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ABSTRACT

This work presents a probabilistic method for enforcing ad-
herence of the marginal probabilities of a multi-label model
to automatically discovered deterministic relationships among
labels. In particular we focus on discovering two kinds of
relationships among the labels. The first one concerns pair-
wise positive entailment: pairs of labels, where the presence
of one implies the presence of the other in all instances of a
dataset. The second concerns exclusion: sets of labels that
do not coexist in the same instances of the dataset. These re-
lationships are represented as a deterministic Bayesian net-
work. Marginal probabilities are entered as soft evidence
in the network and through probabilistic inference become
consistent with the discovered knowledge. Our approach
offers robust improvements in mean average precision com-
pared to the standard binary relevance approach across all
12 datasets involved in our experiments. The discovery pro-
cess helps interesting implicit knowledge to emerge, which
could be useful in itself.

1. INTRODUCTION

Learning from multi-label data has received a lot of at-
tention from the machine learning and data mining commu-
nities in recent years. This is partly due to the multitude
of practical applications it arises in, and partly due to the
interesting research challenges it presents, such as exploiting
label dependencies, learning from rare labels and scaling up
to large number of labels [33].

In several multi-label learning problems, the labels are
organized as a tree or a directed acyclic graph, and there
exist approaches that exploit such structure (34, 2]. How-
ever, in most multi-label learning problems, flat labels are
only provided without any accompanying structure. Yet, it
is often the case that implicit deterministic relationships ex-
ist among the labels. For example, in the ImageCLEF 2011
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photo annotation task [22|, which originally motivated the
present study, the learning problem involved 99 labels with-
out any accompanying semantic meta-data, among which
certain deterministic relationships did exist. In particu-
lar, there were several groups of mutually exclusive labels,
such as the four seasons autumn, winter, spring, summer
and the person-related labels single person, small group, big
group, no persons. There were also several positive entail-
ment (consequence) relationships, such as river — water
and car — wvehicle. Hierarchies accompanying multi-label
data model positive entailment via their is-a edges, but do
not model exclusion relationships.

These observations motivated us to consider the auto-
mated learning of such deterministic relationships as poten-
tially interesting and useful knowledge, and the exploitation
of this knowledge for improving the accuracy of multi-label
learning algorithms. While learning and/or exploiting deter-
ministic relationships from multi-label data is not new [24],
little progress has been achieved in this direction since then.
Past approaches exhibit weaknesses such as being unsuccess-
ful in practice |24], lacking formal theoretical grounding [20,
19] and being limited to existing is-a relationships [2].

Given an unlabeled instance x, multi-label models can
output a bipartition of the set of labels into relevant and
irrelevant to x, a ranking of all labels according to relevance
with z, marginal probabilities of relevance to x for each la-
bel or even a joined probability distribution for all labels.
The latter is less popular due to the exponential complexity
it involves [7]. Among the rest, marginal probabilities are
information richer, as they can be cast into rankings after
tie breaking and into bipartitions after thresholding. They
are also important if optimal decision making is involved in
the application at hand, which is often the case.

This work presents a probabilistic method for enforcing
adherence of the marginal probabilities of a multi-label model
to automatically discovered deterministic label relationships.
We focus on two kinds of relationships. The first concerns
pairwise positive entailment: pairs of labels, where presence
of one label implies presence of the other in all instances of a
dataset. The second concerns exclusion: sets of labels that
do not coexist at the same instances of a dataset. These re-
lationships are represented as a deterministic Bayesian net-
work. Marginal probabilities are entered as soft evidence
in the network and adjusted through probabilistic inference
in order to become consistent with the discovered back-



ground knowledge. Our approach offers robust improvement
in mean average precision compared to the standard binary
relevance approach across all 12 datasets involved in our ex-
periments. The discovery process helps interesting implicit
knowledge to emerge, which could be useful in itself.

The rest of this paper is organized as follows. Section 2
introduces our approach. Section 3 presents related work
and contrasts it with our approach. Section 4 presents em-
pirical results and Section 5 summarizes the conclusions of
this work and suggests future work directions.

2. OUR APPROACH

2.1 Discovering Entailment Relationships

Let A and B be two labels with domain { false, true}. For
simplicity, we will be using the common shortcut notation
a, -a, b and —b instead of A = true, A = false, B = true
and B = false respectively. The following four entailment
relationships can arise between the two labels:

1. a — b and equivalent contrapositive =b — —a
2. b — a and equivalent contrapositive —a — —b
3. a — —b and equivalent contrapositive b — —a

4. =a — b and equivalent contrapositive =b — a

The first two express positive entailment, the third one ex-
presses exclusion and the forth one expresses co-exhaustion.
Figure [I] presents a contingency table for labels A and B,
based on a multi-label dataset with S + 7T + U + V train-
ing examples. Positive entailment corresponds to 7" = 0 or
U = 0, exclusion to S = 0 and coexhaustion to V' = 0. Fur-
thermore, S = V = 0 corresponds to mutually exclusive and
completely exhaustive labels, while T'= U = 0 corresponds
to equivalent labels.

In this work, we focus on discovering pairwise positive
entailment relationships as well as exclusion relationships
among two or more labels. For a multi-label dataset with
q labels, it is easy to extract all four types of pairwise en-
tailment relationships from the corresponding contingency
tables in O(g?) time complexity. For discovering exclusion
relationships among more than two labels, we follow the
paradigm of the Apriori algorithm [1] in order to find all
maximal sets of mutually exclusive labels, such that each of
them is not a subset of another. Starting from the pairwise
exclusion relationships, we find triplets of mutual exclusive
labels, then quads and so on.

As a toy example, consider the label values of a multi-
label dataset with 6 labels that are given in Table[I} where to
improve legibility we have used a value of 1 to represent true
and a value of 0 to represent false. Our approach would in
this case extract the positive entailment relationships a — b,
a — ¢, b— cand d — ¢, and an exclusion relationship for
the set of labels {A, E, F'}.

a -a
b S T
—b U \%

Figure 1: Contingency table for labels A and B
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Table 1: A toy multi-label dataset with 10 samples
and 6 labels.
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2.2 Exploiting Entailment Relationships

Motivated by the goal of theoretically sound correction of
the marginal probabilities P,(\), obtained by a multi-label
model for each label A given instance x, according to the
background knowledge expressed by the discovered relation-
ships, we propose using a deterministic Bayesian network
for the representation of these relationships. This network
initially contains as many nodes as the labels, with each
node representing the conditional probability P, () of cor-
responding label A, given instance x, with uniform prior.

We represent the entailment relationship a — b, among
labels A and B, by adding a link from node A to node
B. We set the conditional probability table (CPT) asso-
ciated with node B to contain probabilities Py(bla) = 1
and P,(b|-a) = 0. This is easily generalized in the case
of multiple relationships a1 — b,...,ar — b, to a CPT
with Py (b|A1,..., Ak) 1if Ay V...V Ay = true and
P,(b|A1,...,Ar) = 0 otherwise (i.e. when A1V ...V A =
false or equivalently when —A; A ... A=A, = true). Such
a CPT renders node B deterministic. Our representation
assumes that all causes of B have been considered, which is
seldom true for typical multi-label datasets. To deal with
this discrepancy, we add an additional parent of B as leak
node, corresponding to a new virtual label whose value is
set to: (i) false in those training examples where B = false,
(ii) true in those training examples where B = true and
all other parents of B are false, and (iii) false for the rest
of the training examples. Note that for the last category
of examples where B = true and at least one other par-
ent is true, the value of the leak node could also be set to
true instead of false, but the choice of false should lead to
semantically simpler virtual labels that are easier to learn.
Redundant relationships due to the transitivity property of
positive entailment are not represented in the network.

We represent the mutual exclusion relationship among la-
bels A1, ..., Ar by adding a new boolean deterministic node
B as common child of all of these labels. We set the CPT of
this node to contain probabilities P, (b|A41,..., Ax) = 1ifone
and only one of the parents is true and Py (b|A1,...,Ar) =0
otherwise. We consider that this node is true as observed
evidence (B = true). Our representation assumes that la-
bels A1,..., Ay cover all training examples, which usually is
not the case for typical multi-label datasets. We deal with
this discrepancy similarly to the case of positive entailment.
In specific, we add an additional parent of B as leak node,
corresponding to a new virtual label whose value is set to:
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Figure 2: A network that represents labels

A, B,C,D, E, F, entailment relationships a — b, a — ¢,
b — ¢, d » ¢ and a mutual exclusion relationship
among labels A, F and F.

(i) true in those training examples where all other parents
of B are false, and (ii) false in all other training examples.

Continuing the toy example of the previous section, Figure
shows the network that our approach would construct to
represent the discovered knowledge.

Having constructed the network, we then use any multi-
label algorithm that can provide marginal probability esti-
mates to fit the extended (with virtual labels corresponding
to leak nodes) training set. For an unlabelled instance x, we
first query the multi-label model in order to obtain probabil-
ity estimates Py () for each of the labels A, including virtual
labels. These are then entered into the network as soft (also
called wirtual) evidence [14]. A probabilistic inference algo-
rithm is then used to update the probability estimates for
each of the labels, leading to probabilities that are consistent
with the discovered relationships. The network is then reset
to its prior state in order to process a subsequent unlabelled
instance.

Tableexempliﬁes the probability correction process. Each
row corresponds to a particular label /node. The second col-
umn contains arbitrary probability estimates for a test in-
stance. These probabilities violate the relationships we have
discovered. The probability of label C' should be larger than
that of B, D and LeakBD, but only the last constraint
holds. In addition, the probability of B should be larger
than that of A and LeakA, none of which is satisfied. Fi-
nally, the probabilities of A, E, F' and LeakFF A should
add to 1, which does not hold. The third column gives the
adjusted probabilities according to our approach, which are
now consistent with the discovered relationships.

3. RELATED WORK

We divide the related work according to the uncertainty of
relationships considered (discovered and exploited, or simply
exploited). We first discuss approaches that similar to us
focus on deterministic relationships and we then continue to
approaches centered on probabilistic relationships.
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Table 2: Marginal probabilities obtained by the
multi-label model for each of the labels, including
the virtual ones corresponding to leak nodes (be-
fore) and updated probabilities after probabilistic
inference (after) for the network in Figure

Node Before After

A 0.4 0.022
LeakA 0.35 0.082
B 0.25 0.096

D 0.6 0.031
LeakBD 0.01 0.05
C 0.2 0.345

F 0.3 0.064

E 0.85 0.85
LeakEF A 0.3 0.064

3.1 Deterministic Relationships

The idea of discovering and exploiting label relationships
from multi-label data was first discussed in [24], where rela-
tionships were referred to as constraints. An interesting gen-
eral point of [24] was that label constraints can be exploited
either at the learning phase or at a post-processing phase. In
addition, it presented four basic types of constraints, which
correspond to the four entailment relationships, and noted
that more complex types of constraints can be represented
by combining these basic constraints with logical connectors.
For discovering constraints, it proposed association rule min-
ing, followed by removal of redundant rules that were more
general than others. For exploiting constraints, it proposed
two post-processing approaches for the label ranking task in
multi-label learning. These approaches correct a predicted
ranking when it violates the constraints by searching for the
nearest ranking that is consistent with the constraints. They
only differ in the function used to evaluate the distance be-
tween the invalid and a valid ranking. As they focus on
label ranking, these approaches cannot be used for correct-
ing the marginal probability estimates of the labels. Results
on synthetic data with known constraints showed that con-
straint exploitation can be helpful, but results on real-world
data and automatically discovered constraints did not lead
to predictive performance improvements.

An approach for exploiting a set of given label relation-
ships in order to update the marginal probabilities was pre-
sented in 20} [19]. For mutually exclusive labels that cover
all training examples, the idea was to keep the highest prob-
ability and set the rest to zero. For mutually exclusive labels
that don’t cover all training examples, this rule was used if
the highest probability was larger than a threshold. For an
entailment relation a — b, the idea was to set the marginal
probability of b to that of a when the marginal probabil-
ity of a is larger than that of b and larger than 0.5. This
post-processing approach, called concept reasoning, leads to
marginal probabilities that are consistent with the label re-
lationships, but lacks a sound probabilistic framework.

The exploitation of parent-child relationships of a given hi-
erarchical taxonomy of labels via a Bayesian network struc-
ture was proposed in [2]. In particular, parent labels were
conditioned on their child labels, and the output of the bi-
nary classifier for each label was conditioned on the cor-
responding label. Given the classifier outputs as evidence,



a probabilistic inference algorithm is then applied to ob-
tain hierarchically consistent marginal probabilities for each
label. Our approach shares the same principle of using
a Bayesian network structure for enforcing consistency of
marginal probabilities, but: (i) constructs the structure au-
tomatically according to relationships discovered from the
data, (ii) represents mutual exclusion relationships in addi-
tion to positive entailment, and (iii) builds additional binary
models for virtual labels corresponding to leak nodes in the
deterministic relations represented by the network.

A method for uncovering deterministic causal structures
is introduced in [3]. Similarly to our work, it aims at con-
structing a Bayesian network out of automatically discov-
ered deterministic relationships. Important differences are
that it does not consider latent variables, as in our repre-
sentation of exclusions and our treatment of unaccounted
causes of a label via leak nodes. It therefore requires rela-
tionships to be supported from the full dataset, which limits
its practical usefulness, as rarely such relationships appear
in real-world data.

A recent approach that similar to us stresses the aspect of
discovering interesting knowledge about the labels in multi-
label learning is based on learning rule-based models [17].
In particular, for each label a separate rule model is con-
structed, but this model uses the rest of the labels as ad-
ditional features. This can lead to rules that include labels
with/without ordinary input features in the preconditions
of a rule deriving a particular label. Such rules are a natu-
ral representation of entailment relationships among labels
(and input features). This approach combines discovery and
exploitation of entailment relationships (that are not guar-
anteed to only include labels) through a specific family of
learning algorithms (rule learning). This is very different
from obtaining marginal probabilities that adhere to a con-
sistent set of deterministic relationships of the labels, which
is the core contribution of our approach.

Another recent approach [8] addresses similar to us the
important problem of exploiting deterministic relationships
among the labels in a principled probabilistic way. It rep-
resents the full joint distribution using a conditional ran-
dom field (CRF) model, that takes into consideration in-
dependent classification scores for the labels, as well as all
given pairwise exclusion and hierarchy relationships. As the
generic CRF model is intractable, it proposed an efficient
inference procedure, under the assumption that there are
many mutual exclusion relationships, typical of the object
classification domain the paper was focusing on.

3.2 Probabilistic Relationships

A Bayesian network structure to encode the relationships
among labels as well as between the input attributes and
the labels was presented in [36]. The proposed algorithm,
called LEAD, starts by building binary relevance models and
continues by learning a Bayesian network on the residuals of
these models. Then another set of binary models is learned,
one for each label, but this time incorporating the parents of
each label according to the constructed Bayesian network as
additional features. For prediction, these models are queried
top-down according to the constructed Bayesian network.

A similar approach that is a bit closer to our work [35]
starts by using a Bayesian network structure learning method
in order to learn the structure among the labels. Then,
maximum likelihood estimation is used to learn the condi-
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tional probabilities among the labels. Parent-child relation-
ships with high (low) conditional probabilities are called co-
existence (mutual exclusion) relationships. Inference is the
used to obtain the joined probability distribution for all la-
bels given prediction by a base multi-label model. A seri-
ous limitation of this approach is that the initial structure
learning phase is computationally demanding and prohibits
its scaling to practical numbers of labels. Indeed, results are
only given for 4 datasets with up to 14 labels each.

Both LEAD and [35| discover probabilistic parent-child re-
lationships among labels by learning the Bayesian network
structure from the data. LEAD does this implicitly (through
the residuals of binary models), while [35] does it explicitly.
In contrast, our approach discovers deterministic parent-
child and mutual exclusion relationships among labels from
the data, which are then used to define the structure of a
corresponding deterministic Bayesian network.

Other approaches to modeling probabilistic relationships
include conditional dependency networks 11| and multi-
dimensional Bayesian classifiers [4].

3.3 Discussion

We would first like to mention that our approach was de-
veloped in parallel and independently of recent approaches
[8], [35] and [17]. Indeed, we have published an earlier ver-
sion of this work at arXiv on April, 2014 [23] .

We would also like to clarify that we do not claim scientific
novelty for the approach we use to discover the determinis-
tic relationships among the labels. Indeed, our approach
is based on a simple contingency table for positive entail-
ment and follows the paradigm of association rule mining
for the exclusion relationships. We argue however, that this
is the first paper to explicitly discuss and present actual in-
terpretable examples of deterministic relationships in several
multi-label datasets, after many years of multi-label research
motivated from exploiting label relationships. From the very
long list of such papers, we here point to just a few |10} 34,
7,126, (18] [37, [16].

Our main novelty is in the approach taken to represent
these relationships, i.e. a deterministic Bayesian network
using virtual leak nodes to enforce consistency of the de-
terministic CPTs of the network with the data. Learning
deterministic Bayesian networks from data is non-trivial |3]
and research in this topic is ongoing. One could argue that
probabilistic relationships could be more interesting. How-
ever, besides being less interpretable, past research on or-
dinary probabilistic Bayesian networks for multi-label data
had either scaling problems [35] or was not directly mod-
eling potentially interesting semantic relationships, such as
entailment and exclusion, as it was working on the residuals
of binary models corresponding to labels [36].

4. EXPERIMENTS
4.1 Setup

We use the binary relevance (BR) problem transforma-
tiom method for learning multi-label models, which learns
one binary model per label. As our approach employs prob-
abilistic inference to correct the marginal probability of each
label, we consider important to start with good probability
estimates. We therefore use Random Forest [6] (10 trees) as
the learning algorithm for training each binary model, since
it is known to provide relatively accurate probability esti-



mates without calibration [21]. We use the implementations
of BR and Random Forest from Mulan [32] and Weka [12]
respectively. Our approach is also implemented in Mulan,
utilizing the jSMILE libraryﬂ for Bayesian network repre-
sentation and probabilistic inference. The default clustering
algorithm |15] was used for exact probabilistic inference.

We experiment on the 12 multi-label datasets that are
shown in Table 3] We adopt a 10-fold cross-validation pro-
cess and present results in terms of mean average precision
(MAP) across all labels, as this was also the measure of
choice in the ImageCLEF 2011 challenge that motivated this
work. MAP is also the standard evaluation measure in mul-
timedia information retrieval. We also briefly summarize the
results for the 27 additional measures of Mulan that due to
space limitations are made available online ﬂ

We set the minimum support of discovered relationships
to just 2 training examples (avoid single-point generaliza-
tion). For positive entailment, support refers to the positive
training examples of the antecedent label, while for exclusion
it refers to the sum of the positive examples of all partici-
pating labels (S and T + U in Figure [l respectively). In
3 datasets (Bibtex, Bookmarks, Medical) exclusion discov-
ery did not finish within a week, while in 3 other datasets
(Enron, ImageCLEF2011/2012) a large number of exclusion
rules was discovered that caused memory outage during net-
work construction in jSSMILE. We increased the support ex-
ponentially (4, 8, 16, ...) until these issues were resolved. In
Section[5] we discuss ideas for automatically selecting appro-
priate support values towards improving the efficiency and
effectiveness of our approach.

Towards repeatability of our experiments and open sci-
ence, we make available all our source code for the proposed
approach, including third-party libraries and instructions on
what scripts to execute to replicate our resultsﬂ We intend
to formally release the code of our approach with the next
version of Mulan.

4.2 Relationships

This section discusses the relationships discovered by our
approach. At each fold of the cross-validation, different re-
lationships can be discovered. Table [3| reports the mean of
the discovered relationships across all folds. We only discuss
here those appearing in all folds. Tables presenting positive
entailment relationships include a column mentioning the
relationship support.

4.2.1 Bibtex and Bookmarks.

The labels of the Bibtexr and Bookmarks datasets corre-
spond to tags assigned to publications and bookmarks re-
spectively by users of the social bookmark and publication
sharing system Bibsonom;

Table E| presents the 11 positive entailments that were
found in all folds for Bibtex. These apparently correspond to
a hierarchy relationship between label statphys23, an inter-
national conference on statistical physic&ﬁ and the 11 topics
of this conference. It could be that the user(s) that added
publications from this conference renamed label topic5 to the

"http://genie.sis.pitt.edu/
2http://mlkd.csd.auth.gr/kdd2015.x1sx

3http ://bailando.sims.berkeley.edu/enron_email.html
“http://mlkd.csd.auth.gr/kdd2015.zip
Shttp://www.bibsonomy.org/
Shttp://wuw.statphys23.org/
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more descriptive nonequilibrium, but did not bother for the
rest of the topics. However, on the conference site, topic 5 is
listed as Dynamical systems and turbulence, while Nonequi-
librium systems is topic 3 of the conference.

Table [5]| presents the 4 positive entailments that were dis-
covered in all folds for Bookmarks. The first two most prob-
ably belong to a single user who also used the tags film and
kultur whenever he/she used the tag filmsiveseenrecently.
This is, by the way, an example of an unfortunate choice
of tag name, as it involves a time adverb recently, whose
meaning changes over time. The last two are examples of
discovered is-a relationships, as paddling is-a (water) sport.
We conclude that our approach manages to discover positive
entailment relationships of social origin.

A minimum support of 128 and 2048 examples led to a
mean number of 76.2 and 1 exclusion relationships per fold in
Bibtex and Bookmarks respectively. Due to space limitations
we refrain from reporting the 18 exclusions discovered in all
folds of Bibtex. In Bookmarks the relationship involved the
following pair of labels: {computing; video}. No wonder it
did not help improve accuracy.

4.2.2 Emotions.

The 6 labels in the Emotions dataset concern 3 pairs of
opposite emotions of the Tellegen-Watson-Clark model of
mood|29]: (quiet-still, amazed-surprised), (sad-lonely, happy-
pleased) and (relazing-calm, angry-aggresive) that correspond
to the axes of engangement, pleasantness and negative affect
respectively. The Tellegen-Watson-Clark model includes a
fourth axis that concerns positive affect. The single discov-
ered exclusion relationship, concerns the pair of opposite la-
bels related to engangement: {quiet-still; amazed-surprised}.

4.2.3 Enron.

The 53 labels of this dataset are organized into 4 cate-
gories: coarse genre, included/forwarded information, pri-
mary topics, which is applicable if coarse genre Company
Business, Strategy, etc is selected, and emotional tone if not
neutral. There are 13 positive entailment relationships by
definition, as there are 13 labels in the primary topics cate-
gory, which are children of label Company Business, Strat-
eqy, etc.

Table |§| presents the 3 positive entailment relationships
that were discovered in all folds. Relationship 1 is among
the 13 positive entailments we already knew from the de-
scription of the labels, as label company image — changing /
influencing is a primary topic and therefore a child of label
Company Business, Strategy, etc. Our approach manages to
discover explicit is-a relationships, when these are present in
the training data.

A minimum support of 8 examples led to a mean number
of 480.7 exclusion relationships per fold. Only one relation-
ship was present in all folds and involved the following in-
teresting pair of concepts { Company Business, Strategy, etc;
friendship / affection}. The conclusion is that there is no
room for affection in the business world.

4.2.4 ImageCLEF 2011 and 2012.

Labels in these two datasets correspond to 99 and 94 con-
cepts respectively covering a variety of concepts for image
annotation. A difference in the 2012 version of the contest
was that concepts being superclasses of other concepts (e.g.
Animal, Vehicle and Water) were removed. This is why in
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Table 3: A variety of multi-label datasets and their statistics:

number of labels, examples, discrete and

continuous features, followed by the mean number of positive entailment and exclusion relationships that
were discovered across the 10 training sets of the 10-fold cross-validation process.

variables entailment
dataset source labels examples disc. cont. positive exclusion
Bibtex [13] 159 7395 1836 0 11+0 76.2 + 2.3
Bookmarks [13] 208 87856 2150 0 41+£03 1+0
Emotions (31 6 593 0 72 0 1.140.3
Enron ur‘J’] 53 1702 1001 0 13 + 15.2 480.7 + 98.4
ImageCLEF2011 (22 99 8000 19540 0 279+ 0.9 325.4 +£ 31.9
ImageCLEF2012 [30] 94 15000 10000 0 1.2 277.9 + 43.5
IMDB |26] 28 120919 0 1001 0 21.6 + 1.2
Medical |25] 45 978 1449 0 6.3+1 30.7 £ 7.2
Scene [5] 6 2407 0 294 0 4+0
Slashdot 126] 20 3782 0 1079 0 23.2 + 1.2
TMC2007 28] 22 28596 49060 0 0 75+ 1.1
Yeast 19] 14 2417 0 103 3+£0 2.3 £0.5
Table 4: Positive entailment relationships discovered in the Bibtex dataset.
id relationship sup | id relationship sup | id relationship sup
1 nonequilibrium — statphys23 68 | 5 topic4 — statphys23 62 | 9 topic9 — statphys23 82
2 topicl — statphys23 86 | 6 topic6 — statphys23 63 | 10 topicl0 — statphys23 130
3 topic2 — statphys23 75 | 7 topic7 — statphys23 129 | 11 topicll — statphys23 143
4 topic3 — statphys23 151 | 8 topic8 — statphys23 73

the 2011 version of the dataset 27 positive entailments were
found in all folds (see Table [7]), in contrast with the follow-
ing single one in the 2012 version: Spider — QuantityNone,
with a support of 16 examples. The consequent of this re-
lationship refers to the number of people that appear in the
photo. In other words, no people appear in the 16 spider
pictures of that photo collection.

A minimum support of 32 and 64 examples led to a mean
number of 325.4 and 277.9 exclusion relationships per fold in
the 2011 and 2012 version of ImageCLEF respectively. Due
to space limitations we refrain from reporting the 24 and 21
exclusion relationships that were discovered in all folds of
the 2011 and 2012 version of ImageCLEF respectively.

4.2.5 IMDB.

Labels of this dataset correspond to 28 movie genres. Ta-
ble [§] presents the 15 exclusion relationships that were found
in all folds. Labels Film-Noir, Game-Show and Talk-Show
and are the most frequent ones in these relationships. We
notice some obvious exclusions, such as { War, Reality-TV?},
{Game-Show, Crime} and {Talk-Show, Fantasy}. On the
other hand, such relationships could be a source of inspira-
tion for innovative (or provocative) producers and directors
contemplating unattempted combinations of genres.

4.2.6 Medical.

Labels of this dataset correspond to 45 codes/descriptions
of the 9th revision of the International Statistical Classifi-
cation of Diseases (ICD). Table [0 presents the 3 positive
entailment relationships that were found in all folds. The
support of these relationships is quite weak (up to 4 ex-
amples), yet it apparently corresponds to valid, yet already
known, medical knowledge. For example, the top page re-
turned by Google for the query “hydronephrosis congenital
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obstruction of ureteropelvic junction”, contains the following
excerpt: Ureteropelvic junction obstruction is the most com-
mon pathologic cause of antenatally detected hydronephrosis.
Future work could apply our approach to larger datasets in
search of unknown medical knowledge.

A minimum support of 16 examples led to a mean number
of 30.7 exclusion relationships per fold. Only one relation-
ship was present in 9 out of the 10 folds (none in all folds)
and involved the following 5 concepts: {753.0 Renal agenesis
and dysgenesis; 599.0 Urinary tract infection, site not speci-
fied; 596.54 Neurogenic bladder NOS; 780.6 Fever and other
physiologic disturbances of temperature regulation; 493.90
Asthma,unspecified type, unspecified}.

4.2.7 Scene.

Labels in this dataset correspond to 6 different scenery
concepts. The following 2 exclusion relationships were found
in all folds: {Sunset, Fall Foliage, Beach} and {Sunset, Fall
Foliage, Urban}. These relationships do not really corre-
spond to interesting knowledge, as images with such con-
cept combinations can be found on the Web. However, only
a few of the top 30 images returned by Google image search
do cover all three concepts of these relationships, a fact that
highlights the co-occurence rarity of these concepts. Still,
this knowledge should not be generalized beyond the partic-
ular limited collection of 2407 images from the stock photo
library of Corel.

4.2.8 Slashdot.

Labels in this dataset correspond to 20 topical categories
of news articles. The following 4 exclusion relationships
were found in all folds: {Interviews, Apache, News, BSD,
Idle, AskSlashdot}, {Interviews, Apache, Search, BSD, Idle,
AskSlashdot}, {Apache, Search, Science, BookReviews, Linux}



Table 5: Positive entailment relationships discovered in the Bookmarks dataset.

id

id

relationship sup | relationship sup
1 filmsiveseenrecently — film 370 3 paddling — sports 379
2 filmsiveseenrecently — kultur 370 4 paddling — watersports 379
Table 6: Positive entailment relationships discovered in the Enron dataset.
id relationship sup
1 company image — changing / influencing — Company Business, Strategy, etc. 63
2 triumph / gloating — Company Business, Strategy, etc. 3
3 triumph / gloating — regulations and regulators (includes price caps) 3
and {Apache, Search, BSD, Games, BookRevies}. This o

knowledge does not seem particularly interesting.

4.2.9 TMC2007.

Labels in this dataset correspond to problems that might
occur during flights and come from the database of NASA’s
aviation safety reporting system. Unfortunately, we could
not retrieve the actual label semantics.

4.2.10 Yeast.

Labels in this dataset correspond to 14 particular gene
functional classes from the FunCat hierarchy [27], but un-
fortunately we do not know the one-to-one match of these
functional classes with the variables in the dataset. Per-
sonal communication on this issue with the authors of [9)
did not resolve the problem, despite their positive response
and effort to helﬂ

4.3 Results

Tables [10] and [11| present the average MAP of BR across
the 10 folds of the cross-validation: (i) in its standard ver-
sion, and (ii) with the exploitation of positive entailment re-
lationships (Table [I0) and ezlusion relationships (Table [T1)
via our approach. They also present the percentage of im-
provement brought by our approach, the minimum support
and the average number of discovered relationships across
the 10 folds of the cross-validation.

In Table [I0] we notice that in all datasets where positive
entailments were discovered, the exploitation of these rela-
tionships led to an increased MAP. Applying the Wilcoxon
signed rank test we find a p-value of 0.0156, indicating that
the improvements are statistically significant. In some data-
sets, such as bookmarks, improvements are small, while in
others, such as ImageCLEF2011, improvements are large.
The correlation coefficient between the percentage of im-
provement and the number of relationships divided by the
number of labels is 0.913, which supports the argument that
the more relationships we discover per label, the higher the
improvements in MAP. This was expected to an extend as
MAP is a mean of the average precision across all labels.
Had we focused on just the affected labels, which could be
considered as a more appropriate way to evaluate the rela-
tionship exploitation part of our approach, we would notice
larger improvements.

In the upper part of Table [II] we notice that there are

If you happen to know the actual labels, please communi-
cate them to us.
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Figure 3: MAP and number of exclusion relation-
ships for the 4 different minimum support values we
tried in I'mageCLEF2011.

8 datasets where our approach leads to improvements in
MAP, but another 4 where it leads to reductions. The p-
value of the Wilcoxon signed rank test is 0.1099, indicat-
ing that the results are statistically insignificant even at the
0.1 level (though marginally). One of the main reasons un-
derlying the negative results of our approach is the large
number of spurious exclusion relationships that can be dis-
covered in datasets with a larger number of labels. Indeed,
the rarer two labels are, the higher the probability of be-
ing considered as mutually exclusive, irrespectively of their
actual semantic relationship. We therefore further experi-
ment with exponentially increasing minimum support val-
ues in Bibtex, Enron and the Image CLEF datasets, where a
large number of relationships was discovered, until we reach
a small set of relationships. The bottom part of Table
shows the results achieved through this process. We see that
MAP improvements are now achieved for Bibtex, Enron and
ImageCLEF2012, while the already improved MAP of Im-
ageCLEF2011 increases. Note that these are not the best
achievable results, both because we only tried a few mini-
mum support values and because our goal was to discover a
small number of relationships. Figure [3|shows the MAP and
number of exclusion relationships for the minimum support
values we tried in ImageCLEF2011.

The number of exclusion relationships divided by the num-
ber of labels is again positively correlated with the percent-
age of improvement, with the coefficient being 0.770 in this
case (based on the bottom part of Table for the 4 datasets
and ignoring Bookmarks). The coefficient would probably



Table 7: Positive entailment relationships discovered in the I'mageCLEF2011 dataset.

id relationship sup | id relationship sup | id relationship sup
1 Desert —  Outdoor 30 |10 Sea — Outdoor 222 | 19 Fish — Animals 25
2 Desert — Day 30 |11 Sea — Water 222 | 20 Bicycle — NeutralLight 61
3 Spring — NeutralLight 105 | 12 Cat — Animals 61 |21 Bicycle — Vehicle 61
4 Flowers — Plants 367 | 13 Dog — Animals 211 | 22 Car — Vehicle 268
5 Trees — Plants 890 | 14 Horse — Outdoor 28 | 23 Train — Vehicle 59
6 Clouds — Sky 1104 | 15 Horse — Day 28 | 24 Airplane —  Vehicle 41
7 Lake — Outdoor 89 | 16 Horse — Animals 28 |25 Skateboard — Vehicle 12
8 Lake — Water 89 | 17 Bird — Animals 183 | 26 Ship —  Vehicle 79
9 River — Water 130 | 18 Insect — Animals 91 |27 Female — Male 1254
Table 8: Exclusion relationships discovered in the IMDB dataset.
{Film-Noir, Game-Show, Adult, News}, {Film-Noir, Adult, Family}, { Game-Show, Horror},
{Film-Noir, Game-Show, Western}, {Film-Noir, Documentary}, { Game-Show, Thriller}
{Film-Noir, Talk-Show, Western}, {Talk-Show, Adventure}, {Game-Show, Crime}
{Game-Show, Adult, Biography}, {Film-Noir, Comedy}, {War, Reality-TV}
{Film-Noir, Western, Reality-TV}, {Talk-Show, Mystery}, {Talk-Show, Action}
Table 9: Positive entailment relationships discovered in the Medical dataset.
id relationship sup
1 753.21 Congenital obstruction of ureteropelvic junction — 591 Hydronephrosis 4
2 786.05 Shortness of breath — 753.0 Renal agenesis and dysgenesis 4
3 787.03 Vomiting alone — 753.0 Renal agenesis and dysgenesis 3

Table 10: Mean MAP of BR with and without exploitation of positive entailments via our approach, along with
the percentage of improvement, the minimum support and the average number of discovered relationships.

dataset standard BR minsup positive entailment impr% #relations
Bibtex 0.2152 + 0.0114 2 0.2168 + 0.0109 0.279 11+0
Bookmarks 0.1474 + 0.0041 2 0.1475 £ 0.0041 0.068 41 +£0.3
Enron 0.2810 + 0.0476 2 0.2821 + 0.0480 0.391 3.8 £0.9
ImageCLEF2011 0.2788 + 0.0113 2 0.2871 £ 0.0100 2.977 27.9 £ 0.9
ImageCLEF2012 0.2376 £ 0.0089 2 0.2380 £ 0.0084 0.168 1.2 +£09
Medical 0.5997 + 0.0768 2 0.6134 £ 0.0661 2.284 6.3+1
Yeast 0.4545 £ 0.0145 2 0.4617 £ 0.0141 1.584 3+£0

Table 11: Mean MAP of BR with and without exploitation of exlusions via our approach, along with the
percentage of improvement, the minimum support and the average number of discovered relationships.

dataset standard BR minsup exclusion impr% #relations
Bibtex 0.2152 + 0.0114 128 0.2117 £ 0.0126 -1.626 76.2 + 2.3
Bookmarks 0.1474 £ 0.0041 2048 0.1473 £ 0.0040 -0.068 1+0
Emotions 0.7163 £ 0.0339 2 0.7265 + 0.0368 1.424 1.1+ 0.3
Enron 0.2810 £ 0.0476 8 0.2573 £ 0.0476 -8.434 480.7 £ 98.4
ImageCLEF2011 0.2788 + 0.0113 32 0.2840 £ 0.0132 1.865 3254 + 31.9
ImageCLEF2012 0.2376 £ 0.0089 64 0.2308 £ 0.0090 -2.862 277.9 + 43.5
IMDB 0.0900 + 0.0030 2 0.0938 + 0.0026 4.222 21.6 + 1.2
Medical 0.5997 + 0.0768 16 0.6223 £ 0.0597 3.769 307 £ 7.2
Scene 0.8139 + 0.0146 2 0.8385 + 0.0140 3.023 440
Slashdot 0.3982 + 0.0323 2 0.4452 + 0.0422 11.803 23.2 + 1.2
TMC2007 0.3276 £ 0.0069 2 0.3474 £ 0.0075 6.044 7.5+ 1.1
Yeast 0.4545 + 0.0145 2 0.4625 + 0.0163 1.760 2.3+ 0.5
Bibtex 0.2152 + 0.0114 256 0.2165 + 0.0114 0.604 2.8+ 0.4
Enron 0.2810 + 0.0476 32 0.2816 + 0.0477 0.214 222 + 1.8
ImageCLEF2011 0.2788 £ 0.0113 128 0.2881 + 0.0129 3.336 56.6 £ 3.3
ImageCLEF2012 0.2376 £ 0.0089 256 0.2391 + 0.0087 0.631 398 £1.1
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be higher had we calculated the actual number of labels in-
volved in the exclusion relationships.

The average improvement offered by exclusion (3.4%) is
larger than those offered by positive entailment (1.1%), and
so is the average number of relationships (19.3 vs 8.2). Ex-
clusions typically involve more than two labels, while posi-
tive entailments are pairwise and some of them redundant
due to the transitivity property of positive entailment. A
deeper analysis should look at the number of labels involved
in each type of relationship, which we leave as future work.

Table [12 shows results of utilizing both types of relation-
ships. We notice that in Bibtex, Yeast, Medical and Image-
CLEF2012 the combination of both types of relationships
leads to larger improvement than their individual improve-
ment. The combined improvement is smaller than the sum
of individual improvements, with the exception of Bibtex.
This could be due to labels appearing in both types of re-
lationship. For Enron and ImageCLEF2011 we notice that
the combined improvement is smaller than the largest of the
two individual improvements, that of positive entailment.
This is another indication of spurious exclusions existence.

Similar improvements are noticed for most bipartition-
based measures, such as Hamming loss, subset accuracy,
example-based F-measure and micro-averaged F-measure,
particularly with the exclusion relationships. No clear con-
clusions can be reached for label ranking measures, as for
some datasets there are benefits, while for others losses.

S. SUMMARY AND FUTURE WORK

This work introduced an approach that discovers entail-
ment relationships among labels within multi-label datasets
and exploits them using a probabilistic technique that en-
forces the adherence of the marginal probability estimates
of multi-label learning with the discovered knowledge.

Our approach can be extended in a number of directions.
An important issue concerns the statistical validity of the
extracted relationships, especially when based on infrequent
labels. We are working on automatically selecting the min-
imum support per relationship based on suitable statistical
significance tests in order to separate chance artifacts from
confident findings. We expect this to both improve accuracy
results and reduce the complexity of the discovery process.
On the opposite direction, it would be also interesting to
investigate whether approximate relations, where the con-
tingency table frequencies are not necessarily zero due to
noise, can lead to improved results. Another important di-
rection is the generalization of our approach to be able to
discover all types of entailment among any number of labels.

On the empirical part of this work we intend to work
harder towards assessing the relative performance of our ap-
proach compared to the recent related work [35} [8]. This is
non-trivial, as they don’t offer their full experiment code for
replication. Moreover, results of the latter were given only
on a single domain of object classification, while the for-
mer’s computational complexity with respect to the number
of labels prohibits its application to more realistic multi-
label datasets. We also intend to investigate how our ap-
proach performs when used in conjunction with a base multi-
label classifier that can output marginal probabilities and al-
ready exploits label dependencies. Preliminary experiments
with Classifier Chains [26] showed larger benefits for our ap-
proach. Finally, we intend to investigate the effect that the
quality of predicted probabilities has on our approach.
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