
Effective Stacking of Distributed Classifiers
Grigorios Tsoumakas and Ioannis Vlahavas1

Abstract. One of the most promising lines of research towards dis-
covering global predictive models from physically distributed data
sets is local learning and model integration. Local learning avoids
moving raw data around the distributed nodes and minimizes com-
munication, coordination and synchronization cost. However, the in-
tegration of local models is not a straightforward process. Majority
Voting is a simple solution that works well in some domains, but
it does not always offer the best predictive performance. Stacking
on the other hand, offers flexibility in modelling, but brings along
the problem of how to train on sufficient and at the same time in-
dependent data without the cost of moving raw data around the dis-
tributed nodes. In addition, the scalability of Stacking with respect to
the number of distributed nodes is another important issue that has
not yet been substantially investigated. This paper presents a frame-
work for constructing a global predictive model from local classifiers
that does not require moving raw data around, achieves high predic-
tive accuracy and scales up efficiently with respect to large numbers
of distributed data sets.

1 INTRODUCTION

Nowadays, physically distributed databases are increasingly being
used for knowledge discovery. The ever-growing size of data being
stored in today’s information systems, inevitably leads to distributed
database architectures, as data cannot fit in a single machine. More-
over, the offices or departments of many organizations and compa-
nies are scattered across a country or across the world, and cen-
tral storage of data is often inefficient. In addition, globalization,
business-to-business commerce and online collaboration between or-
ganizations rose lately the need for inter-organizational data mining.

Discovering interesting patterns from data residing in systems
with the aforementioned properties is a challenging task. One has
to deal with the physical distribution of data, as well as consider le-
gal or social restrictions that might prevent data from being moved
around.

One of the most promising lines of research towards discovering
global predictive models from physically distributed data sets is local
learning and model integration. This avoids moving raw data around
the distributed nodes and minimizes communication, coordination
and synchronization cost. However, the integration of local models
is not a straightforward process.

Majority Voting is a simple solution that works well in some do-
mains, but it does not always offer the best predictive performance.
Stacking on the other hand, offers flexibility in modelling, but brings
along the problem of how to train on sufficient and at the same time
independent data without the cost of moving any of the raw data.
In addition, the scalability of Stacking with respect to the number

1 Dept. of Informatics, Aristotle University of Thessaloniki, 54006 Greece,
email: {greg,vlahavas}@csd.auth.gr

of distributed nodes is another important issue that has not yet been
substantially investigated.

This paper presents a framework for combining distributed classi-
fiers without moving raw data around that achieves high predictive
accuracy and scales up efficiently with respect to large numbers of
distributed data sets. The main contribution of this work is: i) a new
methodology for training-based approaches to distributed data min-
ing that avoids the problem of gathering parts of the raw data for
training purposes and ii) an alternative classifier combination strat-
egy to normal Stacking that scales up efficiently to large numbers of
distributed data sets.

The rest of the paper is organized as follows. In Section 2 we re-
view related methodologies for combining classifiers induced from
distributed data sets. Section 3 presents the motivation underlying
our approach, which is then presented in Section 4. Section 5 ex-
hibits experimental results and finally in Section 6 we conclude and
pose future research directions.

2 RELATED WORK

The way that multiple classifiers are combined is an interesting and
important research issue that has been considerably investigated.
When only the label of the predicted class is available, then Majority
Voting [7] is used as a combination method. In this case, the class
with the maximum classifier predictions is the final result.

When a measure of belief, confidence, certainty or other about the
classification is available along with the class label, then a number
of different rules for linear combination of these measures have been
suggested, like Sum, Min, Max, Prod and Median. [8] is an interest-
ing study of these rules.

An alternative class of classifier combination approaches involves
learning a global classifier that combines the output of a number of
classifiers. Stacked Generalization [14], also known as Stacking in
the literature, is a method that combines multiple classifiers by learn-
ing the way that their output correlates with the true class on an in-
dependent set of instances. At a first step, N classifiers Ci, i = 1..N
are induced from each of N data sets Di, i = 1..N . Then, for every
instance ej , j = 1..L of an evaluation set E, independent of the Di

data sets, the output of the classifiers Ci(ej) along with the true class
of the instance class(ej) is used to form an instance mj , j = 1..L of
a new data set M , which will then serve as the meta-level training
set. Each instance will be of the form: C1(ej), C2(ej), . . . , CN (ej),
class(ej). Finally, a global classifier GC is induced directly from M .
If a new instance appears for classification, the output of all local
models is first calculated and then propagated to the global model,
which outputs the final result.

Any algorithm suitable for classification problems can be used for
learning the Ci and GC classifiers. Independence of the actual al-
gorithm used for learning Ci, is actually one of the advantages of



Stacking, as not every algorithm might be available for each data set
and not the same algorithm performs best for every data set. As far
as the algorithm for learning the GC is concerned, Ting and Witten
[11] showed that among a decision tree learning algorithm (C4.5), an
instance based learning algorithm variant (IB1), a multi-response lin-
ear regression algorithm (MLR) and a Naive Bayes classifier, MLR
had the best performance. Experimental results from the same work
showed that on average Stacking is better than Majority Voting in
terms of accuracy.

Chan and Stolfo [2], applied the concept of Stacked Generaliza-
tion to distributed data mining, via their Meta-Learning methodol-
ogy. They focused on combining distributed data sets and investi-
gated various schemes for structuring the meta-level training exam-
ples. They showed that Meta-Learning exhibits better performance
with respect to Majority Voting for a number of domains. Further-
more, it can be effectively used both in a distributed environment,
and for scaling up learning to very large databases. It is also com-
bined with an excellent agent-based architecture, which offers the
ability to deal with heterogeneous environments [9]. However, it does
not scale efficiently to domains with large number of classes and dis-
tributed nodes as it is shown in Section 3.2.

Knowledge Probing [5] builds on the idea of Meta-Learning and in
addition uses an independent data set, called the probing set, in order
to discover a comprehensible model. The output of a meta-learning
system on this independent data set together with the attribute value
vector of the same data set are used as training examples for a learn-
ing algorithm that outputs a final model. In this elegant way, the
disadvantage of having a black box is overcome and the result is a
transparent predictive model. However, the choice of size and origin
of the probing set are issues that have to be thoroughly investigated,
especially in the context of a distributed environment. In addition, as
it is based on Meta-Learning, it suffers from the same problems in
scaling up.

Davies and Edwards [3] follow a different approach to discover
a single comprehensible model out of the distributed information
sources. The main idea in the DAGGER algorithm is to selectively
sample each distributed data set to form a new data set that will be
used for inducing the single model. The new data set will consist
of the union of the minimal spanning example sets that support ev-
ery class at each data set. This method shows promising results in
terms of accuracy and has the advantage of producing a single com-
prehensible model. However, it cannot be effectively used for mining
physically distributed data sets, because it requires gathering some of
the raw data in a single place.

An approach that attempts direct model integration, is that by Hall
et al. [6]. Their approach involves learning decision trees in parallel
from disjoint data, converting trees to rules and then combining the
rules into a single rule set. The rule combination step is based on tak-
ing the merge of the N rule sets and resolving any conflicts that arise,
based on work by Williams [13]. This approach has the advantage of
producing a single comprehensible model, but is focused on com-
bining models described by rules. Furthermore it does not consider
all cases of rule conflicts, but only simple ones that derive from the
choice of split point for continuous attributes by the C4.5 decision
tree algorithm.

3 MOTIVATION

The motivation for this work was the following two problems that
arise in approaches based on Stacking for large-scale distributed data
mining: i) How to gather the necessary independent evaluation data

without moving raw data around the distributed nodes and ii) How to
deal with the increased complexity of the meta-level training process
with respect to the number of distributed databases.

3.1 Gathering independent evaluation data

In Stacking and other classifier combination methodologies that in-
volve training at the combination phase, it is necessary to gather in-
stances that are independent of the ones that were used for training
the local classifiers. The obvious reason is to avoid overfitting of the
final model to the data.

The standard procedure is to hold out some instances from each
distributed data set and use them for learning the global classifier.
This however, has two major drawbacks. The first is that the meta-
level training set competes with the local data sets over independent
instances. Inevitably the global model is induced using only a sample
of all available data. The second is that the meta-level instances need
to be gathered in a single place in order to be used for global training.
Current approaches usually perform simulated experiments and do
not take into account the issue of moving raw data around, which
could be time-consuming especially in the case of many distributed
nodes.

To circumvent the first drawback, cross validation can be applied
to every local algorithm. Each instance in the test set of each fold of
the cross validation will be used for the creation of an instance of the
meta-level training set. Therefore, after the complete process, each
instance available at each local data set will have contributed to an
instance in the meta-level training set, allowing the global classifier
to make use of the complete data. However, this is time-consuming,
deprives the local classifiers of some training data and requires even
more raw data to be moved around.

3.2 Scaling up to many distributed databases

As discussed in Section 2, Stacking uses the output of a number of
classifiers on an independent evaluation data set to form a meta-level
training set. The number of attributes in a meta-level instance is equal
to the number of distributed databases. Therefore, the complexity of
learning the global classifier from the meta-level data set is propor-
tional to the number of distributed databases.

Furthermore, Ting and Witten [11] have showed that better accu-
racy can be achieved when stacking the probability2 distribution for
every class instead of just the class with the highest probability. This
actually worsens the complexity of learning the global classifier, be-
cause the number of attributes becomes the product of the number of
distributed databases and the number of classes in the domain.

The two points mentioned above lead to the conclusion that there
is a problem in scaling up Stacking, especially for domains with
many classes. To exemplify this, consider combining 1000 classi-
fiers for the task of English letter recognition. In this domain there
are 26 classes, the letters A to Z. Following the Stacking approach in
this particular example will produce meta-level instances with 26000
attributes. It is practically impossible to learn a global model from
such a data set within acceptable time. In an experimental study of
Stacking using the posterior probabilities of the classifiers output in
this domain [12], up to 20 local classifiers were only used due to
increased computational complexity.

2 We will use the term probability here as the degree of certainty, belief or
confidence that classifiers output along with a decision. Probability distri-
bution is then a vector containing such measures for every class.



A possible way to deal with this issue would be to follow a divide-
and-conquer approach, where the classifiers are grouped in ensem-
bles of smaller size. Then, for each of these ensembles a meta-
classifier is induced, leading to another ensemble of these new classi-
fiers and another level of learning. This can be generalized in a hierar-
chical way with as many levels of classifiers as necessary. However,
this has an opposite effect on the previous problem, as new indepen-
dent instances are required for every new level in the hierarchy.

4 OUR APPROACH

We hereafter present our approach on Distributed Stacking of mul-
tiple classifiers that attempts to counter the problems of large-scale
distributed data mining explained in the previous section. It can be
broken down into the following phases:

1. Local Learning. Suppose that there are N distributed data sets. At
each node Ni, i = 1..N , we use an available classification learning
algorithm to train a local predictive model Li from all instances
of that node. There is no restriction to the choice of algorithm
used in this phase. However, better performance can be achieved
if the induced models output a distribution of certainty measures
for every class, instead of a single label. Such models are more
informative and the combination of their output is more effective.
Note also that all data at a node contribute to the induction of its
local model. Our approach does not demand holding a percentage
of the data for training the global model. After the induction of the
local model, each node broadcasts it to all other nodes. In the end
of this phase, each node will contain every local model.

2. Classifier Combination. At each node Ni, i = 1..N , all models
apart from the local one Lj , j = 1..N , j 6= i will be combined
to form a global classifier Gi. Leaving model Li out ensures un-
biased results, because the combination of local models requires
training on the local data upon which Li was induced. The com-
bination will happen using the following classifier combination
strategy, that performs Stacking of the averages of classifier pre-
dictions according to the class:

• For every instance dk, k = 1..size(Di), of data set Di at node Ni

we calculate the posterior probability distribution PDjc(dk) of
each model Lj for every class c. We then average these prob-
abilities according to the class over all classifiers and create a
meta-level training instance mk, k = 1..size(Di). This instance
has as attributes the calculated averages along with the true
class, class(dk), of the instance.

• After the construction of all meta-level training instances mk, a
global model Gi is induced from these data. This global model
describes the combined knowledge of all models apart from the
local one with respect to the local data. As in the local learning
phase, there is no restriction to the choice of algorithm used.
Each node will then broadcast the induced global model to all
other nodes. In the end of this phase, each node will contain
every local and global model.

When a new instance appears for classification at a node, we first
calculate the output of every local model. Then, we give as input to
every global model Gi the average of the output of all corresponding
local models Lj , j = 1..N , j 6= i. The final classification is given by
combining the output of the global models using the Sum rule, which
essentially outputs the class that has the maximum average posterior
probability, since we do not incorporate any prior knowledge regard-
ing the classifiers.

4.1 Advantages

First of all, our approach does not demand any communication of raw
data to any of the distributed nodes, but only the broadcast of local
and global classifiers to all nodes. Models however, have negligible
size and do not add any significant communication overhead.

In addition, all initial raw data contribute to the creation of the final
classification model. Each distributed data set serves as the training
set for a local model and the evaluation set for a global model. As the
final classification is given by the combination of all global models,
all initial raw data have contributed to it. This contribution is made
independently up to a certain point. Each global model is in a way
independent of each other, because it is trained on different data.

On the other hand each global model combines the classification
behavior of the same more or less local models (one local classifier
difference). This process is similar to cross-validation, but in this case
with respect to the models. We leave one model out and combine
the rest on the data that was used to train that model. This process
is expected to increase the stability of the classification result, an
important issue today in data mining.

The size of the meta-level training examples stays constant, equal
to the number of classes in the domain, irrespective of the number of
local classifiers. This achieves tractability of modelling the classifier
ensemble behavior in the case of large numbers of distributed data
sets. The disadvantage is that we lose the fine grain modelling of
how each classifier contributes to the prediction of Stacking. Instead,
we get a coarse model of how the classifiers behave as an ensemble.

Despite the fact that our approach involves the same procedure as
Stacking to take place as many times as the distributed nodes are,
it actually does not add more computational complexity. The reason
is that each global model learning process is executed in parallel at
each distributed node.

Furthermore, our approach can be effectively used for scaling up
learning to very large databases. A very large database can be hor-
izontally fragmented to many smaller parts. Our approach has low
computational complexity with respect to the number of participat-
ing data sets, and therefore even a huge database can be effectively
mined by breaking it up into as many parts as necessary.

5 Experimental Results

In order to evaluate the proposed framework, a set of experiments
that compare it to Stacking and Majority Voting were conducted us-
ing five of the largest real world and synthetic data sets from the UCI
Machine Learning Repository [1]. The details of these data sets are
described in Table 1.

The setup of the experiments was the following. Initially, the orig-
inal data set is randomly split into a percentage (25%) of evaluation
data and the rest (75%) is again randomly split into a variable num-
ber (10, 20, 40 and 80) of distributed data sets. This allows us to
simulate a variety of distributed database configurations and exam-
ine how the methodologies scale up with respect to the number of
distributed nodes. Then, C4.5 [10] is used to learn a local predictive
model from each one of the distributed data sets. The predictions of
these local models on the evaluation data are then combined using
the three methodologies.

Stacking was implemented using the strategy that has been found
to be the most successful as explained in Section 3.2. The probabilis-
tic predictions of all local models are first combined on the evalua-
tion data set to form the meta-level training examples. Then a global
classifier is induced from these examples using the C4.5 algorithm



Table 1. Details of data sets used in the experiments

Attributes Missing
Data Set Size Discrete Continuous Classes Values (%)

Adult 48.842 8 6 2 0.95
Letter 20.000 0 16 26 0

Nursery 12.960 8 0 5 0
Shuttle 58.000 0 9 7 0

Waveform 5.000 0 40 3 0

again. Accuracy results for this classifier are obtained using 10-fold
cross validation. In our approach, C4.5 was also used for learning the
global classifiers at each node.

Apart from classification accuracy, a measure of time that the
global model takes to be trained is also calculated. This allows the
comparison of our approach’s complexity with Stacking. Majority
Voting doesn’t involve training at the classifier combination phase.

In order to obtain realistic results, the whole experiment described
above is performed 10 times and the average of the partial output
of each run is calculated. The final results on the five data sets are
described in Table 2.

Table 2. Average accuracy and training time of experiments

Accuracy (%) Time (sec.)
Data Set D.N. S DS MV S DS MV

10 85.54 85.15 85.09 15 11 -
Adult 20 85.19 84.86 84.72 21 11 -

40 84.80 84.48 84.36 33 12 -
80 84.50 83.98 82.64 57 12 -
10 70.41 75.80 77.21 45 14 -

Letter 20 69.32 72.65 74.46 88 14 -
40 69.12 68.56 71.72 171 16 -
80 69.88 62.42 69.18 359 22 -
10 95.78 94.90 94.61 4 2 -

Nursery 20 95.69 93.72 93.59 6 2 -
40 95.49 92.70 90.28 11 2 -
80 96.37 90.01 89.39 20 2 -
10 99.76 99.70 99.63 20 6 -

Shuttle 20 99.76 99.65 99.57 37 6 -
40 99.76 99.43 99.50 76 7 -
80 99.72 99.39 99.47 156 8 -
10 75.04 80.43 79.72 2 2 -

Waveform 20 73.55 80.84 80.62 3 2 -
40 72.73 81.99 81.92 4 2 -
80 72.83 82.66 82.18 6 2 -

The first column provides the name of the data sets, while the next
one gives the number of distributed data sets and thus classifiers. The
next two groups of columns provide information about the accuracy
of the final global model in percent and the time to train the global
model in seconds. Each group of columns gives comparative results
with respect to each of the three methodologies, Stacking (S), our
approach (DS) and Majority Voting (MV).

As the results show, our approach exhibits better performance than
Majority Voting in 14 of the 20 experiments. Majority Voting was
better in 2 experiments with the Shuttle data and 4 experiments with
the Letter data. In 2 of those it was also better than Stacking. This
verifies the fact that our approach, as a methodology that uses train-
ing at the meta-level, achieves better accuracy than Majority Voting.
The differences might appear small in some cases, but in this pa-
per we are primarily interested in performance with respect to time.
Therefore, we used C4.5 in the implementation of Stacking and our
approach for simplicity instead of the more efficient MLR.

However, the predictive performance of our approach is worse
than that of Stacking in 14 of the 20 experiments. This comes at no
surprise as Stacking uses the full posterior probabilities of the local
models’ predictions, while our alternative uses only the averages of
the predictions according to the class. This way we loose information
and the derived global models are inferior in accuracy in comparison
with the models that Stacking produces.

What we loose in accuracy however, we gain in time. Our ap-
proach has a computational complexity that is independent of the
number of distributed nodes. This way it achieves tractability of
building the final model in contrast to Stacking that requires a great
amount of time for training at the combination phase.

This is also evident from the plots in Figures 1 and 2, which depict
the relationship between the necessary time to train the global model
in the experiments for Stacking and our approach. Figure 1 shows
that the time to build the global model increases linearly with respect
to the number of distributed sites for each data set. This occurs be-
cause when the probability distribution of the local classifiers output
is used, the attribute vector in the global learning phase increases by
as many attributes as the classes in the domain problem. The attribute
vector in a problem with C classes and N distributed nodes has size
equal to C∗N . Therefore, depending on the algorithm used, the com-
plexity of the learning problem at the combination phase is related to
the product C ∗N ∗L, where L is the size of the meta-level training
set.

0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

300

350

400

Sites

T
im

e 
(s

ec
.)

Adult
Letter
Nursery
Shuttle
Waveform

Figure 1. Time vs. distributed nodes for Stacking

Figure 2 shows that the time to build the global model stays in
most cases almost constant with respect to the number of distributed
sites for each data set. When the averages of the posterior proba-
bilities of the local classifiers output are used, the attribute vector
in the global learning phase is constant and equal to the classes in
the domain problem. The size of the attribute vector in a problem
with C classes and N distributed nodes will always be equal to C.
Therefore, depending on the algorithm used, the complexity of the
learning problem at the combination phase is related to the product
C ∗ L, where L is the size of the meta-level training set. The varia-
tion present in the Letter and Shuttle data sets is due to the fact that
the calculation of averages also involves time. This however is very
small compared to the time needed for global learning.



0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

Sites

T
im

e 
(s

ec
.)

Adult
Letter
Nursery
Shuttle
Waveform

Figure 2. Time vs. distributed nodes for our approach

6 Conclusions

This work presented a framework for Distributed Stacking of multi-
ple classifiers that offers two key advantages: i) It does not require
raw data being moved around the distributed nodes and ii) It scales
up well with respect to large number of classifiers. Our framework
is based on local learning and model Stacking using the average
probability distribution of the local classifiers’ output according to
the class as input to the second level classifier. In addition, Stacking
takes place in parallel at all distributed nodes using all local classi-
fiers apart from the one that was derived from each node’s data. The
final result derives from combining the induced global models using
the Sum rule.

In the future we plan to explore the effectiveness of other combina-
tion strategies, for example using other rules than Sum and possibly
including the original data at the meta-level training instances. We
also intend to experiment with different learning algorithms at the
meta-level than C4.5, for example fuzzy learning algorithms, which
could potentially improve the predictive accuracy.

The implementation of our methodology is currently executed on
a single machine, where we sequentially process the parts of a large
data set. The next step is to implement a distributed computing archi-
tecture that will allow the parallel execution of the local and global
model learning phases. This will speed up the execution of experi-
ments, allow the calculation of time regarding the actual model com-
munication process and bring the implementation closer to being a
usable system rather than an experimental platform.

Furthermore, we plan to investigate the possibility of using the
growing standard of PMML [4] as the model description language in
our system implementation. This will add to the independence of the
actual learning algorithms used for local and global learning phases
and the compatibility with respect to other data mining systems, pro-
vided that they also use the same standard.

ACKNOWLEDGEMENTS

We would like to thank the two anonymous referees for their com-
ments which helped improve this paper.

REFERENCES
[1] Catherine L. Blake and Christopher J. Merz. UCI repository of machine

learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

[2] Philip Chan and Salvatore Stolfo, ‘Meta-learning for multistrategy and
parallel learning’, in Proceedings of the Second International Workshop
on Multistrategy Learning, (1993).

[3] Winston Davies and Pete Edwards, ‘Dagger: A new approach to com-
bining multiple models learned from disjoint subsets’, Machine Learn-
ing, (2000).

[4] The Data Mining Group. An introduction to pmml 2.0.
http://www.dmg.org/pmmlspecs v2/pmml v2 0.html, 2001.

[5] Yike Guo and Janjao Sutiwaraphun, ‘Probing knowledge in distributed
data mining’, in Proceedings of the PAKDD’99 Conference, Beijing,
China, (1999).

[6] Lawrence Hall, Nitesh V. Chawla, and Kevin W. Bowyer, ‘Decision
tree learning on very large data sets’, in Proceedings of the IEEE SMC
Conference, pp. 2579–2584, San Diego, California, (1998).

[7] Fumitaka Kimura and Malayappan Shridhar, ‘Handwritten numerical
recognition based on multiple algorithms’, Pattern Recognition, 24(10),
969–983, (1991).

[8] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas, ‘On
combining classifiers’, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(3), 226–238, (March 1998).

[9] Andreas Prodromidis, Philip Chan, and Salvatore Stolfo, ‘Meta-
learning in distributed data mining systems: Issues and approaches’,
in Advances in Distributed and Parallel Knowledge Discovery. MIT
Press, (2000).

[10] Ross J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
man, San Mateo, 1993.

[11] Kai Ming Ting and Ian Witten, ‘Stacked generalization: When does it
work?’, in Proceedings of the 15th International Joint Conference on
Artificial Intelligence, pp. 866–871, (1997).

[12] Kai Ming Ting and Ian Witten, ‘Stacking bagged and dagged models’,
in Proceedings of the 14th International Conference on Machine Learn-
ing, pp. 367–375, (1997).

[13] Graham John Williams, Inducing and Combining Multiple Decision
Trees, Ph.D. dissertation, Australian National University, 1990.

[14] David Wolpert, ‘Stacked generalization’, Neural Networks, 5, 241–259,
(1992).


