
Clustering Classifiers for Knowledge Discovery

from Physically Distributed Databases

Grigorios Tsoumakas, Lefteris Angelis, Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki

Thessaloniki 54124, Greece

Abstract

Most distributed classification approaches view data distribution as a technical issue
and combine local models aiming at a single global model. This however, is unsuit-
able for inherently distributed databases, which are often described by more than
one classification models that might differ conceptually. In this paper we present an
approach for clustering distributed classifiers in order to discover groups of similar
classifiers and thus similar databases with respect to a specific classification task. We
also show that clustering distributed classifiers as a pre-processing step for classifier
combination enhances the achieved predictive performance of the ensemble.
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1 Introduction

Nowadays, physically distributed databases are increasingly being used for
knowledge discovery. Advances in network technology and the Internet as
well as the growing size of data being stored in today’s information systems
have contributed to the proliferation of distributed data mining. Globalization,
business-to-business commerce and online collaboration between organizations
rose lately the need for inter-organizational data mining, which also involves
mining physically distributed databases.

It is often unrealistic to collect distributed data for centralized processing. The
necessary central storage capacity might not be affordable, or the necessary
bandwidth to efficiently transmit the data to a single place might not be
available. In addition, there are privacy issues preventing sensitive data (e.g.
medical, financial) from being moved around the distributed databases. The
most effective approach to deal with these problems is to locally mine each
database and combine the resulting models with an appropriate technique.
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However, most classifier combination methodologies view data distribution as
a technical issue and treat distributed databases as if they were parts of a
single database. This has been identified as a very narrow view of distributed
data mining [17],[26]. Real-world, inherently distributed databases have an
intrinsic data skewness property. The data distributions in different partitions
are not identical. For example, data related to a disease from hospitals around
the world might have varying distributions due to different nutrition habits,
climate and quality of life. The same is true for buying patterns identified
in supermarkets at different regions of a country. Another example are Web
document classifiers trained from directories of different Web portals.

The classic approach of combining distributed classifiers in an attempt to de-
rive a single global model is unsuitable for cases similar to the above. There
might not really exist a single model that describes the distributed data, but
two or more groups of models. Therefore, one should first explore the depen-
dencies of local models instead of a straightforward integration.

This paper presents an approach for clustering local classification models in-
duced at physically distributed relational databases. The proposed approach
groups together classifiers with similar behavior and thus i) facilitates the
learning of new concepts that characterize important common features of,
and differences between, the respective databases and ii) leads to the creation
of a classification model for each cluster that together exhibit more accurate
predictions than a single global model. Therefore, it can be used both as a
method to discover groups of similar databases with respect to a specific clas-
sification application as well as a pre-processing step to enhance predictive
performance in distributed classification. Experimental results on real-world
data, synthetic data, and data produced by a new technique for splitting a sin-
gle database into various parts with different context, confirm the effectiveness
of the proposed approach.

It is assumed that the distributed databases have the same set of attributes
and are syntactically homogeneous. These assumptions are often true when
the distributed databases belong to the same organization, for example health
care units and hospitals of a regional health network, or local branches of a
financial institution.

The rest of this paper is organized as follows. Section 2 provides background
knowledge on supervised classification and related work on classifier combi-
nation methods. Section 3 presents our approach on clustering classifiers for
knowledge discovery from physically distributed databases. Section 4 gives
comparative experimental results confirming the effectiveness of our approach
and Section 5 discusses its complexity and scalability. Finally, Section 6 con-
cludes, summarizes the advantages of the proposed approach and points to a
future research direction.
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2 Background

2.1 Supervised Classification

Supervised classification is one of the most common machine learning and
data mining tasks [19]. It deals with the problem of identifying interesting
regularities between a number of independent variables and a target or de-
pendent categorical variable in a given data set. For example, given a set of
training instances (xi1, xi2, ..., xik, yi), i = 1..N , the task is to compute a clas-
sifier, or model, or concept that approximates an unknown function y = f(x)
that correctly labels any instance drawn from the same source as the training
set.

There exist many ways to represent a classification model and many more al-
gorithms to generate it. Typical classifier learning approaches include concept
learning, neural networks, decision trees, rule learning, Bayesian learning and
instance-based learning [14]. All of these approaches construct models that
share the common ability to classify previously unknown examples of a do-
main based on examples of the same domain that were used for their training.

The output of a classifier can be i) the label of a class, ii) rankings for all the
classes and iii) measures of uncertainty such as belief, confidence, probability,
possibility, plausibility or other for each class. Consider for example, a domain
for predicting tomorrow’s weather with three possible classes: sunny, windy,
rainy. The corresponding output for the three types of classifiers could be: i)
sunny, ii) 1 - sunny, 2 - windy, 3 - rainy and iii) 0.8 - sunny, 0.5 - windy, 0.1 -
rainy. Classifiers that output labels are often called hard classifiers, while those
that output measures of uncertainty are called distribution/soft classifiers.
Classifiers that output rankings are not so common in the machine learning
literature.

2.2 Classifier Combination

The way that multiple classifiers are combined is an important research issue
that has been investigated in the past from the communities of statistics,
pattern recognition, machine learning and data mining.

When only the label of the predicted class is available, then the simplest
combination method that can be used is Majority Voting [9], which does not
require a training stage. In this case, the class that receives the most classifier
predictions is the final result. Weighted Majority Voting [12], weights the
decision of each classifier by its performance on the training data.
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When a measure of belief, confidence, certainty or other about the classifica-
tion is available along with the class label, then a number of different rules
for combining these measures have been suggested, like Sum, Min, Max, Prod
and Median. An an interesting study of these rules is [10].

An alternative approach to classifier combination involves learning a global
classifier from distributed data. Stacked Generalization [28], also known as
Stacking in the literature, combines multiple classifiers by learning the way
that their output correlates with the true class on an independent set of in-
stances.

The concept of Stacked Generalization was applied to distributed data min-
ing, via the Meta-Learning methodology [3]. Meta-Learning focuses on com-
bining distributed data sets and investigated various schemes for structuring
the meta-level training examples. It assumes that there is a single model that
could be induced from the distributed databases, and thus could benefit by
using our approach as a pre-processing step.

The idea of all-to-all exchange of classifiers in order to avoid moving raw data
around the distributed nodes and make use of all available data for validation
purposes has been introduced in [22] in an extension of Stacking. The same
idea is used in our approach to ensure the availability of as many data as
possible for calculating the classifier distance, and at the same time avoiding
the costly process of moving raw data around the distributed databases.

An approach that discovers a single comprehensible model out of the dis-
tributed information sources can be found in [4]. The main idea in the DAG-
GER algorithm is to selectively sample each distributed database so as to
form a new data set that will be used for inducing the single model. Sampling
aims at selecting a minimal spanning example set from every decision region
of each model. This is a subset of examples that demonstrated all the values of
the attributes of the set of examples within the region. This approach requires
moving raw data from each distributed database, which could be costly, but
more importantly, it could be not allowed in applications regarding sensitive
or private data.

Another approach that aims at the creation of a single model is [5], where
direct integration of distributed models is performed. It involves learning de-
cision trees in parallel from disjoint data, converting trees to rules and com-
bining the rules into a single rule set.

An abstract approach that addresses the problem of conceptual differences of
distributed databases is Knowledge Discovery from Models [26]. It consists of
four steps: 1) build local models, 2) compare local models at a central site
to identify interesting differences and similarities 3) Explain differences and
similarities through additional analysis steps 4) Act on the insights. An in-
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stantiation of this abstract approach based on Bayesian networks is presented
in [2]. This approach is specific to Bayesian classifiers, while the proposed one
can make use of any type of classifier.

In [13], a different clustering approach is followed in order to deal with the
problem of semantic heterogeneity of distributed databases. Clustering of the
databases is performed based on the distances of aggregated data that summa-
rize each distributed database. This approach demands the exchange of data,
that even aggregated could carry important sensitive information. In addi-
tion it does not use the clustering result for guiding a classifier combination
method.

Finally, [15] presents an approach on clustering distributed databases, based on
association rules. The clustering method used, is an extension of hierarchical
agglomerative clustering, that uses a measure of similarity of the association
rules at each database.

3 Clustering the Classifiers of Distributed Databases

Clustering distributed classifiers is based on: i) a measure of classifier distance,
ii) an efficient algorithm to compute this distance measure for classifiers in-
duced at physically distributed databases and iii) a clustering algorithm that
will receive as input the calculated distances and will output the clusters.
These issues along with the subject of exploiting the clustering result in or-
der to achieve better classification accuracy are the topics of the following
sub-sections.

3.1 Classifier Distance

We here introduce the notion of classifier distance as a measure of how different
two classification models are and propose its empirical measurement based on
the classifiers’ predictions on instances with known classes of an independent
data set. By independent, we mean a data set whose instances were not part of
the classifiers’ training set. This will ensure unbiased results, as the predictions
of classifiers on their training data tend to be optimistic.

If both models are soft classifiers, then some measures that can be used for cal-
culating classifier distance are the Euclidean Distance, the Canberra Distance
and the Czekanowski Coefficient[11]. In this case, the distance of two classi-
fiers is defined as the average distance of their output vectors with respect to
all instances of the independent data set.

5



If both models are hard classifiers, then some measures that can be used
for calculating classifier (dis)similarity are Yule’s Q statistic, the correlation
coefficient, the disagreement measure and the double-fault measure [21].

If one model is a soft classifier and the other a hard classifier, then one could
transform the output of the soft classifier to a single class label by selecting
the label with the maximum certainty value, breaking ties arbitrarily. Then
the distance measures for hard classifiers can be used for calculating classi-
fier distance. Another solution is to transform the output of hard classifiers
to a vector of certainty values for each class, but this usually requires addi-
tional training data. Therefore we suggest the first solution for calculating the
distance of mixed type of classifiers.

The proposed empirical evaluation of classifier distance exhibits the following
beneficial properties:

• Independence of the classifier type. It is able to measure the distance of two
classification models, whether they are decision trees, rules, neural networks,
Bayesian classifiers, or other. This is useful in applications where different
types of learning algorithms might be used at each distributed node.
• Independence of the classifier opacity. It is able to measure the distance
of two classification models, even if they are black boxes, providing just
an output with respect to an input. This is useful in applications where
the models are coming from different organizations that might not want to
share the details of their local models.

In this paper we focus on the use of the disagreement measure for hard clas-
sifiers because i) it is simple and fast to compute ii) it can be computed
incrementally, iii) it gives a value that directly expresses the distance of two
classifiers that can be used without any transformation for the clustering pro-
cess, and iv) it can be used for mixed type of classifiers, by transforming the
output of soft classifiers to a single class label.

Consider two hard classifiers, Cx and Cy and a database D with M tuples.
The disagreement measure is calculated as follows:

dD(Cx, Cy) =

∑M
i=1 δ

(i)
x,y

M
(1)

where δ(i)
x,y equals 1 if classifiers Cx and Cy have different output on tuple i,

and 0 otherwise.
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3.2 Distributed Classifier Distance

Accurate calculation of the distance between distributed classifiers is needed,
in order to accomplish an effective clustering result. This can be achieved by
ensuring the availability of substantial independent instances, as the proposed
distance measuring method depends on the output of the classifiers on inde-
pendent instances. At the same time, the communication cost should be kept
at the minimum due to the distributed nature of data.

According to the above, we propose the use of each distributed database for
measuring the distance of each pair of classifiers apart from the pairs that
contain the local classifier. This way only classifiers get to be exchanged and
no raw data at all, and the distance of all pairs of classifiers is calculated based
on all independent data.

The whole process of calculating the distance of the distributed classifiers can
be broken down into the following steps:

(1) Consider N distributed databases Di, i ∈ {1..N} and the correspond-
ing classification models Cj, j ∈ {1..N}, that were induced at those
databases. At first, each databaseDi imports all classifiers Cj, j ∈ {1..N},
j 6= i from the rest of the distributed databases.

(2) Then, at each database Di we calculate the distance for all pairs of clas-
sifiers apart from the ones that contain the local classifier Ci, according
to Equation 1. Thus, we calculate:

dDi
(Cx, Cy),∀(x, y) ∈ S2

i : x < y

where S = {1, . . . , N} and Si = S − {i}.
(3) The result of the distance calculation for each pair of classifiers Cx, Cy,

at each database is broadcasted to every other database. Therefore, at
each database there will be N − 2 calculated distances for each pair of
classifiers 1 .

(4) The average of these distances is obtained as the overall distance for each
pair of models:

d(Cx, Cy) =
1

N − 2

N
∑

i∈Sx

⋂

Sy

dDi
(Cx, Cy) (2)

Algorithm 1, illustrates the above process of calculating the distances of all
pairs of classifiers given all distributed databases. The input is an array DB of
N databases and an array C of N classifiers. The output is an array Dist with

1 The distance of each pair of local classifiers is evaluated in all N databases, apart
from the two databases that were used for training these two classifiers.
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distances for all distinct pairs of classifiers. Dist has a size of N∗(N−1)
2

, which
corresponds to the lower triangular part of the NxN distance matrix of the
classifiers. This encoding is used to save space in storing classifier distances.

Algorithm 1 Distributed Classifier Distance
Input

DB: an array of N databases
C: an array of N classifiers

Output

Dist: an array of N ∗ (N − 1)/2 distances
Begin

// Calculate the distance based on each database
For j ← 1 To N

TempDist[j]← CalcDist(DB[j], C, j);

// Average distances
For i← 1 To N ∗ (N − 1)/2
begin

Dist[i]← 0;
For j ← 1 To N

Dist[i]← Dist[i] + TempDist[j][i];
end

For i← 1 To N ∗ (N − 1)/2
Dist[i]← Dist[i]/(N − 2);

End

The algorithm first calculates for each database the distances of all pairs of
classifiers. This is achieved using the CalcDist function, which is presented in
Algorithm 2. All calculated distances are stored in the two-dimensional array
TempDist. They are then divided by N−2 to obtain the final distance vector.

Given a database, function CalcDist calculates the distances of all pairs of
classifiers apart from those that contain the classifier that was trained on that
database. The input is an array D of M instances (a database), an array C
of N classifiers and the database’s index j. The output is an array Dist with
distances for all distinct pairs of classifiers, which has a size of N∗(N−1)

2
.

For each tuple i of the database the algorithm calculates the output O of all
classifiers once (apart from the local classifier) and then proceeds by comparing
the output for all pairs (Cx, Cy) (apart from the pairs that contain the local
classifier). Each time a pair of classifiers disagrees on the output, its distance
is increased by one. In the end, the distance is divided by the number of
instances to obtain the actual disagreement measure.
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Algorithm 2 Classifier Distance
Input

D: an array of M instances (a database)
C: an array of N classifiers
j: the index of database D

Output:

Dist: an array of N ∗ (N − 1)/2 distances
Begin

For i← 1 To M
begin

// Calculate the output of classifiers
For x← 1 To N

I f x 6= j Then

O[x]← C[x](D[i]);

// Update distances
index← 1;
For x← 1 To N − 1

For y ← x+ 1 To N
begin

I f x 6= j and y 6= j Then

I f O[x] 6= O[y] Then

Dist[index]← Dist[index] + 1;
index← index+ 1;

end

end

// Normalize distances
For index← 1 To N ∗ (N − 1)/2

Dist[index]← Dist[index]/M ;
End

3.3 Clustering

Having calculated the pairwise distances of all distributed classifiers, we pro-
ceed by clustering them using Hierarchical Agglomerative Clustering [6].

Agglomerative clustering algorithms usually start with assigning each of the
data points to a single cluster. Then in each step two clusters are merged,
until only one is left. The merging process is based on measures of distance
between clusters. There are various strategies for evaluating inter-cluster dis-
tances including single linkage, complete linkage,Ward’s method and weighted
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average linkage [8]. The sequence of merging the clusters can be visualized as a
tree-shaped graph, which is called a dendrogram. For the automatic selection
of a single clustering result from the sequence, a user-specified cutoff value can
be provided, that affects when the agglomeration of clusters will stop.

We chose this clustering method because: i) it is not possible to know the
number of clusters in advance, ii) it requires the pairwise distances of the
items to be clustered, which have already been computed for the distributed
classifiers, iii) although the space and time complexity of the method is O(n2),
the number of classifiers will not usually be very large in common applications
of distributed data mining and iv) it produces a convenient visualization of
the clusters.

3.4 Classification

The descriptive knowledge that the final clustering result conveys about the
distributed classifiers, can be used for guiding the combination of the classi-
fiers. Specifically, the classifiers of each cluster can be combined in order to
produce a single classifier corresponding to each cluster. The rationale is that
this approach leads to superior results both in interpretability and predictive
performance.

A single model has poor interpretability because it is the fusion of the different
underlying concepts of the distributed databases. For the same reason it will
be poor in classifying new examples located at any database. In contrast,
the classifiers that correspond to each cluster capture the cluster contexts
and their interpretation can provide useful knowledge with respect to each
cluster. Moreover, when classifying a new example at a database only the
classifiers that belong to the cluster of this database will be combined, leading
to increased accuracy.

4 Empirical Evaluation

A series of experiments was used to evaluate both the capability of our ap-
proach to detect groups of similar classifiers and the predictive performance
of clustered classifiers. The following sections describe these experiments and
the data that were used.
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4.1 Data Sets

Our approach demands data with natural skewness and variability in context,
which are found in real-world distributed databases. However, the availability
of such data sets offered as a test-bed for experimenting is limited, an impor-
tant hindrance to empirical research on distributed knowledge discovery.

This raises the issue of how to consistently simulate the data properties of
inherently distributed databases, in order to setup a robust platform for ex-
periments. Clearly, plain splitting of a large database to many smaller parts
isn’t realistic enough for mining inherently distributed data. A more efficient
way to simulate the distribution is to create synthetic data from different con-
cepts or modify existing domains by adding different noise for each context.

The first collection of data sets that we used in our experiments were synthetic.
We created them according to the technique described in [20], which is based
on a multi-normal pseudo-random data generator. Each data set contained
12 variables a1, . . . , a12, following the multivariate normal distribution with
parameters: mean 0, variance for each one of them 1 and covariances between
them either 0, ±0.2 or ±0.5. A binary (0, 1) classification variable was also
calculated as a function of the variables. Specifically, three data sets were
created with covariances 0, ±0.2 and ±0.5 and classification rule a1+a11 > 0.
Another three data sets were created with covariances 0, ±0.2 and ±0.5 and
classification rule a1+ a2+ a11+ a12 > 0. Finally, three data sets were created
with covariances 0, ±0.2 and ±0.5 and classification rule a1 × a2 + a12 > 0.
All of the above 9 data sets comprised of 10000 instances each.

The second and third collection of data sets that we used, were created based
on a new technique that we propose for controllably creating data sets with
different context from a single data set. The main idea is based on the notion
of contextual attributes [23], [24], whose values are associated with a different
context within a classification domain. A change of value of such an attribute
signifies a change of the underlying classification concept. For example, the
attribute season is a contextual attribute within the domain of predicting
weather.

The technique splits a single database into as many parts as the distinct values
of a contextual attribute of that database. In each of the resulting parts of the
database all tuples will have the same value for the contextual attribute. This
attribute is then removed from those parts. This leads to syntactically homo-
geneous databases with a different classification context. By further splitting
each of these parts into as many smaller parts as necessary for an experiment,
one can controllably create a varying number of syntactically homogeneous
databases with the characteristics of physically distributed data.
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We used our technique on the US Census Bureau data set from the UCI
Machine Learning repository [1], due to its large size and the availability of
discrete attributes that we could choose to split. We chose the sex of the
persons as a contextual attribute, because it is probably not a primary factor
that influences the class attribute (gross income), but it can influence the way
the rest of the attributes relate with the class attribute. Therefore, it makes a
good choice of a contextual attribute. We also used the vowel data set, because
it was used in the past for studying contextual attributes and we knew that
the attribute sex of a person has been identified as a contextual attribute.

The last collection of data sets that we used in our experiments were the
physically distributed Heart data from the UCI Machine Learning repository,
which are data about heart-disease collected from 4 different hospitals: 1)
Cleveland Clinic Foundation, 2) Hungarian Institute of Cardiology, Budapest,
3) V.A. Medical Center, Long Beach, CA and 4) University Hospital, Zurich,
Switzerland.

4.2 Clustering

In order to evaluate whether our approach correctly groups the relevant clas-
sifiers together, we used data sets with known clustering. The clusters of syn-
thetic data and data produced by our technique are artificially created and
therefore known a priori. A previous study on clustering distributed databases
[13] that used the Heart data, resulted in grouping together the Hungarian
and Cleveland hospitals and considered the two other hospitals as stand-alone
clusters.

We used an implementation of the c4.5 algorithm [18] in Java from the WEKA
toolkit [27] as the local learning algorithm for every database and calculated
the distance based on the disagreement measure. The resulting distance vector
then served as input to the linkage function of Matlab [7] which hierarchically
clustered the classifiers using the complete linkage strategy. The dendrograms
produced by this process are depicted in Figure 1.

We notice that classifiers from the same clusters are clearly grouped correctly
together. Besides the visual interpretation of clustering, the actual clusters
produced by the cluster function of Matlab match the true clustering of the
databases.
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Fig. 1. Dendrograms produced by Hierarchical Agglomerative Clustering

4.3 Classification

The second set of experiments aims at discovering whether clustering clas-
sifiers adds to distributed classification approaches as a pre-processing step.
Intuitively the answer to this question is positive. If there are more than one
groups of classification models that describe the distributed data, then a single
classifier will function as an average model that will under-perform in data of
either cluster.

To empirically confirm this claim, we conducted a comparative study of the
predictive performance of i) stand-alone local classifiers, ii) Majority Voting
[9], iii) Stacking [3] and iv) clustering local classifiers using our approach and
combining the classifiers of each cluster with Majority Voting.

The setup of the experiments was the following:

(1) Randomly split each of the distributed databases into a training set (75%)
and a test set (25%).

(2) Train a c4.5 classifier at each one of the distributed nodes using the locally
available training set.

(3) Compare the following approaches:
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• Evaluate each classifier on each of the corresponding local test data and
average the results.
• Evaluate the majority voting of all classifiers on the sum of the test
data.
• Split the sum of all test data into 50% of meta-train data and 50% of
test data. Train a c4.5 meta-classifier on the first 50% and then evaluate
it on the rest of the data.
• Cluster classifiers and for each cluster evaluate the majority voting of
the classifiers of that cluster on the sum of the test data of that cluster.
Weight the results of each cluster by the number of databases it contains
and average over the total number of databases.

Table 1 presents the results that are averages over 10 runs of the above de-
scribed experiment. The first column indicates the classification method. The
next columns show the accuracy result of each method on the four collections
of data sets. The best result for each collection of data sets is indicated with
bold typeface.

Table 1
Results showing the accuracy percentage for the four different approaches

Approach Synthetic US Census Vowel Heart

Single Classifiers 94.84 85.53 56.23 54.97

Majority Voting 77.24 86.40 59.84 53.11

Stacking 76.61 85.06 57.50 58.17

Clustering + Majority Voting 96.30 86.73 64.18 55.00

The results with the Synthetic data sets prove on one hand the bad perfor-
mance of Majority Voting and Stacking, which are methods that assume there
is only one model describing the distributed data. Usually such methods lead
to better results than the average accuracy of single classifiers. In this case,
where data come from different concepts the failure of such methods is evi-
dent. In contrast, the clustering of classifiers manages to increase the average
classification accuracy.

The results with the US Census Bureau and Vowel data sets are comparable,
although there is a smaller accuracy increase in comparison to the Synthetic
data sets. The obvious reason is that the Synthetic data sets were artificially
created from three clearly different concepts. The concepts in the clusters of
the US Census Bureau and Vowel data sets that were split using the proposed
technique are more related to each other. This shows that there is a trade-
off between the similarity of the concepts of the underlying clusters and the
increase in classification accuracy by using our approach. This is a reasonable
conclusion as very similar concepts can be easier described by a single average
model.
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The only collection of data sets where our approach is not the best, is the
Heart data. However, the results on these data should be taken with care.
When experimenting with a classifier combination technique, it is much easier
to draw conclusion with respect to the predictive performance of the ensemble
when all of the participating classifiers have the same accuracy. In the Heart
data, two of the local classifiers had very poor quality due to a lot of missing
values within the corresponding data sets. Therefore, the results might be
misleading. For example, the meta-classifier of Stacking might have learned to
select only the two good classifiers in classifying the data. This might lead to
better accuracy results, but there is no practical use of the global classification
model.

Table 2 sheds more light into the details of the accuracy results. It shows the
clustering result and the average accuracy of the single classifiers induced from
the synthetic databases. We notice that the average accuracy of each classifier
and each cluster varies, but all classifiers exhibit high accuracy in general.
Therefore it is clear that approaches 2 and 3 exhibit bad performance due to
their ineffectiveness in detecting the three different classification concepts and
not due to the ineffectiveness of the local classifiers. It also shows the average
accuracy of the single classifiers per cluster, the accuracy of the best classifier
per cluster as well as the accuracy of our approach per cluster. We notice that
our approach not only exceeds the average accuracy of the local classifiers but
it is better than all of the best local classifiers.

Table 2
Accuracy of the local classifiers

Cluster Classifier Accuracy Average Best Clustering

1 98.56

1 3 98.99 98.84 98.99 99.22

6 98.99

2 91.34

2 4 90.40 90.39 91.34 92.90

5 89.42

7 95.66

3 8 94.46 95.28 95.71 96.79

9 95.71
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5 Scalability

This section starts the discussion of the scalability of the proposed approach,
by an analysis of its computational complexity. It is assumed that each database
calculates the disagreement measure of each pair of classifiers in parallel with
every other database and thus the focus is on the complexity of the algorithm
at a single database, as described by Algorithm 2.

For every tuple of the database the algorithm first calculates the output of
N − 1 classifiers and then the disagreement measure is computed for all com-
binations of N − 1 classifiers in pairs. This number is equal to:

(

N − 1

2

)

=
(N − 1)(N − 2)

2

Therefore, for a database with M tuples the order of time complexity of the
algorithm is O(MN 2).

5.1 Scaling Up to Very Large Databases

The proposed approach scales up linearly with respect to the number of tuples
in a database, which is very efficient. In addition, the computation of the
disagreement measure is incremental, which means that the space complexity
of the algorithm with respect to the number of tuples is constant and equal
to one tuple.

Still, one might want to use only a sample of the database for the calculation
of the disagreement measure, in order to reduce the computational burden,
especially in the case of a very large database. This is not a problem for the
proposed approach, as Algorithm 2 can be easily extended to provide control
over the number of tuples used at each database for distance calculation. This
leaves open the question of whether the quality of the obtained distance vector
will degrade.

To answer this question, Algorithm 2 was extended and an experiment was
setup using the 4 collections of data sets for the calculation of the disagreement
measure and varying the number of tuples used at each database. For the
collections of the large Synthetic and US Census Bureau data sets, the number
of tuples used for distance calculation varied from 50 to 1000 with a step of
50. Given that there were 9 Synthetic databases and 8 US Census Bureau
databases, the total number of tuples used for distance calculation varied
from 450 to 9000 and 400 to 8000 respectively. For the collections of the
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smaller Heart and Vowel data sets, the number of tuples used for distance
calculation varied from 10 to 120 with a step of 10. Given that there were 4
Heart databases and 6 Vowel databases, the total number of tuples used for
distance calculation varied from 40 to 480 and from 60 to 720 respectively.

The experiment showed that the clustering result was always correct for all
runs with the 4 collections of data sets, even with the minimum number of
tuples used for the calculation of the distance of each pair of classifiers. This
interesting finding shows that the disagreement measure is a robust distance
calculation metric that does not require a lot of data in order to be adequately
computed. Therefore, a small sample of each database is sufficient for the
process of distance calculation, saving computational time without trading off
quality.

We also recorded the time in milliseconds needed to calculate the disagreement
measure at a single database with respect to the number of tuples used for
the calculation. The plots in Figure 2 verify the linear scaling of the algorithm
with respect to the number of tuples.
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Fig. 2. Scalability with respect to tuples
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5.2 Scaling Up to Large Numbers of Databases

The complexity of distance calculation is square with respect to the number of
distributed databases. This could be a serious threat to the scalability of the
proposed approach, despite the fact that the computation of the disagreement
measure is simple and fast and that the number of distributed databases in
common applications is small. There still could be domains with large num-
bers of databases, especially in this era of increasingly networked information
systems.

It is possible to modify the proposed approach in such a way that the order of
time complexity is reduced from square to linear. This can be accomplished
by having the distance of each of the N∗(N−1)

2
pairs of classifiers calculated

at K databases instead of N -2, where K is a small constant, for example
1 or 2. The total number of distance calculations is then K∗N∗(N−1)

2
. If these

calculations are equally assigned to the N databases then each database would
perform K∗(N−1)

2
distance calculations instead of (N−1)(N−2)

2
, thus reducing the

complexity from square to linear.

This process demands an algorithm for equally assigning the N∗(N−1)
2

pairs of
classifiers to K databases, such that all databases calculate the distance of
K∗(N−1)

2
databases on average. For example, if K equals 2, then the distance

of each pair of classifiers must be calculated based on 2 databases and the
algorithm must ensure that each database calculates the distance of only N -1
pairs.

A greedy algorithm that implements the assignment process was constructed.
The algorithm iterates over each pair of classifiers and tries to allocate K
databases for it. The allocation satisfies the constraint of avoiding the two
databases that were used for training the two classifiers of the pair and further
selects the K databases with the minimum allocated pairs so far. The pseudo-
code is presented in Algorithm 3.

The algorithm uses three main structures: Table count of size N is used for
storing the number of pairs that allocated each database. The logical table
sel of size N is used to mark the databases that have been allocated sofar for
the current pair. Finally, the 2-dimensional table usedb of size N∗(N−1)

2
× K,

is used for holding the indexes of the K databases that are assigned to the
N∗(N−1)

2
pairs. The algorithm starts by iterating each pair and allocating the

database with the minimum allocated pairs. In ties, the last member of the
table is considered to be the minimum. Once the minimum database is found
(mink), table usedb is updated with this allocation, table count is updated by
increasing the number of allocations for the selected database and table sel is
updating by setting to true the selected database.
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Algorithm 3 Assigning classifier pairs to databases
Input

N : the number of classifiers
K: the number of databases for each pair

Output:

usedb: an array of N ∗ (N − 1)/2×K with the assignment
Begin

pair ← 0
For i← 1 To N

count[i]← 0;
For i← 1 To N − 1

For j ← i+ 1 To N
begin

For k ← 1 To N
sel[k]← false;

For k ← 1 To K
begin

min← (n− 1) ∗ (n− 2)/2;
For l ← 1 To N

I f l 6= i and l 6= j and sel[l] = false and count[l] <= min Then

begin

minl ← l;
min← count[l];

end

usedb[pair][l]← mink;
count[mink]← count[mink] + 1;
sel[mink]← true;

end

pair ← pair + 1;
end

End

An experiment was setup in order to visualize the complexity of the proposed
approach with respect to the number of databases, using both the original
algorithm as well as the extra algorithm for assigning pairs to databases, for
K equal to 1 and 2. Firstly, each of the 9 Synthetic databases with 10000 tuples
was split into 8 equal parts, resulting into 72 databases with 1250 tuples. Then,
distance calculation was performed using 4 to 72 databases. Figure 3 shows a
plot of the time in milliseconds needed to calculate the disagreement measure
with respect to the number of databases used for the calculation.

The plot verifies the square complexity of the original approach. It further
shows that using 1 or 2 databases for distance calculation of each pair reduces
this complexity to super-linear as there is also the overhead of the assignment
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algorithm. It was also noticed that the clustering result remained correct for
all numbers of participating databases even when using only one database
for distance calculation. This reinforces the conclusion of the previous section
that the disagreement measure is a robust metric for classifier distance that
does not require a lot of data to be computed.

6 Conclusions and Future Work

This paper has presented a new approach for clustering classifiers induced from
physically distributed relational databases. The proposed approach groups to-
gether classifiers with similar predictive behavior by measuring the disagree-
ment of their output on a set of independent data.

The clustering of distributed classifiers enables the discovery of interesting
similarities and differences between the respective databases. It can be used
to detect the different classification concepts underlying several a collection
of distributed databases, an important contribution to today’s distributed
classification approaches.

Furthermore, clustering a set of distributed classifiers increases the predictive
performance that can be achieved by combining them. A classifier ensemble
technique can be guided by the knowledge obtained from the clustering process
in order to only combine classifiers of the same cluster. This way the combina-
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tion becomes more effective and the accuracy results superior to conventional
approaches that neglect clustering.

Applications of the proposed approach include detecting interesting similar-
ities and differences in physically distributed scientific (medical networks,
physics and astronomy data-grids) and business (banks, supermarkets) data
and effectively combining classifiers induced from such distributed data sources.

6.1 Other Advantages

The proposed approach doesn’t require moving raw data around the dis-
tributed nodes, an important constraint in mining inherently distributed data
sources. All tuples from all databases get exploited for distance calculation
leading to high quality of the distance measure, but no tuples are moved away
from the databases. The only network traffic is the classification models and
distance measures, which have negligible size.

The scalability of the proposed approach is efficient with respect to the number
of tuples and a solution for the square complexity with respect to the number
of databases has been discussed. Note also, that common applications of this
approach deal with small collections of databases that allow the tractability
of distance calculation within acceptable time.

The clustering algorithm is incremental and can handle the addition and dele-
tion of data and complete databases. Firstly, when new data are added (or
deleted) at a database, then there is no need to recalculate the distances based
on the whole data, but only update them based on the batch of data that was
added (or deleted). Secondly, when a classifier gets refined (e.g. due to many
additions and deletions of data) at a database, then it is reimported by the
rest of the databases and its distance with all other classifiers is recalculated.
The distance of only N − 2 pairs must be recalculated, while the rest are left
unchanged. Thirdly, when a new database is added to the collection, it has to
import all other classifiers and calculate the distance for all pairs of classifiers
from scratch. However, the rest of the databases import the new classifier and
calculate only the distance of the new N − 1 pairs of classifiers. Finally, when
a database is removed from the collection then just an update of the distance
vector based on the local disagreement vector of that database occurs.

Finally, the proposed approach doesn’t require transparent classifiers. This
is important for applications involving different organizations that want to
hide the details of their local models, but at the same time benefit from each
other’s knowledge. An application example in this area involves the coopera-
tion of different bank organizations [16] for credit risk assessment. Data privacy
requirements are also met by our method as there is no raw data exchange.

21



6.2 Future Work

An important limitation of the proposed and other approaches that perform
learning from distributed data sources is the potential syntactic heterogene-
ity of the distributed databases. For example, the same attribute could have
different names, or the same name but different values at the different dis-
tributed databases. This is an active research issue in the areas of cooperative
information systems and multi-database systems.

Most solutions to schema integration are based on an architecture that features
a common mediator among the distributed systems [25]. The mediator could
either be a global schema that characterizes the distributed local schemas
(structural approach), or a common ontology that contains all the necessary
information for the integration of the local schemas (conceptual approach). As
future work we intend to look into the employment of tools that support the
conceptual approach, which is more promising and at the same time challeng-
ing. Such tools could be used in a pre-processing stage, before the application
of the proposed approach.
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