the SPARQL query, the so-called matching.  

3.2.2. Structured and Unstructured data sources (hybrid data sources) 

There are systems such as ISOFT and YodaQA that utilize un-structured documents, which 
are combined with linked data to generate answers to users' questions using both types of data 
sources. KB responses are more accurate than systems that use information retrieval (Mishra 
& Jain, 2016; Park et al., 2015).  

For example, ISOFT combines IRQA (Information Retrieval Question Answering) approach 
and KBQA (Knowledge Base Question Answering) approach. This system developed a multi-
information tagged text database based on Wikipedia using co-reference resolution and dis-
ambiguation methods. ISOFT usually divides questions (when they are large) into sub-queries 
and for each sub-query, it looks for the answer in a multi-information tagged text database. 
The process continues until system finds the final answer. If it does not find the answer in the 
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multi-information tagged text database, then it creates the corresponding SPARQL query and 
looks for the answer in DBpedia.  

YodaQA accepts the user's question in natural language and discovers the answer based on 
both unstructured (English Wikipedia, enwiki) and structured KB (Dbpedia, Freebase). It is 
worth mentioning that it uses more than one KB. Here, we observe a split of the question into 
features for which answers are sought in un-structured and structured data sources. The re-
sponses that are discovered by hybrid data sources are merged and sorted. Un-stuctured doc-
uments require natural language processing (POS, stemming, pasring, dependency parsing, 
tokenization), disambiguation methods, information retrieval and information extraction, 
named entity recognition, co-resulotion and other approaches related to natural language pro-
cessing. Note that natural language processing of both question and un-structured documents 
is performed when SQA systems use hybrid data sources. On the other hand, in structured da-
ta, natural language processing it is applied only to the user's question. 

3.3. Classification based on types of questions 

Mishra & Jain (2016) divide QASs questions into factoid type questions, list type questions, 
hypothetical type questions, confirmation questions, causal questions. Factoid type questions 
include words that start with wh, i.e. what, when, which, who, how. Usually, the QASs' per-
formance on these questions is satisfactory. A large repository is available for these types of 
questions. Natural language processing, applied to specific questions by QASs, is not compli-
cated in order to answer the questions asked. List type questions include as answers lists of 
entities or events. Named entitities are the expected type of answers for list type questions. 
Their performance is quite good. As with factoid type questions, no complex natural language 
processing is required. List type questions generally have difficulty with the threhold value, 
which determines the quantity of entities. Also, the techniques of factoid type questions are 
equally satisfactory in the list type questions. Hypothetical type questions do not have a spe-
cific expected type of answer and that is why the accuracy of the answers is characterized by a 
low degree as well as the reliability. Even the techniques of factoid type questions do not 
work for hypothetical type questions. Causal questions such as how and why, ask for explana-
tions for an entity. A sentence, a paragraph or an entire text can be included as answers. Caus-
al questions require complex natural language processing. The answers to the confirmation 
questions are yes or no. Approaches such as inference mechanism, world knowledge and 
common-sense reasoning are needed to extract answers to confirmation questions. They also 
mention opinion questions. These questions use the social web and opinion mining techniques 
to find the answers. We divide SQASs questions into factoid, list, boolean and count. Causal 
question type in OAs can apply only in hybrid (structured and unstructured) SQA systems.   

From the study and the literature review of SQA systems but also from the questions (Tran & 
Nguyen, 2016; Zou et al., 2014) of the annual competitions that are held we observe that the 
types of questions are the following: factoid, list, boolean (confirmation questions in QA) and 
count question. Count question type does not exist in QAs but other types, such as factoid, 
list, boolean do. The first category is wh-question type question or factoid type questions or 
factual questions. These questions usually start with the word wh-, such as which, when, who, 
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what, where or in which, and how are answered by an entity (person, organization, location, 
date-day-date, etc.). They usually consist of most of the questions. 

 The second category is list type questions, which start the question with the following words 
"Give me all or similar phrases". The expected answer type is the same as in the factoid type 
question, but the difference is in the number of answers. For example, the following factoid 
type question asks the capital with the largest population "What is the capital with the largest 
population?". On the other hand, a list type question could be "Give me all capital which have 
a population greater than 10,000,000?" In both cases the expected type is the same (capital) 
but usually the users, who type list type questions, wait for more than one answer of the same 
expected type. Note that the following question "In which countries can you pay using the 
West African CFA franc?" can be considered a list type question.  

The third category is called boolean type question and is also called dichotomous (Pradel et 
al., 2012) type question. Users when entering a boolean type question expect an answer yes or 
no, true, or false. These questions usually start with an auxiliary verb.  

There is another kind of question that is observed in SQA systems that is often referred to as 
count question (Pradel et al., 2012; Beaumont et al., 2015; Shizhu et al., 2014). It could be 
considered as a separate category because several systems (Shizhu et al., 2014; Pradel et al., 
2012; Beaumont et al., 2015) refer to it as a separate type of question. In the annual competi-
tions it is observed as a separate type of question. 

Several systems (such as CANaLI, Intui2, IQA, LAMA, ComQA, GFMed) distinguish ques-
tions into simple and complex questions. EARL (Entity and Relation Linker) (Dubey et al., 
2018.) separate the questions into simple and complex ones. The questions, that create a tri-
ple, are considered as simple question. Examples of such questions are "Who is the spouse of 
Barack Obama?". Τhe four states (including initial and final state) of the CANaLI finite au-
tomaton can support a wide range of factual queries. Question like "Who are the spouses of 
politicians having birthplace equal to United States?". It is considered more complex than the 
first question about CANaLI, but it is classified as simple questions. Questions like "Give me 
the cities having population greater than that of Los Angeles", "Give me the country having 
the 2nd largest population" (Atzori et al., 2016; Mazzeo & Zaniolo, 2016a; Mazzeo & Zanio-
lo, 2016b). They are referred to as complex questions (complex does not refer to the list type 
but to the creation of the complex query). On the other hand, Swipe can not accept questions 
in natural language however the user can formulate questions based on Search by Example. 
The types of questions observed are list and counttype. The creators of Swipe identify as ex-
amples of complex questions the following: "Who are the U.S. presidents who took office 
when they were 55-year-old or younger, during the last 60 years", "Find the town in Califor-
nia with less than 10 thousand people", "What is the average population of California cities 
with less than 10 thousand people", and "What is the largest of those cities and its popula-
tion?". This system supports complex queries (i.e. those that require aggregates, joins) and 
historical queries (Atzori & Zaniolo, 2012; Atzori et al., 2016).  
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Intui2 system can answer only simple questions. QAKiS can handle simple queries (one tri-
plet). Intui2 system was evaluated in QALD-3 DBpedia test and QALD-3 DBpedia train. 
LAMA, ComQA and IQA system can support complex questions (multiple entities and rela-
tions). LAMA handles the following types of questions: factual, list, boolean, count. SemSek 
cannot support complex queries as SPARQL aggregation and ask type queries. Intui3 (Dima, 
2014) can deal with list type question, factual type question, count type question but not bool-
ean questions. 

Xser cannot handle temporal information. It was also evaluated in 50 test-questions (includes 
list, factual, boolean, count type question) of QALD-4. The creators of CASIA@V2 divide 
the questions into boolean, number (count question) and normal (list type and factual type 
question). Xser, CASIA@V2, SMIQ, GFMED and POMELO were evaluated in the QALD-4 
test dataset (includes list, factual, boolean, count type question). SemGraphQA identifies 
three types of count question, boolean and factual question. QΑnswer and SemGraphQA were 
also evaluated in a test questions set (includes list, factual, boolean, count type question) of 
QALD-5. The system gAnswer was evaluated in a test questions set (includes list, factual, 
boolean, count type question) of QALD-3. ISOFT develops a task that detects the question 
type: boolean, factual and list type or questions that include arithmetic information (compara-
tive, superlative) and simple questions (do not include boolean and arithmetic information 
questions). It creates a SPARQL query for one triple. Detection task helps to create the ap-
propriate SPARQL template. SWIP detects, factual, list, boolean, count. Sorokin & Gurevych 
(2017), Athreya et al. (2021) and Liang et al., (2021) were evaluated in a test question set of 
QALD-7 that includes list, factual, boolean, count type questions. 

3.4. Classification based on types of analysis done on questions 

Mishra & Jain (2016) present the following categories for the analysis of questions: morpho-
logical analysis, syntactical analysis, semantic analysis, pragmatic and discourse analysis, ex-
pected answer type analysis, and focus recognition of questions. Morphological analysis is 
responsible for detecting morpheme and assigning a class to each morpheme. This form of 
analysis is performed using stemming and lemmatization of words. This type of analysis sup-
ports in effective way the search. On the other hand, stemming can lead to erroneous results. 
Regarding syntactical analysis, the result of this analysis is a parse tree, in which each word is 
identified grammatically. This analysis helps for effective search. Its disadvantage is that it 
can lead to syntactical ambiguity. The aim of Semantic analysis is to extract the meaning of 
the question based on the parse tree of syntactical analysis. QASs apply Semantic analysis 
(such as semantic role labeling) at lexical and sentence level also this analysis is not recorded 
at document level. Pragmatic and discourse analysis is performed at sentence or higher level. 
This analysis aims to determine connections or relationships (discourse) between the sentenc-
es of a text. Opinion, causal, hypothetical and boolean questions need discourse analysis. Ex-
pected answer type analysis determines the expected answer type based on the type question. 
Expected answer type of factoid type questions and list type questions contribute to the crea-
tion of answers. However, this is not the case for causal questions as there is no unique type 
of answer. Focus recognition of questions helps to create correct answers. We identify the fol-
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lowing values for this criterion: morphological analysis, syntactical analysis, dependency 
analysis, semantic analysis, pragmatic and discourse analysis, expected answer type analysis, 
and focus recognition of questions. That is, we have added one more value, compared to 
Mishra & Jain (2016), that of dependency analysis.  

A type of question analysis that is very common in SQA systems is semantic analysis because 
the linked data is in RDF form. Semantic analysis occurs in almost all systems except for the 
Swipe system. This system uses Search by Example and directly produces a SPARQL query. 
Dependency analysis is used quite often, less than semantic analysis. This is because depend-
ency analysis determines the relationships of the question elements to each other and since the 
stored linked data is in the form of semantic graphs, the two types of analysis are very close to 
each other. Before presenting the type of analysis in questions for the SQA systems, it is men-
tioned that in order to find the answer, the following is required: analysis of the question and 
creation of SPARQL query. In many systems we also have an intermediate stage of matching 
the question with KB. These are the basic stages of SQA systems. Each system implements 
the above steps with its own implementation method. This is the reason why there is so much 
originality in these systems. Also, in some systems the mapping of the data with the KB is 
done during the analysis of the question (such as CASIA@V2).  

Xser: analyzes the user question. First, detects the semantic item of the question with a phrase 
detector using a structured Perceptron.  Then using a semantic parser (dependency parser), a 
transition-based DAG parsing algorithm, which extracts the triplets in the question.  

CASIA@V2: includes detection of the semantic items of the question using rules, it matches 
the detected phrases with data from KB, it extracts features using the dependency parse tree. 
The above is done in order to create semantic triplets and consequently a graph. After it re-
solves ambiguities.  

ComQA: detects relations with the use of Stanford Parser which creates the dependency-tree. 
It also discovers the syntactic structure and the hidden structure of the dependency-tree to cre-
ate RDF triples. Then, the system creates query graphs by joining the RDF triples. 

DENNA: initially detects the semantic items such as relations, entities and classes of the user 
query using detectors. Each detector is responsible for discovering a specific category of se-
mantic data. Detectors use different named entity recognizers and different techniques to de-
termine relationships. All detectors operate independently this leads to overlapping and ambi-
guity problems. It then matches the phrases with elements from the knowledge base using dic-
tionaries. It is possible to identify many candidate matches for a phrase. The system then syn-
thesizes the phrases to create triplets (subject property object) using the dependency parser. 
The ultimate goal of the system is to extract a subgraph after resolving ambiguities. 

SMIQ: first detects the proper nouns or name entities so that during parsing which will be 
done in the next step they are not lost. Then SMIQ performs dependency analysis taking into 
account the proper nouns. Inference rules are applied to the set of dependencies to create the 
semantic interpretation of the question, which is called SMIQ. This structure (SMIQ), which 
is in the form of triplets, allows the user question to be linked to the KB elements. 
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PowerAqua: performs a linguistic analysis to convert the question into triplets with interde-
pendencies and then marks a label (subject, predicate, or object) on each term of the triplet. 
Then to match the question elements with the data from the knowledge bases. Also, the sys-
tem applies syntactic techniques. 

SemGraphQA: detects entity, type, and relations, these are accompanied by a score, the de-
pendency graph is created. Also, the system applies syntactic analysis. Then for each word of 
the dependency graph is determined the semantic nature (entity or relation). Because the am-
biguities are maintained many graphs are created. This semantic question answer system uses 
expected answer type analysis.  

QAnswer: first generates the dependency tree, and then detects DBpedia individuals, types 
and properties in the question. Different methods are applied and developed to detect each 
resource. A large number of graphs have been created following the detection steps. Each 
graph must match the KB elements. Also, the system applies expected answer type analysis 
and morphological analysis. 

gAnswer: first a dependency tree is created from the question, the relations in the tree are ex-
tracted. Then the semantic relations are connected, and a semantic query graph is created. 
Subsequently the graph is mapped to the elements of the knowledge base. At this point all 
ambiguities are maintained. It is possible to find many subgraphs and each one has a score. 

OAKIS: after the system identifies the name entity and the expected answer type creates the 
typed question and assigns them to relational patterns (triplets). Specifically, for each typed 
question a set of patterns are retrieved. Also, the system applies morphological analysis. 

SemSek: performs dependency and syntactic analysis. It applies name entity recognition. The 
system identifies DBpedia instances and classes on the graph (semantic item detection). Sys-
tem matches the question with KB data and resolves ambiguities. 

YodaQA: pos-tagging, dependency parsing, and name entity recognition are applied to the 
user question. Also, this semantic question answering system uses expected answer type anal-
ysis and focus recognition of questions. 

ISOFT: the system figures out tokenization, part of speech tagging, dependency parsing, 
keyword extraction, term extraction, and named entity (NE) extraction, semantic answer type, 
lexical answer type, Q2S analysis. It is possible for a user question to create more than one 
query which means that the question must be split. The system uses focus recognition of ques-
tions. 

POMELO: the system applies word segmentation, part-of-speech tagging and lemmatization 
of the words, with TreeTagger, identification of semantic entities, extracting term and syntac-
tic parsing. Also, POMELO employs expected answer type analysis and focus recognition of 
questions. 

Intui2: the syntax tree is made from the question. Also, the analysis of the user question in-
cludes tokenization, lemmatization and POS tagging and the expected answer type.  
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Intui3: perfoms syntactical and semantic analysis. Also, the analysis of the user question in-
cludes tokenization, lemmatization and POS tagging, name entity recognition and chunking.  

FREyA: the system applies syntactic parsing to the question. Then takes the result from the 
syntactic analysis and combines it with heuristic rules to find possible ontology elements from 
the question in order to link to the ontology elements. Finally, it applies expected answer type 
analysis.  

The system of Sorokin and Gurevych (Sorokin & Gurevych, 2017): it applies tokenization, 
POS tagging and extracting fragments. After a list of Wikidata entities are found for each 
fragment, the system creates possible semantic representations as graphs based on iterative 
representation generation. Essentially, it performs phrase mapping elements of the question 
with the elements of the knowledge base. The candidate semantic graphs and the question are 
converted into fixed-size vectors based on a CNN-based model.  

The system of Athreya et al. (2021): dependency parsing, and POS tagging is applied. Syntac-
tic parsing is vectorised for the recursive neural network model. A Tree-LSTM is applied to 
learn the question and the top-n SPARQL templates are found. The candidate SPARQL tem-
plates are filled. The template is mapped to the KB and stands for the semantic representation 
of user’s question.  

The system of Liang et al., (2021): the system applies tokenization, POS tagging, lemmatiza-
tion and dependency parsing. The question type classification is identified using machine 
learning. Phrase mapping of the elements of question to the elements of the KB is applied. 
Candidate SPARQL queries are created and are ranked based on a Tree-structured Long-Short 
Term Memory (Tree-LSTM).  

SWIP: the name entities are identified. Then the dependency parser extracts the dependency 
tree of the user question, it has taken into account the name entities. Subsequently detects 
what the question is asking (focus recognition). 

RTV: initially the system applies dependency parsing to the question and the dependency tree 
is constructed. Also, the system applies syntactical analysis. The ontological elements of the 
tree are detected to create the Markov chain and match with the KB elements. 

Below we present the question analysis for SQA with CNL. The analysis of question in the 
CANaLI system is done in a different way. First, the language accepted by the CANaLI sys-
tem is controlled language however the processing of the string (that the user enters) is ana-
lyzed using a finite automaton At the same time as the user enters the system sends a query to 
the Lucene Index, which sends acceptable tokens according to the function of the finite au-
tomaton. These must: a) be semantically correct according to KB (semantic analysis), b) have 
a type according to the current and previous state (i.e. be syntactically correct), and c) be a 
phrase that matches the string. SQUALL2SPRAQL uses controlled natural language 
SQUALL. The syntactic and semantic analysis of SQUALL are implemented as a Montague 
grammar. Scalewelis accepts a CNL and applies syntactic, semantic analysis and focus recog-
nition. The GFmed system applies controlled natural language and uses a Grammatical 
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Framework (GF). The GF is suitable for multilingualism and divides into abstract and con-
crete grammars (one for the natural language and one for the SPARQL queries).  

In SQA systems we observe that most of them use semantic analysis due to the linked data in 
KB. Also, another type of analysis that is often used in SQA is dependency analysis. Depend-
ency analysis is oftenly used. This is because dependency analysis determines the relation-
ships of the question elements to each other and since the stored linked data is in the form of 
semantic graphs, the two types of analysis are very close to each other. This type of analysis 
does not exist in QASs. We also identify morphological analysis, syntactical analysis, seman-
tic analysis, expected answer type analysis, and focus recognition of questions. Pragmatic and 
discourse analysis do not exist in SQA systems. But this type of analysis can be used in hy-
brid systems, which use stuctured and unstructured data sources (hybrid data sources) to gen-
erate the user response. More specifically pragmatic and discourse analysis can be performed 
on unstructured data sources. Semantic analysis is essentially the detection of semantic items 
and the connection between them. Therefore, the type analyzes used in SQA systems are 
morphological analysis, syntactical analysis, dependency analysis, semantic analysis, ex-
pected answer type analysis, and focus recognition of questions. Therefore, in relation to the 
values of the criterion "Types of analysis done on questions", we have added the value of de-
pendency analysis.  

3.5. Classification based on types of representations used for questions and their match-
ing functions  

Mishra & Jain (2016) report the following categories of matching functions: theoretic models, 
algebraic models, probability models, feature based models and conceptual graph-based mod-
els. First, matching information is characterized in different retrieval models the way docu-
ments are represented. Each retrieval strategy has a specific representation model. SQA sys-
tems are characterized as prototypes in terms of their implementation, and we distinguish var-
ious matching function which are described below. Because the differences between feature-
based and algebraic models are not obvious, we consider that all feature-based models are al-
so algebraic models, and we present them in that way. We consider semantic graph-based 
models which is a generalization and includes RDF graphs instead of conceptual graph-based 
models. Of course, the answers since they come from RDF database are graph-based, by defi-
nition. If we consider that the question is converted from free text to SPARQL then the ques-
tion also becomes graph-based since the SPARQL questions also identify an abstract graph. 
All semantic question answering system use semantic graph-based models. Our values for this 
criterion are algebraic models, probability models, semantic graph-based models and theoretic 
models.  

CANaLI works as a finite automaton. When the user enters the string S at the same time the 
Lucene index returns the results matching the string S. The returned tokens must be syntacti-
cally correct according to the grammar of the language, semantically correct according to KB 
and there must be a phrase that matches the string S. Therefore, the representation of the ques-
tion functions as a finite automaton.  
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The operation of Swipe is based on Search by Example (SBE). The user query is represented 
as the SBE conditions (the user requests a Wikipedia page and fills in the conditions) and the 
SPARQL query is created. The Query Manager accepts as pairs (field-ID, condition) the us-
er's conditions, which are converted to equivalent DBpedia property names and generate the 
SPARQL query.  

Xser represents the user question as a graph specifically trying to create triplets and associate 
these triplets. The mapping for subject and object lies in probabilities using the Freebase 
search API while for predicate is based on the Naive Bayes model for calculating probabili-
ties. The resolution of ambiguities is based on structured perceptron.  

CASIA@V2 creates a graph (of course the graph is created in the pre last phase of the system 
in contrast to Xser where from the first steps of question analysis the dependency tree is cre-
ated). The matching of entities is done using Wikipedia and not only DBpedia using anchors, 
redirections. For the classes, the system uses the word2vec tool to calculate the similarity be-
tween the elements of the sentence and the KB, after converting the phrases into vector. 
PATTY and ReVerb are used to map properties. The system detects the relationships of se-
mantic properties in DBpedia with relations patterns of resources (Patty and ReVerb) using 
instance alignments. Αfterwards, if the question phrase is matched with a relation pattern then 
the corresponding DBpedia properties are the candidates. The resolution of ambiguities is 
based on the joint fashion with a Markov Logic Network (MLN).  

DEANNA represents the question in the form of triplets and consequently as a graph. The 
matching of entities and classes with KB elements is based on a dictionary. The same applies 
to the matching of relational phrases to semantic relations which is based on a dictionary of 
textual pattern. The resolve of ambiguities is based on creating or exporting a subgraph from 
the weighted disambiguation graph using an integer linear program (ILP) and the Gurobi ILP 
solver.  

SMIQ applies dependency analysis to represent the question in the form of triplets and conse-
quently as a graph. The structure (SMIQ), is in the form of triplets, is created using Prolog to 
extract meanings from rules and dependencies of the dependency tree. This structure provides 
the ability to link the user question to the KB elements. 

SemGraphQA converts the user question to graph or graphs (if there are ambiguities) using 
dependency analysis. Each graph corresponds to the elements of the knowledge base and each 
graph is assigned a score, which is based on a formula. Graphs are sorted by score and 
SPARQL queries are created. 

QAnswer represents the question in graph using dependency analysis. Each graph must match 
the elements of KB. Each match is assigned a score based on a formula. The system selects 
the graph with the highest score and creates the appropriate SPARQL query. 

gAnswer converts the user question into a graph. It is possible to find many subgraphs during 
matching with KB and each has a score based on confidence probabilities. The system detects 
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top-k subgraphs, this is NP-hard problem. Each subgraph implies an answer to the query, at 
this point the ambiguities have been resolved.  

ComQA converts the user question to graph or graphs using dependency analysis. Initially, it 
detects relations with the use of the Stanford Parser that creates the dependency-tree. Then, it 
discovers the syntactic structure and hidden structure of the dependency-tree to create RDF 
triples. In the next phase, the system creates query graphs by joining the RDF triples. In the 
last phase, ComQA maps the query graphs with KB. Finally, it evaluates the matchings to 
generate the answer. The ranking is based on semantic similarity. 

ISOFT is a hybrid system, i.e. it seeks an answer to unstructured and structured data. It di-
vides the question into subqueries. If the system does not find the answer to the data text or 
the answers are not appropriate (the system checks the answers using cosine similarity, Jac-
card similarity) creates a SPARQL query for a triplet. When SPARQL query is used to find 
the answer then lexical matching is used to match the predicate of the question with the KB 
properties. If the latter fails semantic similarity applies.  

Scalewelis sytem accepts controlled natural language and therefore this language has its syn-
tax and semantics. The illustration of the question for the concrete syntax of LISQL2 (query 
language) is in the form of a tree (looks like a syntactic tree). The abstract syntax of LISQL2 
represents the internal representation of the question. The illustration of the question for ab-
stract syntax is in the form of a tree (the ontological elements of the question are displayed, 
e.g. class, propery and others). In order to create the sequential structure of the question, the 
focus must be defined.  

Intui2 represents the question as a syntactic tree. Each node corresponds to a syntactic pattern. 
For each syntactic pattern there is a mapping suggestion (it can be object or subject, RDF tri-
plet, or complex SPARQL query) and the corresponding URIs are also specified. Ambiguities 
remain, it is possible for the system to create many final questions if there are many interpre-
tations of the question. At this point we should mention that each synfragment corresponds to 
a subtree (the synfragment can be a concept URI, as an RDF triple or as a complex RDF que-
ry). The system assigns a degree to each synfragment. Complex synfragments are calculated 
by multiplying the ratings of their components. While URI synfragments (Subject / object 
URIs and Predicate URIs) are graded based on string similarity.  

FREyA when matching potential ontology concepts to knowledge base data (called ontology 
concepts) may not be able to find the appropriate match (either not in the knowledge base or 
the corresponding options are more than one). In this case, the system gives the user some op-
tions to choose from. System suggestions or recommendations are ranked. String similarity, 
based on the Monge Elkan metricswith Soundex algorithm, is used for the ranking and Word-
net and Cyc were also used to find synonyms. Among the options is the option none in case 
no option fits. The system stores the user's choice to be used for system training to improve its 
performance over time.  

SWIP system represents the question as a dependency tree and uses an intermediate language, 
called pivot language. The question is translated or converted to pivot query via query pat-
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terns. Finally, the question (which is translated to pivot query) corresponds to the elements of 
the knowlegde base. 

OAKIS tries to understand the user's question using triplets. The question is converted into 
relational patterns via a typed question. For each match (typed question with relatinal pattern) 
there is a similarity score.  

SemSek represents the question as a dependency tree or graph. To match the terms of the sen-
tence (the result from the query annotation) and data from DBpedia applies semantic match-
ing using the semantic relatedness measure based on WordNet structure. A semantic similari-
ty is relations of two concepts of the type: is-a. 

RTV converts the question into a graph. The question items are matched with the KB items 
via probabilities. Unambiguties are resolved using a joint disambiguation approach and statis-
tical inference. 

WDAqua-core1 system accepts the question and converts it to a graph. Initially, all possible 
meanings (KB matches) for a word or meanings of the question can be retained in the graph. 
Then, the matches that are considered most likely are kept. The ambiguities persist until the 
creation of the SPARQL queries, which are classified. 

IQA extracts the keywords from the question using a Shallow Parser. In the next step, the sys-
tem predicts for each keyword of the previous step whether it is an entity or a relation. Then, 
for each keyword, a set of candidate matches are discovered. The matchings made between a 
question and a knowledge graph, i.e., the matching of the entities and the relation of the ques-
tion with the knowledge graph, create a graph in order to answer the user's question. The se-
mantic matching of a question with the knowledge graph is based on an LSTM (Long Short-
Term Memory) neural network. There are several semantic question answering systems, 
which are based on neural networks to answer the question of a user. A thorough survey can 
be found in (Chakraborty et al., 2021). 

Intui3 is a neural network-based QAS over a knowledge graph. Intui3 uses SENNA for PoS 
tagging, chunking and NER. SENNA is a deep neural networks-based system. Intui3 uses the 
Stanford CoreNLP suite for lemmatization. The system combines the results from chunking 
and name entity recognition to combine smaller chunks into a larger chunk. Then, the system 
gives an interpretation or interpretations for each chunk. The interpretation of the user ques-
tion is created by combining the interpretations of the chunks using rules, and for each inter-
pretation a score is given. The system selects the interpretation with the highest score and the 
appropriate SPARQL query is created.  

The system of Sorokin and Gurevych (Sorokin & Gurevych, 2017) is an end-to-end neural 
architecture to create the semantic representation of a user’s question. The system accepts the 
question in natural language and converts it to a graph. It applies tokenization, POS tagging 
and fragments extraction. Afterwards a list of Wikidata entities is found for each fragment, 
and then the system creates possible semantic representations as graphs based on iterative rep-
resentation generation. Essentially, it performs phrase mapping of the elements of the ques-
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tion with the elements of the knowledge base. The candidate semantic graphs and the question 
are converted into fixed-size vectors based on a CNN model. The best graph is found based 
on cosine similarity.  

The system of Athreya et al. (2021) is a neural network-based QAS over a knowledge graph 
using query templates. It accepts the question in natural language and performs classification 
into a corresponding template. Classification is achieved with the help of recursive neural 
networks. Firstly, dependency parsing, and POS tagging are applied. Syntactic parsing is vec-
torised for the recursive neural network model. The Tree-LSTM is applied to learn the ques-
tion. Also, the corresponding query templates are found. In particular, the top-n SPARQL 
templates are found. The candidate SPARQL templates are filled by mappings to the KB, rep-
resenting semantically the user’s question.  

The system of Liang et al., (2021) is a Tree-LSTM neural network-based QAS over a 
knowledge graph. The system accepts the question of user in natural language and applies to-
kenization, POS tagging, lemmatization and dependency parsing. The question type classifi-
cation is perfomed via machine learning. Phrase mapping of the elements of the question to 
the elements of KB is applied. Candidate SPARQL queries are created and are ranked based 
on Tree-structured Long-Short Term Memory (Tree-LSTM). Finally, the system selects the 
most appropriate queries.  

LAMA represents the semantic interpretation of the question in the form of a graph. Entity 
Extractor and Property Extractor work in parallel to match the question elements with the KB 
elements as some elements are based on the entity-property relations pattern. Parallel pro-
cessing also decreases processing time.  

According to the above, in semantic question answering systems we observe that the domi-
nant model of representation of the question is the semantic graph-based model which is justi-
fied by the fact that the stored linked data in knowledge bases are in graph form. All semantic 
question answering systems use semantic graph-based models since the SPARQL questions 
also identify an abstract graph.  

Examples of systems based on the probability model are: gAnswer, RTV, CASIA@V2, Xser, 
QAnswer, WDAqua-core1and IQA. Examples of systems based on algebraic models are DEN-
NA, Intui2, RTV, CASIA@V2, ISOFT, Xser, SemGraphQA, YodaQA, ComQA, LAMA Sorokin & 
Gurevych (2017), Athreya et al. (2021) and Liang et al., (2021). There are systems that on top 
of the semantic graph-based model they us other models as well, such as probability or alge-
braic models. Examples of such systems are DENNA, gAnswer, Intui2, RTV, CASIA@V2, 
ISOFT, Xser, SemGraphQA, YodaQA, ComQA, WDAqua-core1, IQA and LAMA. For example, 
Xser uses semantic graph-based, algebraic, and probability models. Finally, we could not find 
set theoretic models, as this model treats the documents as sets of words or phrases. However, 
we do not rule it out because it can be used in hybrid-domain SQA systems. 
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3.6. Classification based on characteristics of the ΚΒ 

Mishra & Jain (2016) report the following values: source size, language, heterogeneity, genre, 
and media, which are based on the characteristics of data sources. We replace the characteris-
tics of data sources of Mishra & Jain with characteristics of the ΚΒ and we identify as the 
values of this criterion the following: multilingualism (language in QASs) and distributed 
knowledge base (heterogeity in QASs). In SQA systems we do not observe genre (genre char-
acterizes the type/style, which can be formal or informal, of the language used) as the format 
of stored linked data can not be formal or informal like the language of documents. Also, the 
answers like audio, video, sound have not yet been integrated in the SQASs. Of course, this 
task is difficult even in QASs. SQA systems could also be sorted by source size as open-
domains are larger than closed-domains, but we have selected the classification as open-
domain, closed-domain and hybrid-domain. Therefore, we have replaced the criterion of the 
characteristics of data sources of Mishra & Jain (2016) with the criterion of the characteristics 
of the ΚΒ.  

3.6.1 Multilingualism  

Multilinguality has gained a lot of interest mainly for two reasons: a large number of actors 
are created and published as open data not only in English but also in other languages and on 
the other hand the number of users who want to access this data and do not have English as 
their mother tongue, it is constantly increasing. DBpedia has multilingual labels and versions 
of DBpedia such as the Spanish and the French DBpedia are available (Lopez et al., 2013).  

Multilinguality is also considered as an evaluation criterion in QALD (Lopez et al., 2013; 
Cimiano et al., 2013). There are systems that only support one language, such as Alexandria, 
which only accepts questions in German. Most systems accept questions in English. The 
SWIP system accepts the user's question and converts it to an intermediate query called pivot 
query i.e. it is converted into an intermediate language called pivot language. This intermedi-
ate language helps with multilingualism. There is a separate section for each language that 
converts the user question to pivot language but the section referring to the formation of the 
pivot query remains the same in each case. However, at the same time it states that it accepts 
questions only in English. WDAqua-core1 accepts questions in 5 different languages (Eng-
lish, French, German, Italian and Spanish).  The LAMA is a multilingual system for questions 
in English or French. The semantic representation of the user question is based on a set of lex-
ico-syntactic patterns for entity and property extraction. This pattern-based method helps the 
system to be multilingual as the patterns are in different languages. QAnswer (Diefenbach et 
al., 2019) support multiligualism and accepts questions in English, German, French, Italian, 
Spanish, Portuguese, Arabic and Chinese. The GFMed system is able to question in English 
and Romanian.  

3.6.2 Distributed Knowledge Base 

There are also semantic question answering systems that look for the answer to the user's 
question in many KBs. PowerAqua accepts a question in natural language and returns ranked 
answers, which are based on many knowledge bases. This system is responsible for detecting 
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the appropriate knowledge base that is relevant to the user question. Another system, which 
connects many linked data resources to create SPARQL queries and give the answer to the 
user, is SMIQ. QAnswer (Diefenbach et al., 2019) can query at the same time three different 
knowledge bases (such as Wikidata with Lexemes, LinkedGeodata and Musicbrainz.) On the 
other hand, there are systems that can use more than one KB but not simultaneously like 
DEANNA, SemGraphQA and WDAqua-core1. GFMed and POMELO are closed-domain 
systems, which are quering biomedical linked data such as Diseasome, SIDER and Drug-
Bank. Both systems use the above three knowledge bases to answers the question of users.  

3.7. Classification based on interaction of user 

We added the interaction of the user, and the values of this criterion are user interaction in 
disambiguation and type of user. In several systems (such as FREyA and IQΑ) we notice that 
the user does not only enter a question waits to view the answer from the system. But, instead 
the user plays an active role in the process of converting the natural language question into a 
structured query. In particular, some systems, in order to disambiguate the user's question, 
they suggest options to the user to select the appropriate translation for some specific ele-
ments of the question. Another active role of the user is when there are systems that use con-
trolled natural language. In such systems, the user is guided by the tips of the system in order 
to create the desired question. As we have mentioned, these systems were created to support 
ordinary users who are not familiar with SPARQL and face difficulties in searching linked 
datasets. But some of them serve both ordinary users and expert users, who can overview the 
conversion of the question and/or they can modify the resulting SPARQL query. 

3.7.1. User Interaction in Disambiguation 

One of the challenges that semantic question answering systems face is ambiguity, i.e. the 
same word has different interpretations (Höffner et al., 2017). There are systems that the user 
intervenes to carry out the disambiguation such as FREyA. FREyA may not find the right 
match for an element in question (either not in the knowledge base or the options for the 
match are more than one) then the system gives the user some options to choose from. System 
suggestions or recommendations are ranked. String similarity, based on the Monge Elkan 
metrics with Soundex algorithm, is used for the classification and Wordnet and Cyc were also 
used to find synonyms. Among the options is the option none in case no option fits. The sys-
tem stores the user's choice to be used to train the system to improve its performance over 
time. In the disambiguation problem, the Swip system interacts with the user and selects the 
appropriate interpretation. The same happens with the IQA system, in order to disambiguate 
the correspondences or matching with elements of KB. The user interacts with the system in 
order to accept the appropriate interpretation of the question and consequently to create the 
appropriate SPARQL query.  

Moreover, the SQA systems that use controlled natural language there is an interaction be-
tween system and user in order to guide the user to create the user question such systems are 
Scalewesis, SQALl2SPARQL and CANaLI. Essentially this interaction indirectly intends to 
resolve the ambiguities since there are specific options for the user. Of course, the disambigu-
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ation is solved through controlled natural language, but the disadvantage of these systems is 
that the user must become familiar with controlled natural language. 

3.7.2. Type of User 

Also, another category is the type of the users. For example, there are systems aimed at casual 
users, which just enter questions and wait for the answer, and advanced users. Such systems 
are DEANNA, which provides the ability to intervene in the translation process and observe 
how the components interact to create the final result. Another system that supports casual 
and expert users is Swipe. The Swipe system allows advanced users to view the query, modi-
fy the SPARQL query and submit it. Of course, the current version of the system does not al-
low writing queries. Finally, the IQA system displays to the user the top-ranked SPARQL 
query. Furthermore, the system displays the interpretation of the user's question in natural 
language. 

3.8. Classification based on answers 

Mishra & Jain (2016) categorize QASs answers in extracted answer (such as sentences, para-
graphs, multimedia) and generated answer (yes or no answers, dialogue answers, opinionated 
answers). In question answering system over linked data, the types of answers are: boolean, 
date, numeral, resource, string. If we consider the Mishra & Jain criterion, then the generated 
answers are boolean and numeral. The numeral answer type can come from questions that 
look for a stored answer in the KB, e.g. in questions like the following: "How deep is Lake 
Placid?". This means that numeral is not generated, but rather extracted or retrieved. On the 
other hand, questions like "How many programming languages are there?", in order to be an-
swered it is required to find all the programming languages in the KB and then count them. 
This means that the numeral is generated or calculated using a SPARQL aggregation function. 
On the other hand, the extracted answers are the date (if there is one registered in KB), re-
source and string.  

3.9. Techniques used in SQASs 

Mishra & Jain (2016) identify one more category, called "techniques used in QASs". These 
techniques are related to response retrieval techniques such as data mining techniques search-
ing for factual data, information retrieval searching techniques for factual information in text 
documents, natural language processing techniques searching for information, knowledge re-
trieval searching for understanding and creating knowledge. We replace the above techniques 
used in QASs with the techniques used in SQASs. Instead of data mining, that involves both 
some knowledge discovery algorithms and several data preparation techniques, we use the 
broader term machine learning that includes more algorithms to learn knowledge or patterns 
from both structured and unstructured information. These techniques in SQA systems are ma-
chine learning (ML), information retrieval (IR), natural language processing (NLP) and 
knowledge retrieval and discovery.   
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3.10. Overview of system classification 

The criteria of QASs that were developed by Mishra & Jain (2016) are: application domain, 
types of questions, types of analyses of questions, types of data, characteristics of data 
sources, types of representations used for questions and types of representations used for 
questions and their matching functions, types of techniques used for retrieving answers, and 
forms of answers generated. The classification we created based on types of domains, types of 
data sources, types of questions, types of analysis done on questions, types of representations 
used for questions and types of representations used for questions and their matching func-
tions, characteristics of the KB, types of techniques used for retrieving answers, user interac-
tion, and answers. Summarizing, the differences of our classification criteria with those of 
Mishra & Jain (2016) can be grouped into 3 categories:  

1. differentiated criteria (in terms of the values they get), which are indicated with an as-
terisk in Table 1,  

2.  criteria not included in Mishra & Jain (2016) but included in our survey because    
they are used in SQAs, which are indicated with italic and boldface font in Table 1, 
and  

3. criteria included in Mishra & Jain (2016) that have been replaced in our survey with 
other, more appropriate, criteria, indicated with boldface in Table 1. 

Differences and similarities were discussed and described in detail in each category. Table 2 
summarizes all the systems and classifies them according to the respective criteria. 
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Table 2:  Classification of SQA systems and frameworks 

System / 
Framework 

Types 
of Do-
mains 
(Open, 
Closed, 
Hybrid) 

Types of 
data sources 
(Stuctured, 
hybrid) 

Types of 
questions  
(Factoid, 
list, boole-
an, count) 
 

Types of analysis done 
on questions  
(Morphological, syntac-
tical, dependency, se-
mantic, expected an-
swer type, focus recog-
nition of questions, 
pragmatic and dis-
course) 

Types of repre-
sentations used 
for questions and 
their matching 
functions  
(Algebraic, prob-
ability, semantic 
graph-based, the-
oretic) 

Characteristics 
of the ΚΒ  
(multilingualism, 
distributed 
knowledge base) 
 

Interaction of 
user  
(In disambigua-
tion, type of 
users) 
 

Answers  
(Date, resource, 
string, boolean, 
numeral) 

Τechniques for re-
trieving answers 
(ML, IR, NLP, 
knowledge retrieval 
and discovery) 

FREyA hybrid structured factual, list  syntactical, semantic, 
expected answer type 

semantic graph-
based 

 user Interaction 
in disambigua-
tion 

string, numeral, 
resource 

Knowledge retrieval 
and discovery, ML, 
NLP 

PowerAqua open structured factual, list  syntactical, dependency, 
semantic 

semantic graph-
based 

distributed 
knowledge base 

 string, numeral, 
resource 

Knowledge retrieval 
and discovery, IR, 
NLP 

SWIP closed structured factual, list, 
boolean, 
count  

dependency, semantic, 
focus recognition of 
questions 

semantic graph-
based 

 user Interaction 
in disambigua-
tion 

string, boolean, 
numeral, re-
source 

Knowledge retrieval 
and discovery, IR, 
NLP 

Alexandria open structured factual, list, 
boolean, 
count  

morphological, syntacti-
cal, dependency, seman-
tic, expected answer type 

semantic graph-
based 

  string, boolean, 
numeral, re-
source 

Knowledge retrieval 
and discovery, IR, 
NLP 

OAKIS open structured factual, list, 
count 

morphological, semantic, 
expected answer type 

semantic graph-
based 

  string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery, NLP 

SemSek open structured factual syntactical, dependency, 
semantic 

semantic graph-
based 

  string, numeral, 
resource 

Knowledge retrieval 
and discovery, NLP 

DENNA open structured factual  dependency, semantic semantic graph-
based, algebraic 

 type of users string, numeral Knowledge retrieval 
and discovery, NLP 

gAnswer open structured factual, list, 
boolean, 
count  

dependency, semantic semantic graph-
based, probability 

  string, boolean, 
numeral, re-
source 

Knowledge retrieval 
and discovery, in-
formayion retrieval, 
ML, NLP 

Intui2 open structured factual, 
count 

morphological, syntacti-
cal, semantic, expected 
answer type 

semantic graph-
based, algebraic 

  string, numeral, 
date, resource 

Knowledge retrieval 
and discovery, IR, 
NLP 

RTV open structured factual, list, 
boolean, 
count 

syntactical, dependency, 
semantic 

semantic graph-
based, algebraic, 
probability 

  string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery, IR, 
NLP 

Scalewelis open structured factual, 
boolean 

syntactical, dependency, 
semantic, focus recogni-
tion of questions 

semantic graph-
based 

 user Interaction 
in disambigua-
tion  

string, numeral 
boolean, re-
source 

Knowledge retrieval 
and discovery, NLP 
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System / 
Framework 

Types 
of Do-
mains 
(Open, 
Closed, 
Hybrid) 

Types of 
data sources 
(Stuctured, 
hybrid) 

Types of 
questions  
(Factoid, 
list, boole-
an, count) 
 

Types of analysis done 
on questions  
(Morphological, syntac-
tical, dependency, se-
mantic, expected an-
swer type, focus recog-
nition of questions, 
pragmatic and dis-
course) 

Types of repre-
sentations used 
for questions and 
their matching 
functions  
(Algebraic, prob-
ability, semantic 
graph-based, the-
oretic) 

Characteristics 
of the ΚΒ  
(multilingualism, 
distributed 
knowledge base) 
 

Interaction of 
user  
(In disambigua-
tion, type of 
users) 
 

Answers  
(Date, resource, 
string, boolean, 
numeral) 

Τechniques for re-
trieving answers 
(ML, IR, NLP, 
knowledge retrieval 
and discovery) 

SQUALL2S
PARQL 

open structured factual, list, 
booelan, 
count 

syntactical, semantic semantic graph-
based 

 user Interaction 
in disambigua-
tion 

string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery, NLP 

CASIA@V2 open structured factual, list, 
booelan, 
count 

dependency, semantic semantic graph-
based, algebraic, 
probability 

  string, boolean, 
numeral, re-
source 

Knowledge retrieval 
and discovery, IR, 
NLP 

ISOFT open hybrid  factual, list, 
boolean 

dependency, semantic, 
expected answer type, 
focus recognition of 
questions 

semantic graph-
based, algebraic 

  string, numeral Knowledge retrieval 
and discovery, IR, 
NLP 

SMIQ open structured factual, list, 
booelan, 
count 

dependency, semantic semantic graph-
based 

distributed 
knowledge base 

 string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery, NLP 

Swipe open structured list, count   semantic graph-
based 

 type of users string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery 

Xser open structured factual  dependency, semantic semantic graph-
based, algebraic, 
probability 

  string, numeral Knowledge retrieval 
and discovery, IR, 
ML, NLP 

CANaLI hybrid structured factual, list, 
booelan, 
count 

syntactical, semantic semantic graph-
based 

 user Interaction 
in disambigua-
tion  

string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery, NLP 

QAnswer open structured factual, list, 
boolean, 
count 

morphological, depend-
ency, semantic, expected 
answer type 

semantic graph-
based, probability 

  string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery, IR, 
NLP 

SemGraphQ
A 

open structured factual, 
boolean, 
count 

syntactical, dependency, 
semantic, expected an-
swer type 

semantic graph-
based, algebraic 

  string, boolean, 
numeral, date, 
resource 

Knowledge retrieval 
and discovery, IR, 
NLP 

YodaQA open hybrid  factual  dependency, semantic, 
expected answer type, 
focus recognition of 
questions 

semantic graph-
based, algebraic 

  string, date, 
numeral 

Knowledge retrieval 
and discovery, IR, 
ML, NLP 

ComQA open structured factual, list, 
booelan, 

dependency, syntactical, 
semantic 

semantic graph-
based, algebraic 

  string, boolean, 
numeral, date, 

Knowledge retrieval 
and discovery, IR, 
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System / 
Framework 

Types 
of Do-
mains 
(Open, 
Closed, 
Hybrid) 

Types of 
data sources 
(Stuctured, 
hybrid) 

Types of 
questions  
(Factoid, 
list, boole-
an, count) 
 

Types of analysis done 
on questions  
(Morphological, syntac-
tical, dependency, se-
mantic, expected an-
swer type, focus recog-
nition of questions, 
pragmatic and dis-
course) 

Types of repre-
sentations used 
for questions and 
their matching 
functions  
(Algebraic, prob-
ability, semantic 
graph-based, the-
oretic) 

Characteristics 
of the ΚΒ  
(multilingualism, 
distributed 
knowledge base) 
 

Interaction of 
user  
(In disambigua-
tion, type of 
users) 
 

Answers  
(Date, resource, 
string, boolean, 
numeral) 

Τechniques for re-
trieving answers 
(ML, IR, NLP, 
knowledge retrieval 
and discovery) 

count resource NLP 
WDAqua-
core1 

hybrid structured factual, list morphological, semantic semantic graph-
based, probability 

multilingualism  string, numeral 
date, resource 

Knowledge retrieval 
and discovery, IR, 
NLP 

IQA open structured factual, list, 
boolean 

syntactical, semantic, 
expected answer type 

semantic graph-
based, probability 

 user Interaction 
in disambigua-
tion, type of users 

string, numeral, 
boolean, re-
source 

Knowledge retrieval 
and discovery, ML, 
IR, NLP 

LAMA open structured factual, list, 
booelan, 
count 

syntactical, semantic, 
expected answer type 

semantic graph-
based, algebraic 

multilingualism  date, resource, 
string, boolean, 
numeral 

Knowledge retrieval 
and discovery, IR, 
NLP 

Intui3 open structured factual, list, 
count 

morphological, syntacti-
cal, semantic 

semantic graph-
based, algebraic 

  resource, nu-
meral, string 

Knowledge retrieval 
and discovery, ML, 
NLP 

GFMed closed structured factual, list, 
booelan, 
count 

syntactical, semantic semantic graph-
based 

distributed 
knowledge base, 
multilingualism 

 string, boolean, 
numeral 

Knowledge retrieval 
and discovery, ML, 
NLP 

POMELO closed structured factual, list, 
booelan, 
count 

morphological, syntacti-
cal, semantic, expected 
answer type, focus 
recognition of questions 

semantic graph-
based 

distributed 
Knowledge Base 

  resource, string, 
boolean, numer-
al 

Knowledge retrieval 
and discovery, NLP 

Sorokin & 
Gurevych 
(2017) 

open structured factual semantic algebraic, semantic 
graph-based 

  string, numeral Knowledge retrieval 
and discovery, ML, 
IR, NLP 

Athreya et 
al. (2021) 

open stuctured factual, 
boolean, 
count 

syntactical, dependency, 
semantic, expected an-
swer type 

algebraic, semantic 
graph-based 

  string, boolean, 
numeral 

Knowledge retrieval 
and discovery, ML, 
IR, NLP 

Liang et al., 
(2021) 

open structured factual, list, 
booelan, 
count 

morphological, syntacti-
cal, dependency, seman-
tic, expected answer type 

algebraic, semantic 
graph-based, prob-
ability 

   resource, string, 
boolean, numer-
al 

Knowledge retrieval 
and discovery, ML, 
IR, NLP 
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4. Semantic Question Answering Systems 
In this section we have chosen to describe some SQA systems to show the different 
systems architecture and the originality of each system. In this section we give a de-
tailed description of some systems to understand the originality and different architec-
ture of SQA systems so that researchers can see the pros and cons and suggest solu-
tions for complex SPARQL queries. Researchers or readers can also reuse or custom-
ize techniques or tools presented in semantic question answering systems. The sys-
tems are categorized based on the competitions that are held i.e. based on the evolu-
tion of the systems. Competitions (QALD) increase the demands and challenges of 
systems (they add additional criteria) so we are talking about systems’ evolution. We 
describe systems until the competition QALD-5. However, after the QALD-5 compe-
tition, most of the systems has already participated in previous competitions. This is 
the reason that in section 4, we have 5 subsections (4.1-4.5). Some systems that ap-
peared in a later-than-the-5th QALD competition and/or systems that have not partic-
ipated in any QALD competition, but have a merit worth describing it, have been in-
cluded in section 4.6. 

4.1. Systems evaluated in QALD-1 

FREyA (Feedback, Refinement and Extended Vocabulary Aggregation) is a question 
answering system over linked data (Damljanovic et al., 2010). The specific domain of 
the system is the Mooney Geoquery. The system was also evaluated on DBpedia and 
MusicBrainz. FREyA accepts a question in natural language from the user and gives 
the answer by searching for it through the knowledge base. To find the answer, try to 
match the terms or words of the question with elements (for example classes, instanc-
es, properties, literals) from the ontology. Before matching, the system applies syntac-
tic parsing to the question. Τhen takes the result from the syntactic parsing and com-
bines it with heuristic rules to find potential ontology concepts from the question to 
map with elements of knowledge base. Stanford Parser is used for syntactic analysis. 
Once the potential ontology concepts are found, they are matched with the data from 
the knowledge base (which are called ontology concepts). It is possible for a potential 
ontology concept the system can not find the right match (either it does not exist in 
the knowledge base, or the matches are more than one). In this case the system gives 
the user some options to choose. System suggestions or recommendations are classi-
fied. String similarity, based on the Monge Elkan metrics with Soundex algorithm, is 
used for the ranking. Wordnet13 and Cyc were also used to find synonyms. Among the 
options is the option "none" in case no option fits. The system stores the user's choice 
to be used to train the system to improve its performance over time. After matching, 
the SPARQL query is generated. To find the answer, the answer type of the question 
is specified. 

 
13 https://wordnet.princeton.edu 
 

https://wordnet.princeton.edu/
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PowerAqua (Lopez et al., 2012) accepts a question in natural language and returns 
classified answers, which are based on many knowledge bases. The system imple-
ments a pipeline framework, which consists of four steps. In the first step, called the 
Linguistic Component, the system performs a linguistic analysis to convert the ques-
tion into triplets with interdependencies and then marks and then marks each term of 
the triplet with one of the following designations: subject, predicate or object. Each 
triplet has the following format: <subject, predicate, object>. The system uses the 
Gate NL processing tool to create this representation. The second step is called Ele-
ment Mapping Component (PowerMap). This step consists of two components. The 
first component is responsible for detecting the appropriate knowledge bases that are 
relevant to the user's question. In order to perform the matching of the query elements 
with the data from the knowledge bases, the system applies syntactic techniques. Al-
so, in this step the WordNet tool is used to find synonyms of the words in the ques-
tion. However, it is possible for a term of the question to have more than one interpre-
tation. This disambiguation problem is solved using Word Sense Disambiguation 
techniques. this is Semantic Validation Component which consist of the second com-
ponent. The third step is called Triple Mapping Component (Triple Similarity Service 
-TSS). The purpose of the third step is to find the most appropriate interpretation for 
the user's question. The system tries to find out which ontology triplets best corre-
spond to the triplets of the user question. The filtering heuristics are used to decrease 
the set of candidates. The last step called Merging and Ranking Component. The sets 
of ontological triples are merged, and answers are composed, then the results are 
ranked based on criteria. 

The SWIP (Semantic Web Interface Using Patterns) system consists of two steps 
Pradel et al., 2012; Pradel et al., 2013). Swip is a semantic web interface using pat-
terns. In the first step, the system accepts the user question and converts it to an in-
termediate query called pivot query i.e. it is converted to an intermediate language 
called pivot language. This intermediate language helps with multilingualism. There 
is a separate section for each language that converts the user question to pivot but the 
section, which forms pivot query, remains the same in each case. The name entities 
are specified. The dependency parser extracts the dependency tree of the user ques-
tion. The dependency parsing is taken into consideration name entities. The parser, 
that uses the system, is MaltParser. Then it identifies what the user is asking for ex-
ample if the user is asking to find a date or is looking for a film. Finally, query pat-
terns are used to create the pivot query. The elements of the question which are trans-
lated into the pivot query correspond to elements of the knowledge base. In the dis-
ambiguation problem, the system interacts with the user who selects the appropriate 
interpretation. Finally, the SPARQL query is created. 

4.2. Systems evaluated in QALD-2 

Alexandria is a German question answering system over linked data (Wendt et al., 
2012). Essentially the system consists of two distinct steps. An ontology was created 
for this system based on Freebase, DBpedia and user-generated content. The user 
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question is represented as a dependent graph using the dependency parser, MaltParser. 
This parseris trained on the German Tiger corpus. Linguistic analysis also includes 
lemmatization namely morphological analysis. Name entities are identified using an 
index. In case of ambiguity the user selects the appropriate option. Apart from identi-
fication of name entities, Alexandria detects dates and times using the open-source 
date parser provided by the Yago project to German. For other terms of the question 
are used hand-crafted lexica. Before the end of the first step, the system matches the 
terms of the linguistic analysis with terms from the ontology. In the second step, Al-
exandria gives the semantic description for the terms of the graph (for example for the 
term Angelina Jolie the semantic description is Person). After the process of the se-
mantic description, the composition of semantic descriptions is implemented in order 
to create the SPARQL query. 

OAKIS (Cabrio et al., 2012) tries to answer user questions based on relational pat-
terns. Specifically, the WikiFramework repository was created by exporting relational 
patterns from Wikipedia and DBpedia. The relational patterns have the following 
form: S is subject (domain) of the relation, O is the object (range), and P (predicate or 
property) is the name of the relation. The system consists of two main components. 
The first component is called query generator. The purpose of this component is to 
create typed questions that correspond to relational patterns. It creates the SPARQL 
query from relational patterns. More specifically, this component is responsible for 
identifying name entities and the expected answer type. There are three options avail-
able for the name entity. If the first option fails, the system proceeds to the next op-
tion. If the system does not find a name entity with the second option, then it uses the 
last option. In the first option the system uses the Named Entity Recognizer in Stan-
ford Core NLP (if the question contains a phrase-name entity that exists in DBpedia, 
and this phrase-name entity is in the results of Recognizer then the largest phrase-
name entity is retained). In the second option Stanford looks for the name entity in 
proper noun then in this case it gets the longest label from DBpedia. In the latter case, 
it looks search in DBpedia to find the longest instance label. After the system identi-
fies the name entity and the expected answer type then creates the typed question. The 
second component is called matcher pattern. This accepts typed questions and corre-
sponds to patterns. Specifically, a set of patterns are retrieved for each typed question. 
One SPARQL query or two queries are created for each pattern. If exists some 
SPARQL queries, then the query with the highest score is selected. Τhe query must 
have at least at least one result. 

SemSek (Aggarwal & Buitelaar, 2012) has a pipeline architecture and consists of 
three basic steps. The first step is linguistic analysis. The system accepts the user's 
question and performs dependency analysis using Stanford Parser. Also, in the lin-
guistic analysis are identified the words that should not be separated but they are con-
sidered phrases (similar to the name entity recognizer). The goal of the step is to cre-
ate an ordered list as follows: the first term of the list is the center term of the depend-
ent graph, the next term is the term that depends on the first term and so on. The next 
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step is called query annotation. The system identifies DBpedia instances and classes 
in the ordered list using lucene index (one for instances and one for classes). The dis-
ambiguation problem is resolved by retrieving wikiPageRedirects URIs. The last step 
is called Semantic Similarity and Relatedness. SemSek matches the terms of the sen-
tence (the result from the question annotation) with data from DBpedia using seman-
tic similarity and relatedness.  

4.3. Systems evaluatedin QALD-3 

DENNA (DEep Answers for MaNy Naturally Asked questions) system can search for 
information in many knowledge bases such as Yago, Dbpedia, Freebase, or other 
Linked Data sources (Yahya et al., 2012). The system is used by both ordinary and 
advanced users. The system architecture consists of six steps. The first step is called 
Phrase detection. The goal of the first step is to find the semantic items (such as rela-
tions, entities, and classes) of the user's question using detectors. Each detector is re-
sponsible for discovering a specific category of semantic item. Detectors use different 
named entity recognition and different techniques to determine relations. All detectors 
operate independently, this leads to duplication (overlap) and ambiguity problems. 
The second step is called Phrase mapping. The basic function of the second step is to 
match the phrases (the result of the first step) with elements from the knowledge base 
using dictionaries. It is possible to identify multiple candidate matches for a phrase. 
The third step is called Q-unit generation. In this step, the system synthesizes the 
phrases to create triplets (triploids) using the dependency parser. Triplets have a form 
similar to the following: subject property object (i.e. they consist of two arguments 
and a relation that connects them). Q-units are created from combination of triploids 
and candidate phrases. The fourth step is called Joint disambiguation. This step is re-
sponsible for resolving the ambiguities. The solution is based on creating or exporting 
a subgraph from the weighted disambiguation graph using an integer linear program 
(ILP) and the Gurobi ILP solver. The fifth step is called Semantic item grouping. The 
system creates semantic triples based on q-units and constraints of different semantic 
items. The last step is called Query generation and it builds SPARQL queries from 
semantic triples. 

gAnswer (Zou et al., 2014) consists of two basic phases in order to give an answer to 
the user. The system follows a data-driven approach. The first phase is called question 
understanding and the second query evaluation. In the first phase the goal of the sys-
tem is to create a semantic query graph Qs. Initially the system accepts the user's ques-
tion. A dependency tree is created by the question using Stanford Parser. Then the re-
lations that exist in the tree are extracted using a dictionary. The last step for the first 
phase is the connection of semantic relations and the creation of semantic query graph 
Qs from them. In this step, solutions for coreference resolution are used. The query 
evaluation is responsible for finding a subgraph (in RDF graph G) that matches Qs to 
find the user's answer. In the second phase, a first step is the mapping of Qs (the user's 
question is represented as Qs) with the elements of the knowledge base. At this point 
all ambiguities are maintained. This point is the most important part of the system as 
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disambiguation problem is determined in the query evaluation step. This implementa-
tion leads to improve precision and performance is significantly speeded. It is possible 
to find many subgraphs for Qs and each one has a score based on confidence probabil-
ities. The system detects top-k subgraphs, this is NP-hard problem. Each subgraph 
implies an answer to the question, at this point the ambiguities have been resolved. A 
subgraph in RDF graph matches Qs although only it is isomorphic to Qs and this is the 
answer to the user's question. 

Intui2 (Dima, 2013) system consists of four phases. The first phase is called the Pre-
processing Phase. Initially the system accepts the user's question. The syntactic tree is 
constructed by the question using the Stanford CoreNLP. In the linguistic analysis of 
the question, Intui2 applies tokenizing, lemmatization and POS tagging. A tree has 
been created which has sub-trees. The information rank (IR) is also calculated for 
each token. A Wikipedia word frequency index was created to calculate the infor-
mation rank. Each token is calculated according to this index. The rarest words have a 
high information rank. The second phase is called the Analysis Phase. The purpose of 
this phase is the recursive traversing of tree, starting from a specific node called the 
root node. To find the root node the cumulative rank or CR (for each subtree) must be 
calculated from the information rank of the node leaves of the subtree. The root node 
is the one that has the highest CR then traversing the next nodes is based on the as-
cending order of the CRs. Each node corresponds to a syntactic pattern. For each syn-
tactic pattern there is a mapping suggestion (it can be object or subject, RDF triplet, or 
complex SPARQL query) and the corresponding URIs are also specified. Ambiguities 
remain, it is possible that the system creates many final questions if there are many 
interpretations of the question. At this point we should mention that each synfragment 
corresponds to a subtree (the synfragment can be a concept URI, as an RDF triple or 
as a complex RDF query). The third phase is called Scoring Synfragments. The sys-
tem assigns a score to each synfragment. Complex synfragments are calculated by 
multiplying the score of their components. While URI synfragments (Subject / object 
URIs and Predicate URIs) are figured based on string similarity. The fourth phase is 
called: Reranking Phase. The correctness for each query is calculated as follows: the 
number of correct answers based on the answer type / the total number of answers. 
Thus, the final score of each query is multiplied by the result of correctness. The final 
query is selected, and the answer is retrieved. 

RTV (Roma Tor Vergata) is a question answer system over linked data based on the 
Hidden Markov Model (HMM) approach and more specifically on statistical infer-
ence in order to answer the user's question (Giannone et al., 2013). Initially the system 
applies dependency parsing to the question and the dependency tree is constructed. 
Also, a DBpedia lexicon is available in the parser. The ontological elements of the 
tree are detected to create the Markov chain. This phase is called the HMM initializa-
tion stage. The second phase is called HMM modeling where the states (corresponds 
the KB elements with the ontological elements of the question), emissions (expresses 
the probabilities between the question elements and the KB elements) and transitions 
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(expresses the probabilities between the states based on semantics) of the Markov 
chain are defined. The ambiguities at this point remain. The Lucene index is used at 
this stage. The next phase is called HMM decoding or Viterbi decoding. The aim of 
this phase is to find the best interpretation for the question and resolve the ambiguities 
using a joint disambiguation approach and statistical inference. The last phase is 
called SPARQL query compilation, and the system creates the SPARQL query and 
retrieves the answer. 

Scalewelis (Guyonvarc et al., 2013) is based on Sewelis system. Sewelis can not be 
used for large datasets such as Dbpedia and uses an intermediate query language 
called LISQL which is characterized as semi-natural and is inspired by SQUALL 
(controlled natural language). Scalewelis uses LISQL2 (new version of LISQL) to 
create the SPARQL query. LISQL2 determines the incremental construction of the 
query. The system does not accept the user question in natural language, but the ques-
tion is constructed incremental by users, who select query elements to create the que-
ry. Fifteen production rules are used for the concrete syntax of LISQL2. The final 
question is constructed by making successive use of the production rules. The illustra-
tion of the question of the concrete syntax has the tree form (looks like a syntactic 
tree). The abstract syntax of LISQL2 represents the internal representation of the 
question. Each rule of concrete syntax of LISQL2 corresponds to a rule of abstract 
syntax. The illustration of the question for abstract syntax has tree form (the ontologi-
cal elements of the question are displayed, e.g. class, property and others). To create 
the SPARQL query, systems need a SPARQL semantics for LISQL2 to convert the 
abstract syntax into SPARQL query. In order to create the incremental structure of the 
question, the focus must be defined. The focus is the position from where the query 
elements will be integrated into the question. Initially the system gives the user an ini-
tial query and asks the user to select the suggested query elements. There is a finite 
number for increments (classes, properties, inverse properties, variables, and nodes). 
In order to grow the question, that is, to construct the final question, the focus must be 
determined. Two elements are needed to determine the focus, i.e. the focus operates 
like a pair of LISQL2 sub-query and the context of this sub-query. The sub-query 
context and query help to create the final query. The rules of abstract syntax are used 
to create the focus (subquery and context of subquery), which using semantics for 
LISQL2 is converted to LISQL2 query and in turn this is converted to SPARQL que-
ry. Results from focus are used to create increments. Scalewelis is not dependent on 
datasets because it is associated with SPARQL Endpoints. 

SQUALL2SPARQL (Ferré, 2012; Ferré, 2013a; Ferré, 2013b) accepts a question in a 
controlled natural language which is formulated by the user. This is considered the 
disadvantage of the system, i.e. the user needs to learn the SQUALL (Semantic Query 
and Update High-Level Language) language. The system accepts the question in 
SQUALL language, and it is converted into an intermediate logical representation and 
finally translated into a SPARQL query. The types of questions can be: factual, list, 
boolean and count question. Its vocabulary is created by URIs This is a disadvantage 
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as the questions in SQUALL language are not so close to natural language. On the 
other hand, the system does not perform lexical analysis and for this reason any KBs 
can be used. However, if a linguistic resource is available, it can be used using words 
instead of URIs. The syntactic and semantic analysis of SQUALL are implemented as 
a Montague grammar. The semantics of the question in SQUALL language is the in-
termediate translation, which is converted to SPARQL query. 

4.4. Systems evaluatedin QALD-4 

CASIA@V2 (Shizhu et al., 2014) is a pipeline framework and consists of four phases. 
The first phase is called Phrase detection. The system in the first phase detects possi-
ble semantic item of the question of user. The system does not use NER in order not 
to lose important phrases and keeps all the n-grams as a candidate, in which it applies 
some rules. The final selection of the appropriate options for the semantic items from 
the question is made later. The second phase is called Mapping phrase to semantic 
item. The second phase accepts the result of the first and the system corresponds to 
the semantic items with elements from KB. Various techniques and resources are used 
to match the semantic items in question with the KB semantic items. Entity matching 
is done using Wikipedia and not only DBpedia. For classes the system uses the 
word2vec tool to calculate the similarity between the phrases of the question and the 
KB. PATTY and ReVerb are used to map properties. The system detects the relations 
of the semantic properties of DBpedia with relations patterns of resources (Patty and 
ReVerb) and then if the phrase of the question corresponds to a relation pattern, then 
the corresponding properties of DBpedia are the candidates. Ambiguities remain and 
are resolved at next stage. The third phase is called Feature extraction and joint infer-
ence. This phase is based on the MarkovLogic Network (MLN). The first step of the 
third phase is the Feature extraction. The system extracts the features from the ques-
tion and the KB using the dependency tree, which was built by Standord Parser. The 
second step resolves the ambiguities of the previous steps. The results from the previ-
ous steps are formulated as first-order logic clauses in an MLN. These clauses are 
combined to resolve ambiguities in a unified way. The last phase is called SPARQL 
generation. A sematic item query graph is created from the inference results of the 
previous phase. After the semantic item triples are joined and combined to create 
SPARQL query. 

ISOFT (Park et al., 2015) is a question answer system over structured data (linked da-
ta) and unstructured data (multi-source tagged text database-text data). This system 
combines two approaches knowledgebase-based question answering (KBQA) and in-
formation-retrieval-based question answering (IRQA) and is called hybrid. Initially 
the system accepts the question and performs the question analysis. Question analysis 
is based on statistical and rule-based approaches. Specifically, tokenization, part of 
speech tagging, dependency parsing, keyword extraction, term extraction, and named 
entity (NE) extraction, which are ordinary NLP techniques and are executed by the 
system. These techniques are important not only for the semantic answer type (SAT) 
and for the selection of answer but also for the further processing of the question. 
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ClearNLP4 is used for tokenization, PoS tagging and dependency parsing by ISOFT. 
WordNet dictionary is used to find synonyms of verbs and nouns which are extracted 
during the execution of the term extraction. For NE extraction, Spotlight is applied 
which is responsible to map entities in question to entities of DBpedia. Also, Q2S 
analysis, lexical answer type (LAT) extraction and phrase extraction is called oriented 
techniques and are used for the analysis of the question. Q2S analysis is rule-based 
approach and converts the interrogative or imperative sentence (question) to declara-
tive. LAT restricts the type of response and helps the SAT, which is used to reduce 
the number of candidate answers. The system creates Apache Lucene queries in order 
to find answers to multi-information tagged text databases. It is possible for a user 
question to create more than one query which means that the question must be split. 
The answers from the sequential queries are combined to find the final answer. More 
specifically, the two rightmost phrases are combined for the first query. To find the 
answer from a query the answer from the first query and the next rightmost phrase is 
used and so on. This process is repeated until the answer to the question is found. If 
the system does not find the answer in the data text or the answers are not appropriate 
(the system checks the answers using cosine similarity, Jaccard similarity) it creates a 
SPARQL query for a triplet. When SPARQL query is used to find the answer then 
lexical matching is used to match the predicate of the question with the KB properties. 
If the latter fails, semantic similarity is applied. 

SMIQ (Semantic Model for Interpreting English Queries) based on a linked data driv-
en approach (Tran & Nguyen 2016). It uses different KBs to find the correct answer 
to the user's question. Initially the system accepts the user's question and applies a 
pre-processing to the question. Specifically, it detects the proper nouns or name enti-
ties so that during the parsing, which will be done in the next stage, they will not be 
lost. The SMIQ then performs dependency analysis considering the proper nouns. The 
result of the dependency analysis is a set of dependencies between the elements of the 
question. Inference rules are applied to the set of dependencies to create the semantic 
interpretation of the question, which is called SMIQ. The inference rules are manually 
determined on the set of training questions of the Task 1 of QALD-4. Prolog language 
was used to extract the meanings of the question from the inference rules and the set 
of dependencies. This structure (SMIQ), that has the form of Triple SPO <subject, 
predicate, object>, allows the user question to be linked to the KB components. 

Swipe (Atzori & Zaniolo, 2012) is a middleware system and uses a different ap-
proach, called Search by Example. The user does not enter a question in natural lan-
guage but uses Wikipedia’s pages to enter query conditions in the Infobox of Wikipe-
dia fields and they are converted to SPARQL query. First, the user uploads a Wikipe-
dia page, which has content similar to what the user is looking for. This example page 
looks like the original Wikipedia page. Infobox fields are activated for the user to en-
ter values in the fields. The user then presses the appropriate button to send the query. 
These functions are implemented by the User Interface module (UI). The query is re-
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ceived by the Query Manager module (QM), which is responsible for converting the 
SPARQL query and returning Wikipedia pages that satisfy the user question.  

Xser (Xu et al., 2014) is a pipeline framework to convert a natural language question 
to a SPARQL query and can be applied to many KBs. Initially the system accepts the 
user's question and tries to detect possible semantic items of the questiom. A phrase 
detector was built to detect semantic items using structured Perceptron. Then a se-
mantic parser was created, a transition-based DAG parsing algorithm, to extract rela-
tionships between semantic items more specifically to discover triplets (subject - 
predicate – object) considering the result of the previous step. The above constitue the 
first phase of the system. The goal of the first phase is to represent the user's question 
intention. Also, the system in the first phase is independent of KB. The system in the 
second phase corresponds to the question elements (result of the previous phase) with 
the KB elements based on a structured perceptron model to resolve ambiguities. The 
feature of parser is that it uses a stack, a queue, which consists of the extracted 
phrases from the previous step and a series of actions. The goal of the parser is to cre-
ate triplets, i.e. to give a label (subject, object, predicate) for each phrase and to asso-
ciate it with another label. The label is permanently defined when the queue is empty. 
A phrase can change different labels during the parsing process and finally to prevail 
the highest score for the label. The mapping for subject and object lies in probabilities 
using the Freebase search API while for predicate is based on the Naive Bayes model 
for calculating probabilities. In the second phase the system depends on KB. 

GFMed (Marginean, 2017) is a multilingual system. The user can type questions in 
Romanian or English. Also, it is a controlled natural language system that queries bi-
omedical linked data, such as Diseasome, SIDER and DrugBank. The system accepts 
the question of a user, and it converts in SPARQL query using Grammatical Frame-
work (GF) grammars. The GFMed system builds on application manual grammars 
with a Grammatical Framework. Additionally, the GF is a special purpose program-
ming language and helps with multilingualism. GF grammars are distinguished in ab-
stract and concrete grammars. Consequently, GFMed has an abstract syntax for the 
closed-domain (Diseasome, SIDER and DrugBank) and two concrete syntaxes, one 
for English and Romanian, and one for SPARQL. GFMed has three lexicons, two lex-
icons for English and Romanian and a lexicon for SPARQL. The user’s question is 
converted in the abstract syntax and then in concrete syntaxes for creating a SPARQL 
query. GFMed can handle complex questions.  

Intui3 (Dima, 2014) accepts a natural language query that must be syntactically cor-
rect. The system tries to create the interpretation of the question using semantic and 
syntactic information. To interpret the question, the system applies Frege's Principle 
of Compositionality, which means that the interpretation of a complex expression is 
created by the interpretations of the constituent expression which are combined 
through rules. The system performs tokenization, POS tagging, name entity recogni-
tion and chunking. Intui3 uses SENNA (v3.0) for PoS tagging, chunking and NER. 
SENNA is a deep neural network-based system. We refer readers to Chakraborty et 
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al., (2021) for a thorough overview of neural network-based question answering sys-
tems over knowledge graphs.  Intui3 uses the Stanford CoreNLP suite for lemmatiza-
tion. The system combines the results from chunking and name entity recognition to 
combine smaller chunks into a larger chunk. This is the pre-processing step. The sys-
tem then gives an interpretation or interpretations for each chunk. The interpretation 
of a chunk is based on the chunk's type, the semantic and syntactic information of the 
chunk. The interpretation of the user question is created by combining the interpreta-
tions of the chunk using rules and for each interpretation a score is given. The system 
selects the interpretation with the highest score and the appropriate SPARQL query is 
created. The appropriate interpretation may not be created and so the user's question 
will not be answered. 

POMELO (Hamon et al., 2014) is a closed-domain semantic question answering sys-
tem. It accepts a user’s question about biomedical linked data, such as Diseasome, 
SIDER and DrugBank. Also, POMELO is considered a distributed knowledge base 
question answering system. The system implements a pipeline framework, which con-
sists of four steps. POMELO is based on frames, namely RDF triples (subject, object, 
and predicates) are mapped to frame elements and frame predicates. In the first step, 
called pre-processing step, it performs linguistic and semantic annotations. Specifical-
ly, the system applies word segmentation, part-of-speech tagging and lemmatization 
of the words with TreeTagger. In this step, it identifies semantic entities with 
TermTagger Perl module. Additionally, it uses the term extractor YaTeA to improve 
the results. In this step, syntactic analysis is applied. The second step is called ques-
tion abstraction. In this step, POMELO considers basic information such as question 
topic, predicate and argument, identification, and result form definition (negation, ag-
gregation, boolean query). These basic information helps to create the query structure. 
The third step is called query construction. POMELO accepts the result of the previ-
ous step and creates a SPARQL graph pattern. Finally, it generates a SPARQL query 
considering the query construction.  

4.5. Systems evaluated in QALD-5 

CANaLI (Context-Aware controlled Natural Language Interface) (Atzori et al., 2016; 
Mazzeo & Zaniolo, 2016a; Mazzeo & Zaniolo, 2016b) uses a controlled natural lan-
guage and an autocompleter, which helps the user to type the question according to 
KB. These features help to resolve the ambiguity. The system operates as a finite 
state, which accepts tokens and has 12 states. For example, the user enters a phrase 
immediately the system sends a query to the Lucene index which sends acceptable 
tokens. According to the operation of the finite automata, these tokens must be seman-
tically correct according to KB, have a type according to the current and previous 
state (i.e. be syntactically correct) and must be a phrase that matches the string. The 
returned answers or suggestions are displayed to the user, who must select one of 
those suggested by the autocompleter. If the user does not select one of the suggested 
options, then the system prevents the user from continuing. The system instructs the 
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user how to complete the question. The system was used in the following datasets: 
DBpedia, MusicBrain and the three biomedical KBs: DrugBank, Diseasome and 
SIDER. 

QAnswer (Ruseti et al., 2015) is a pipeline framework and the user question is repre-
sented as a graph (in the last step a graph is selected). Wikipedia plays an important 
role in converting the question into a graph. First the user enters the question. 
QAnswer accepts the question and uses Stanford CoreNLP, which generates the de-
pendency tree. Then the system needs to detect DBpedia resources in the text and the 
links between them. There are three categories of resources that the system detects: 
individuals, types, and properties. Also, different methods are applied and developed 
to detect each resource. The expressions for individuals that exist in DBpedia, in the 
form of Wikipedia redirects integrated into a trie data structure. The system in the step 
of detecting individuals looks for this structure. The system selects the longest se-
quence of words for individual. In addition, the sorting of individuals is based on edit 
distance and importance. The importanceshows the number of Wikipedia pages that 
are linked to the individual's page. At this point the ambiguities are maintained. The 
types (usually in the form <individual> is a <type> and are in the first sentences of 
Wikipedia articles) are discovered by the Wikipedia article and integrated into another 
trie data structure (operates as an index to detect the types of text). The integrated ex-
pressions for the types are in the form of a triplet (vertices and an edge). The step of 
individual detection creates graphs, so the type-detection is executed for each graph. 
Another index was created for properties using Wikipedia. Properties detection is 
based on the properties index. After detection steps, a number of graphs have been 
created. Each graph should be matched to the KB data. The system selects the graph 
with the highest score and creates the appropriate SPARQL query. 

SemGraphQA (Beaumont et al., 2015) converts a question of user to a graph (or 
graphs) and generates SPARQL query. Initially the system accepts the user question 
and detects the entity identification, type identification and relation identification. For 
the entity identification DBpedia Spotlight is used. The type labels are used for type 
identification. A dictionary was created which contains the variants of relations of 
DBpedia with the help of WordNet for relation identification process. Each detection 
has a score and ambiguities are maintained. The syntactic dependency graph is gener-
ated by the Stanford parser. Syntactic dependency graph is not annotated with the se-
mantic nature of each word (entity or relation). Then for each word of the dependency 
graph its semantic nature (entity or relation) is determined. The ambiguities remain 
(many graphs are created). Each graph corresponds to the KB elements. The ambigui-
ties, created by matching, remain. Graphs are sorted by score and SPARQL queries 
are created. 

YodaQA (Baudiš, 2015, September) is a hybrid question answering system. This 
means that the answer is determined by structured and unstructured data (English 
Wikipedia, enwiki). It still uses two KBs: DBpedia, Freebase. The system follows a 
pipeline framework and is influenced by DeepQA. YodaQA consists of four phases. 
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The first phase is called Question Analysis. The user question is applied pos-tagging, 
dependency parsing and name entity recognition. The purpose of the question analysis 
is to find some features such as clues (keywords), focus (what the question asks for), 
and LAT (Lexical Answer Type). The result of the question analysis is used by the 
hybrid databases to generate candidate answers. The second phase is called Answer 
Analysis and is responsible for discovering some features for each answer. The third 
stage is the merging of the answers, and the last phase is the scoring of the answers. 

4.6. Other semantic question answering systems 

ComQA (Jin et al., 2019) converts the user question into a graph (or graphs). The sys-
tem consists of three phases: question parsing, query graph construction, and candi-
date subgraph evaluation. In the first phase, it accepts the user question and extracts 
entities with the use of DBpedia Spotlight. The system detects the relations with the 
use of Stanford Parser that creates the dependency-tree. In this phase, a set of extract-
ed entities is created and a set of extracted relations, considering the Knowledge Base. 
The system also extracts RDF triples from the syntactic structure and the hidden 
structure of the dependency-tree. In the second phase, the system creates query graphs 
by joining the RDF triples. In the last phase, ComQA corresponds the query graphs 
with KB. Finally, it evaluates the matchings to generate the answer. The ranking is 
based on semantic similarity. 

WDAqua-core1 (Diefenbach et al., 2020· Diefenbach et al., 2018b) is a multilingual 
system in five different languages namely English, German, French, Italian and Span-
ish.Also it can query several KBs such as Wikidata, DBpedia, MusicBrainz, DBLP 
and Freebase at the same time. The system consists of 4 steps: question expansion, 
query construction, query ranking and response decision. In the first step, the system 
detects all entities, properties, and classes, which exist in the user's question based on 
some rules. It is possible for an element of the user question to have many possible 
meanings (KB mappings). In the second step, the system creates many SPARQL que-
ries because there can be many interpretations of the question. In the third step, the 
system sorts the SPARQL queries.  In the last step, it adds an additional confidence 
score tothe first ranked query. If this calculation is smaller than threshold, then the 
whole candidate list does not fit the user's question and therefore the system will not 
answer the user question. 

IQA (Interactive Query Construction) (Zafar et al., 2020.) is a system based on user 
interaction in order to create the appropriate interpretation to the user question and, 
consequently, the appropriate SPARQL query. IQA can support complex questions 
using a user interaction scheme. The system consists of four components: Shallow 
Parser, Entity Linker, Relation Linker, Query Builder. Initially, the Shallow Parser 
discovers keywords phrases from the user question. It essentially identifies entities 
and relations. The Entity Linker and the Relation Linker match results of Shallow 
Parser with elements of Knowledge Base. It is possible for a keyword phrase of the 
user question to find more than one matches with elements of KB. The IQA system 
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uses an LSTM neural network for semantic matching of the question with the 
knowledge graph. We refer  readers to Chakraborty  et al., (2021) for a thorough sur-
vey of neural network-based question answering systems over knowledge graphs. The 
Query Builder component accepts results from the Entity Linker and the Relation 
Linker and creates SPARQL queries, which are sorted. The system displays to the us-
er the top-ranked SPARQL query. But also, the system displays the interpretation of 
the user's question in natural language. If the user agrees with the interpretation of the 
question that appeared, then the user presses acceptance. Otherwise presses reject, and 
the system explains the reason for rejecting the specific interpretation. At the same 
time, on the left-hand side of the user interface, the system displays to the user the 
current interaction option. This interaction is expressed with a question (inquiry) and 
displays the answer to the inquiry. The user selects one of the following options: yes, 
no, and I do not know. The interaction option and the top-ranked query depend on us-
er's feedback. The interaction continues until the user accepts the final query. 

The LAMA (Language Adaptive Method for question Answering) (Radoev et al., 
2018) is a multilingual system for questions in English or French. The semantic repre-
sentation of the user query is based on a set of lexico-syntactic patterns for entity and 
property extraction. This pattern-based method helps the system to be multilingual as 
the patterns are in different languages. The components of the system are the follow-
ing: a Question Type Classifier, an Entity Extractor, a Property Extractor and a 
SPARQL Query Generator. Initially, the Question Type Classifier identifies the ques-
tion type based on a keyword list. The Entity Extractor discovers possible candidate 
entities by matching the question words with the KB elements. The system uses vari-
ous criteria to find the most correct match. Also, it uses criteria for disambiguation of 
the matching. The Property Extractor works in parallel with the Entity Extractor. The 
first uses property lexicon and Word2Vec similarity vector to extract and match the 
question elements with the KB elements. Finally, the SPARQL Query Generator cre-
ates queries from the semantic representation of the question. This system supports 
complex questions (multiple entities and relations), analyzing each complex question 
into smaller queries. Although the SPARQL Query Generator creates many queries, 
the system is still able to reduce the number of unnecessary queries. It rejects queries 
that return null answers.   

The system of Sorokin and Gurevych (Sorokin & Gurevych, 2017) is an end-to-end 
neural architecture to create the semantic representation of a user’s question. Firstly, 
the system accepts the question in natural language. This semantic question answering 
system uses Stanford CoreNLP toolkit for tokenization POS tagging. After that, it ex-
tracts fragments using rules. A list of Wikidata entities is found for each fragment. In 
the next phase, the system creates possible semantic representations as graphs based 
on iterative representation generation. Specifically, for each entity that exists in the 
user question the possible relatiοns and constraints are discovered according to the 
knowledge base. Essentially, in this step the elements of the question are matched 
with the elements of the knowledge base. It is possible to create many graphs for an 
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entity and consequently many semantic representations are created. In the next step, 
the system chooses the best match or interpretation based on a neural network model. 
The candidate semantic graphs and the question are converted into fixed-size vectors, 
based on a CNN model. The best graph is found based on cosine similarity. Finally, it 
generates the SPARQL query.   

The system of Athreya et al. (2021) is a neural network-based QAS over a knowledge 
graph using query templates. It accepts the question of a user in natural language and 
performs classification into the corresponding template. Classification is achieved 
with the help of recursive neural networks. In the first phase, which is called Question 
Analysis, dependency parsing, and POS tagging are applied using the English Stan-
ford Neural Network dependency parser and POS-tagger. In the second phase, called 
Input Preparation, the result of the previous phase, syntactic parsing, is vectorized in 
order to be used by the recursive neural network, during the third phase of system. In 
this phase, the Tree-LSTM is applied to learn the question. Also, the corresponding 
query templates are found. In particular, the top-n SPARQL templates are found. The 
Slot Filling is the next phase. In Slot Filling, each candidate SPARQL template has 
three kinds of slots: resources, predicates, ontology classes. These slots are filled by 
mapping to the KB and to represent semantically the user’s question. The SPARQL 
queries are generated when slots are filled.  

The system of Liang et al. (2021) is a Tree-LSTM-based neural network QAS over a 
knowledge graph. The system consists of five components. The first component is 
called Question Analysis. In the first component, the system accepts the question of 
the user in natural language and applies tokenization, POS tagging, lemmatization and 
dependency parsing. Question Type Classification is the second component of system. 
In this component, it detects the type of the question using machine learning. Another 
task of this component is mapping the elements of the question to the elements of the 
KB. For the identification of resources, properties and classes, the system user several 
phrase mapping systems such as DBpedia Spotlight, TagMe, EARL, Falcon and 
RNLIWOD. The next component is Query generation. In Query generation, the 
"WHERE" clause is determined and candidate SPARQL queries are generated. The 
Query ranking is the last component. This component accepts the list of candidate 
SPARQL queries and is responsible to rank these queries. The ranking is based on 
Tree-structured Long-Short Term Memory (Tree-LSTM). The system selects the most 
appropriate queries. Finally, it executes the generated query.  

5. Discussion & Conclusions 
In the semantic web, experienced users can use the SPARQL language and therefore 
search for answers in knowldge bases. On the other hand, ordinary users, who do not 
know the SPARQL language or the KB structure, face difficulties in searching linked 
datasets. Semantic Question Answering systems is a solution to this problem. Many 
prototype semantic question answering systems have been developed for different da-
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tasets. In SQA systems, users ask questions in natural language using their own ter-
minology and receive a response generated by searching in an RDF knowledge base.  

So far, there is a survey in Höffner et al. (2017) that describes challenges and solu-
tions for semantic question answering systems. Also, a survey of Diefenbach et al. 
(2018a) referred to techniques and steps used in semantic question answering systems. 
This article distinguishes categories of semantic question answering systems based on 
criteria in order to lay the groundwork for a collection of common practices as no cat-
egories of semantic question answering systems have been identified. This categoriza-
tion can also serve as an archive of frameworks and systems where each system is 
classified according to the techniques that it uses for various criteria, such as such as 
types of questions, types of analysis done on questions, types of representations used 
for questions and their matching functions. This can help developers, or anyone inter-
ested to find out directly the technique or steps used by each system, or to benchmark 
her own system against existing ones.  

The criteria that we created for semantic question answering systems overlap. For ex-
ample, the Casia@V2 system, as shown in Table 2, is classified for all criteria except 
for "Characteristics of the KB and Interaction of user". All systems must belong to 
one of the sub-categories of “types of domains”. The same goes for the types of data 
sources criterion. Most of the semantic question answering systems use structured da-
ta as they were created for this purpose, to look for answers in structured data. How-
ever, there are also few semantic question answering systems that use both structured 
and unstructured data, which are called hybrid. We consider that when the question is 
converted from free text to SPARQL then the question also becomes graph-based 
since the SPARQL questions also identify an abstract graph. Therefore, semantic 
question answering system use semantic graph-based models. As for the other models 
such as algebraic, probability models, feature based, and theoretic models (in hybrid 
SQASs), it depends on the architecture of the system whether it will use these criteria.  

Ιn terms of the Types of questions and Answers criteria, it depends on the system ar-
chitecture. There are systems, such as SMIQ, that accept all types of questions (fac-
toid, list, boolean, count question) and give all kinds of answers (date, resource, 
string, boolean, numeral). While others, like SemSek, may not be able to process all 
types of questions or may not be able to provide all kinds of answers. The "answers" 
criterion applies to all semantic question answering systems, but it also depends on 
the nature of the system, whether it can create all kinds of answers or answer all kinds 
of questions.  

The same applies to the criteria Characteristics of the KB and Interaction of user. It 
depends on the system architecture whether it will use these criteria. All systems use 
semantic analysis. Many of the systems apply dependency analysis. Most systems use 
this type of analysis, as structured data is linked data. This does not mean that they do 
not apply other types of analysis, again depending on the system architecture. Many 
systems can apply many types of analysis.  
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We notice that in many semantic question answering systems the division of the user 
question into multiple KB queries is applied in order to answer the difficult or com-
plex questions of the users. ComQA uses the above solution approach, i.e., it divides 
the question into smaller queries and, finally, tries to combine RDF triples to answer 
the user's question. LAMA analyzes each complex question into smaller queries. 
ISOFT uses structured and unstructured data to solve complex questions, too; it usual-
ly divides questions (when they are large) into sub-queries. Concerning complex 
questions, each system uses its own approach, such as CANaLI that can handle com-
plex questions as finite automata, while Swipe supports complex queries based on 
Search by Example.  

The criterion of the "characteristics" of the KB (multilingualism, distributed 
Knowledge Base) is mainly met in more recent systems. Older systems also tackle 
multilingualism occasionally. For example, the system SWIP states that its architec-
ture is suitable for multilingualism and states that it has tackled the task 1 of QALD-3, 
namely multilingual question answering. However, at the same time it states that it 
accepts questions only in English. What we have noticed from recent systems (exist-
ing also, of course, in some older ones) is that they focus more to the challenge of 
multilingualism such as LAMA, WDAqua-core1 and QAnswer (Diefenbach et al., 
2019). We can observe a common element between LAMA and SWIP that these sys-
tems use patterns.  

The “interaction of user” criterion (user interaction in disambiguation, type of users) 
is also not always met, depending on the nature of the system, i.e., there are systems 
that allow the user to engage in disambiguation while other systems face this obstacle 
differently. IQA, a recent system, and FREyA, an older one, both use user interaction 
in disambiguation. Finally, most systems are created for casual users. IQA uses a user 
interaction scheme, i.e. the user intervenes in order to disambigunate the question so 
that the system can answer user’s question successfully. So far, we have seen that in 
semantic question answering systems, user interaction is utilized for disambiguation. 
In the IQA system, user interaction is utilized to answer complex questions, having, of 
course, the same goal, namely to disambiguate words.  

To summarize, we classified the SQASs according to the following criteria: types of 
domains, types of data sources, types of questions, types of analysis done on ques-
tions, types of representations used for questions and their matching functions, char-
acteristics of the ΚΒ, types of techniques used for retrieving answers, interaction of 
user, and answers. This paper was inspired these criteria by Mishra & Jain (2016). In 
conclusion, the differences of our classification criteria with those of Mishra & Jain 
(2016) can be grouped into 3 categories: 

1. differentiated criteria (in terms of the values they get),  
2. criteria not included in Mishra & Jain (2016) but included in our survey be-

cause they are used in SQAs, and  
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3. criteria included in Mishra & Jain (2016) that have been replaced in our sur-
vey with other, more appropriate, criteria.  
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