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Abstract. Binary relevance (BR) learns a single binary model for each different

label of multi-label data. It has linear complexity with respect to the number of

labels, but does not take into account label correlations and may fail to accurately

predict label combinations and rank labels according to relevance with a new in-

stance. Stacking the models of BR in order to learn a model that associates their

output to the true value of each label is a way to alleviate this problem. In this

paper we propose the pruning of the models participating in the stacking process,

by explicitly measuring the degree of label correlation using the phi coefficient.

Exploratory analysis of phi shows that the correlations detected are meaningful

and useful. Empirical evaluation of the pruning approach shows that it leads to

substantial reduction of the computational cost of stacking and occasional im-

provements in predictive performance.

1 Introduction

Supervised learning has traditionally focused on the analysis of single-label data, where

training examples are associated with a single label λ, from a set of disjoint labels L.

However, training examples in several application domains are often associated with

a set of labels Y ⊆ L. Such data are characterized as multi-label. Though methods

for learning from multi-label textual data have been proposed since 1999 [14, 19], the

years that followed witnessed an increasing number and diversity of applications, such

as bioinformatics (e.g. functional genomics) [5, 8, 2, 4, 1, 34], semantic annotation of

images [3, 32, 35] and video [17, 20], directed marketing [36], music categorization into

genres and emotions [13, 24, 15] and automated tag suggestion in collaborative tagging

systems [10, 21].

Binary relevance (BR), one of the most popular multi-label learning methods in

the literature, learns a single binary model for each different label of multi-label data

independently of the rest of the labels. It has linear complexity with respect to the

number of labels and can learn highly optimized (independent parameter optimization

process) and potentially specialized (different learning algorithm) binary classifiers for
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each label using state-of-the-art learning algorithms. In addition, BR can predict arbi-

trary combinations of labels, without being restricted to those existing in the training

set, as is the case for the label powerset algorithm for example [18]. On the other hand,

it does not take into account label correlations and may fail to accurately predict label

combinations or rank labels according to relevance with a new instance.

One approach that has been proposed in the past in order to deal with the aforemen-

tioned problem of BR, works generally as follows: It learns a second (or meta) level

of binary models (one for each label) that consider as input the output of all first (or

base) level binary models. It will be called 2BR, as it uses the BR method twice, in two

consecutive levels. 2BR follows the paradigm of stacked generalization [31], a method

for the fusion of heterogeneous classifiers, widely known as stacking.

Variations of 2BR have been successfully used (i.e. achieved improved accuracy

compared to BR) by several communities. To the best of our knowledge, it was firstly

used by the machine learning and knowledge discovery community in [9], as part of

their SVM-HF method, which was based on a support vector machine (SVM) algorithm

for training the binary models of both levels. The abstraction of SVM-HF irrespectively

of SVMs and its relation to stacking was pointed out in [26, 25]. A very interesting

account of the use of 2BR by the image and video processing community is given in

Section 1.2 of [17], where it is called context based conceptual fusion. Some of the

references therein, precede [9] in date. Finally, 2BR was very recently applied to the

analysis of musical titles [15].

As 2BR is based on binary classification models, it retains the aforementioned ad-

vantages of BR, apart from the linear time complexity with respect to the number of

labels. The number of labels affects both the number of models trained at the meta-

level and the dimensionality of their input vector. Another disadvantage of 2BR raises

from the fact that some labels can be completely uncorrelated with others. A label that

is irrelevant with the one being modeled is not only lacking additional, valuable infor-

mation for the classification system, but it also introduces extra inherent noise from the

base level.

In this paper we propose pruning the base-level models that are considered as input

to the meta-level models based on the correlation of labels. The φ coefficient is used

to calculate the correlation of each label pair based on an initial single pass over the

training set. Labels with correlation below a threshold with the label being learned at the

meta-level are pruned and the dimensionality of the meta-level feature space is reduced.

This approach improves the system efficiency substantially, without significant loss in

predictive performance. In some datasets there are even gains in performance due to the

reduced noise being introduced to the system.

The rest of this paper is structured as follows. The next section presents the base-

line 2BR algorithm, along with the proposed pruning approach. Section 3 describes an

exploratory analysis of the distribution and semantics of the φ correlation coefficient

based on a variety of multi-label data sets. Section 4 describes the setup and results

of the empirical evaluation of the proposed approach. Finally, Section 5 concludes and

points to interesting extensions of this work for the future.
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2 Pruning the 2BR method

This section first gives a formal description of the baseline 2BR method that we adopted

in this work. It then motivates the pruning of base-level predictions at the meta-level and

presents our approach to achieving it.

2.1 Baseline 2BR

We first provide some notation for the formal description of the algorithm. Let L =
{λj : j = 1 . . . M} denote the finite set of labels in a multi-label learning task and

D = {(xi, Yi), i = 1 . . . N} denote a set of multi-label training examples, where xi is

the feature vector and Yi ⊆ L the set of labels of the i-th example.

2BR accepts as parameters a number of folds F , a base-level binary classification

algorithm and a meta-level binary classification algorithm.

The first step of 2BR concerns training the base-level models and gathering their

predictions on a set of training examples in order to construct the meta-level training

data. One approach here is to use the full training set for both base-level training and

prediction gathering [9]. This however can lead to biased meta-level training data. An

alternative approach is to hold part of the training set for gathering the predictions. This

can lead to a reduced meta-level training set if the original training set is small. This

fact was actually one of the two arguments posed against 2BR in [17]. An approach in-

between these two was used in [15]: for each label the training was based on a sample of

the majority class (typically corresponding to the absence of a label) in order to balance

the class distribution.

We follow a different approach here, which makes use of the complete training set

for both training and prediction gathering but avoids the biasing problem. Initially, the

algorithm splits the training data randomly into F disjoint parts, Dk, k = 1 . . . F , of

approximately equal size. This process is done separately for each label and indepen-

dently of the rest of the labels, so that the distribution of each label in each part is

similar to its distribution in the complete training set, as in stratified cross-validation.

Subsequently, the base-level algorithm is employed k = 1 . . . F times for each label

using the set D \ Dk for training and the set Dk for evaluation. This process leads to

a meta-level training set D′ = {(yi, Yi), i = 1 . . . N}, where yi is a vector containing

the predictions of the base-level algorithm for each λj given xi. Value yij denotes the

confidence of the algorithm in the annotation of xi with label λj .

The last two steps of 2BR involve: a) training one base-level binary classification

model Bj for each label using the base-level algorithm on the complete training set,

and b) training one meta-level classification model Mj using the meta-level algorithm

on the meta-level training set.

For the classification and/or ranking of a new instance x′, first the decision y′

j of

each model Bj is obtained. Then the vector of all decisions y′ forms a meta-instance,

which is given as input to each of the meta-models Mj . Based on the binary output of

these models we can obtain a bipartition of the labels (multi-label classification), while

if the output is numeric (confidence, probability estimate, etc), then a ranking can also

be obtained.
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The complexity of 2BR depends on the complexity of the base-level and meta-

level algorithms used. If these are given by f(A, N) and g(A, N) respectively for a

training set with N examples and A attributes, then the time complexity of 2BR is

O(M [Ff(A, N) + g(M,N)]). The complexity of 2BR with respect to M depends

on that of the meta-level learning algorithm with respect to the number of features. For

example, if g(A, N) is linear with respect to A, then the complexity of 2BR is quadratic

with respect to M .

2.2 Correlation-Based Pruning

In this paper we argue that each meta-level model should not be trained using the pre-

dictions of all base-level models. Base-level models corresponding to labels that are

not correlated with the label of the given meta-level model should instead be pruned.

The motivation is that the higher dimensionality of the input space will only lead to

higher cost of training the meta-models, while it might also hurt the generalization of

the meta-models.

To achieve our goal, we utilize the φ correlation coefficient, a specialized version

of the Pearson product moment correlation coefficient for categorical variables with

two values, also called dichotomous variables [6]. Given two labels, λi and λj , and the

frequency counts of the combinations of their values given in Table 1, the coefficient is

defined as follows:

φ =
AD −BC

√

(A + B)(C + D)(A + C)(B + D)
(1)

λj ¬λj

λi A B

¬λi C D

Table 1. Contingency table for labels λi and λj .

The pruned version of 2BR accepts a threshold of φ correlation as a parameter,

denoted t, where 0 ≤ t ≤ 1. When constructing the meta-level training examples for

a label λ it only takes into account the predictions of the base-level models for those

labels λ′ ∈ L whose absolute value of the φ correlation with λ is greater or equal to t:

|φ(λ′, λ)| ≥ t. Obviously, the predictions of the base-level model for λ will always be

taken into account, as φ(λ, λ) = 1.

If M ′ is the largest number of base-level models whose predictions are taken into

account at the meta-level, then the complexity of the pruned version of 2BR becomes

O(M [Ff(A, N) + g(M ′, N)]). With appropriate selection of the threshold φ, M ′ can

be a much smaller number compared to M , reducing the complexity of 2BR to lin-

ear with respect to the number of labels. Alternatively, by explicitly selecting a small

number M ′ of most correlated labels, the linear complexity can be guaranteed.
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An approach based on a similar idea, but applied to multiple numerical target vari-

ables using decision tree learners, is the Empirical Asymmetric Selective Transfer (EAST)

[16]. For each label, EAST performs a greedy forward selection hill climbing search in

the space of label subsets, guided by the accuracy of the model. This search process has

quadratic complexity with respect to the number of labels. If we also consider the need

to train the model at each step, then in the best case this raises the complexity to cubic

with respect to the number of labels. Finally, since this process has to be done for all

labels, the overall complexity of EAST is quartic with respect to the number of labels.

Therefore, EAST is highly inefficient and unsuitable for domains with large numbers

of labels. EAST has a clearly different focus (accuracy) compared to our approach (ef-

ficiency).

3 Exploratory Analysis of the φ Coefficient

This section explores the distribution of the φ coefficient in several multi-label data sets

in order to derive conclusions on a meaningful range of values for setting the threshold

parameter t of the pruned 2BR during the experiments that follow. We also attempt to

gain some insight on the semantics underlying the numerical values of the φ coefficient

by examining the names of the labels in two of these data sets.

3.1 Data sets

We explore the φ coefficient on 7 multi-label data sets3. Table 2 includes several statis-

tics for each of these data sets [25], including the average number of labels per exam-

ple (label cardinality) and the number of distinct label combinations distinct labelsets.

Short descriptions of these data sets are given in the following paragraphs.

Table 2. Multi-label data sets and their statistics.

attributes label label distinct

name examples nominal numeric labels cardinality density labelsets

bibtex 7395 1836 0 159 2.402 0.015 2856

enron 1702 1001 0 53 3.378 0.064 753

mediamill 43907 0 120 101 4.376 0.043 6555

medical 978 1449 0 45 1.245 0.028 94

reuters 6000 0 47236 101 2.880 0.029 1028

tmc2007 28596 49060 0 22 2.158 0.098 1341

yeast 2417 0 103 14 4.237 0.303 198

The yeast data set [8] contains micro-array expressions and phylogenetic profiles

for 2417 yeast genes. Each gene is annotated with a subset of 14 functional categories

(e.g. metabolism, energy, etc) from the top level of the functional catalogue (FunCat).

3 Available at http://mlkd.csd.auth.gr/multilabel.html
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The tmc2007 data set is based on the data of the competition organized by the text

mining workshop of the 7th SIAM international conference on data mining4. The orig-

inal data contained 28596 aviation safety reports in free text form, annotated with one

or more out of 22 problem types that appear during flights [22]. Text representation

follows the boolean bag-of-words model.

The medical data set is based on the data made available during the computational

medicine center’s 2007 medical natural language processing challenge5. It consists of

978 clinical free text reports labeled with one or more out of 45 disease codes.

The enron data set is based on a collection of email messages exchanged between

the Enron Corporation employees, which was made available during a legal investiga-

tion. It contains 1702 email messages that were categorized into 53 topic categories,

such as company strategy, humor and legal advice, by the UC Berkeley Enron Email

Analysis Project6.

The mediamill data set was part of the Mediamill challenge for automated detec-

tion of semantic concepts in 2006 [20]. It contains 43907 video frames annotated with

101 concepts (e.g. military, desert, basketball, etc). The specific dataset we used cor-

responds to experiment 1 (visual feature extraction) as described in [20]. Each video

frame is characterized by a set of 120 visual features.

The bibtex data set [10] is based on the data of the ECML/PKDD 2008 discovery

challenge. It contains 7395 bibtex entries from the BibSonomy social bookmark and

publication sharing system, annotated with a subset of the tags assigned by BibSonomy

users (e.g. statistics, quantum, datamining). The title and abstract of bibtex entries were

used to construct features using the boolean bag-of-words model.

The reuters (rcv1) data set is a well known benchmark for text classification meth-

ods. We have used a subset (rcv1subset1) that contains 6000 news articles assigned into

one or more out of 101 topics. An extensive description of the rcv1 dataset can be found

in [12].

3.2 Mean Label Correlation

Figure 1 depicts a plot of the number of label pairs that exhibit φ correlation greater or

equal to the corresponding value of the x axis, divided by the total number of labels. We

call this number mean label correlation as it corresponds to the mean number of corre-

lations of each label that surpass a given threshold of positive or negative φ correlation.

The plot shows the mean label correlation for the 7 multi-label datasets with respect to

a threshold ranging from 0 to 0.3 with a step of 0.01.

Constructing such a plot prior to the execution of 2BR is fast, as it requires a single

pass over the data. Based on the calculated correlations of all label pairs, we can choose

the threshold parameter t of 2BR, in a way such that a small number of base-level

classifiers remains on average for each label, depending on the boost in efficiency that

we would like to achieve. The plot shows that after a threshold of 0.3, each label is on

average correlated with less than one label (apart from itself) for all datasets.

4 http://www.cs.utk.edu/tmw07/
5 http://www.computationalmedicine.org/challenge/
6 http://bailando.sims.berkeley.edu/enron email.html
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Fig. 1. Mean label correlation with respect to increasing absolute φ thresholds in seven multi-label

data sets.

Note also that there seems to be a slight correlation between the cardinality of the

dataset and the mean number of label correlations per given φ threshold. For example,

the curves of yeast and mediamill with a cardinality of around 4 seem to be on top of

the rest, despite the difference in number of labels, while on the other side, the curves

of tmc2007 and medical, with the smallest cardinality, seem to be lower than the rest of

the curves.

3.3 Semantic Analysis of the φ Coefficient

The φ coefficient of correlation between pairs of labels is estimated from data sets that

are typically annotated manually. Manual annotations can be incomplete, erroneous

and even biased depending on target and time constraints of the labeling procedure,

the accuracy of the labeling effort, and the content of the dataset being labeled. Taking

into account all these possible complications, it is useful to examine whether a direct

analogy between the φ-based and the semantic-based correlation of two labels exists in

practice.

In the radar/spider diagram of Figure 2, the φ coefficient between two indicative

labels, namely building and government leader, and the rest of the labels from the me-

diamill dataset is depicted. Due to the high number of labels (101), some of them were

removed from the diagram to make it more legible. The labels that were removed had

zero or close to zero φ values with both of the illustrated labels. Moreover, the zero cor-

relation level is highlighted to help the reader distinguish between positive and negative

values. It must also be noted that the autocorrelation for both examined labels, equal to

1, has been removed to enhance legibility.
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Fig. 2. Radar/spider diagram of the φ correlation coefficient of Building and Government Leader

with the rest of the labels.

The label building is depicted in the graph with the thick black line. It is positively

correlated with the labels outdoor, sky, road, car, truck, vehicle, tree, crowd, house, and

government building. The labels house and government building have a direct semantic

relation with the label building. outdoor and sky are not part of the concept building but

they often accompany it in images. This can be explained by the tendency of human

annotators to label an image as building when the entire building, or at least a good

part of it, is depicted. To have such a perspective, the image is taken outdoors and

most probably the sky is part of the image. Moreover the concept building is strongly

related with an urban or suburban environment. In such an environment, the labels road,

car, truck, vehicle, tree and crowd are very common. On the other hand, studio, face,

indoor, male, government leader, meeting and people are labels that do not co-occur

with building in this dataset. With the exception of label people that will be further

discussed, all labels are not conceptually compatible with building. Label people is

very similar to Crowd and there seems to be an incompatibility. The difference here is

in the area of interest. An image depicting a building is not focused on people, making

them a crowd without faces and gender. There are also a number of labels like religious

leader, overlayed text, cartoon, Clinton, Arrafat, sports, natural disaster etc that have

zero correlation. These labels show a random relation with the examined one, signaling

that the added value that they may offer is very limited if existent.
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The label government leader is depicted in the graph with the thick grey line. It

is strongly and positively correlated with the labels Allawi, Bush Jr, Bush Sr, Kerry,

Lahoud, Powel, chair, corporate leader, crowd, face, flag, flag USA, meeting, table,

people and male. All of them can be mapped to international meetings between leaders

and public appearances. Negative φ correlation exists with female, studio, sports, road,

outdoor, car and building. Judging from the correlations, we can argue that label gov-

ernment Leader seems to be biased due to the dataset that is available for the training.

It includes mostly American and Arab leaders meeting indoors in an office. Outdoor

appearances, female leaders, talks in front of buildings that could also be relevant to the

government leader label are under-represented in this dataset.

The radar/spider diagram of Figure 3, depicts the φ coefficient between two indica-

tive labels, namely alliances/partnerships and company image - changing/influencing,

and the rest of the labels from the enron data set. For legibility reasons some labels

were removed, and the names of others were shortened or abbreviated in the diagram.

All labels that were removed have again zero correlation with the examined labels or a

uniform correlation with all the labels.

Fig. 3. Radar/spider diagram of the φ correlation coefficient of alliances/partnerships and com-

pany image - changing influencing with the rest of the labels.

At this point it is useful to provide some additional background information about

the enron dataset in order to support the task of the semantic analysis that follows. As

discussed in section 3.1, enron is based on a collection of e-mail messages. These mes-

sages were exchanged between employees of the Enron energy corporation and became
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available during the legal investigation of a financial scandal, involving Enron and its

accounting firm. The data set consists of 53 labels, belonging to 4 main categories,

namely Coarse genre, Included/forwarded information, Primary topic and Emotional

tone. Taking this information into consideration we can explain the inconsistency be-

tween some label groups, since they refer to 4 different aspects of an e-mail message.

Both the illustrated labels of the radar diagram fall into the Primary topics main cate-

gory.

The label alliances/partnerships is depicted in the graph with the thick grey line.

It has a strong positive correlation with the labels gratitude, secrecy/confidentiality and

press release(s) while a weaker positive correlation emerges with the labels anger/agitation

and business letter(s)/document(s). An e-mail message with alliances/partnerships as

the primary topic, is likely to have an emotional tone of gratitude, following a successful

partnership, or a tone of secrecy/confidentiality regarding a prospective alliance, prod-

uct etc. Furthermore, the reference to press release(s) or business letter(s)/document(s)

in such a message is normal in business practice. On the other hand, a failed partnership

can provoke negative emotions, justifying the correlation with the label anger/agitation.

The most negatively correlated label is competitiveness/ag-gressiveness. Again this

seems reasonable, since a message labeled as alliances/ partnerships is usually lack-

ing aggressive and competitive tones.

The label company image - changing influencing is depicted in the graph with

the thick black line. It is positively associated with the labels worry/anxiety, press

release(s), newsletters, concern, sympathy/support and internal company operations.

For these labels, the conceptual correlation with the changing image of the company

is quite straightforward. For example the strong correlation of worry/anxiety and con-

cern is totally substantiated, considering the darksome future of the company which

came in the verge of bankruptcy. On the other hand a negative φ correlation is re-

vealed with the labels government action(s), employment arrangements, sarcasm and

alliance/partnerships. All these labels are referring to actions and emotions regarding

the internal affairs of a company, thus having a negative correlation with company im-

age.

Concluding this section we can state that the φ coefficient is able to capture both

real-life and semantic-based correlations between labels. Furthermore, it is able to point

out relations that are not straightforward, e.g. the differences between people and crowd

or the differences between internal and public affairs in a company. Our experiments

have shown that in two publicly available datasets with diverse data the relationships

mapped are valid and they can prove valuable. Despite its effectiveness, the φ coeffi-

cient is still dependent on the dataset from which it is extracted and the quality of the

annotation.

4 Empirical Evaluation

We empirically evaluate the utility of the proposed approach by measuring the per-

formance of the pruned BR2 on the yeast and enron data sets, using threshold values

ranging from 0 (no pruning) to 0.3 with a step of 0.03. As we saw in the previous

section, threshold values greater than 0.3 are not expected to lead to great changes in
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predictive performance or computational efficiency, as the mean number of correlated

labels is already less than two.

In order to be able to draw general conclusions, this comparison should be made

with a variety of base and meta-level algorithms. To restrict the large space of experi-

ments, in this paper we focus on decision trees (DT) and linear kernel support vector

machines (SVM) for both base-level and meta-level learning. We also use linear re-

gression (LR) at the meta-level, based on the good results for stacking heterogeneous

classifiers (i.e. based on different learning algorithms) reported in [23]. In the plots that

follow, meta-level DTs, SVMs and LRs are marked with circles, stars and dots respec-

tively.

We used the implementations of the above algorithms from the Weka library [30].

We did not perform any parameter optimization for the above algorithms and used them

with their default settings, apart from DTs, where Laplace smoothing of the predicted

probabilities was enabled. We implemented 2BR by extending the Mulan open source

Java library for multi-label learning [29], which works on top of the Weka API.

The performance of 2BR is evaluated in terms of two criteria: a) efficiency, which is

measured by the average dimensionality of the meta-level feature vector, and b) accu-

racy, which is measured using: i) micro F1, which evaluates bipartitions, and ii) average

precision, which evaluates rankings. A description of these and other evaluation mea-

sures for multi-label data can be found in [28].

Figure 4 shows the micro F1 in enron. DTs and SVMs are employed as base-level

algorithms in sub-figures (a) and (b) respectively. For base-level DTs, pruning seems to

increase performance. All meta-level algorithms, namely DT, SVM, and LR, achieve

their peak values while employing pruning. Especially for DTs and SVMs, which are

the best performing algorithms, the improvement of the F1 measure is substantial. For

base-level SVMs, the performance of the meta-level algorithms is either improved or

stable with minor variations in terms of the F1 measure.
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Fig. 4. Micro F1 in enron.

Figure 5 depicts the micro F1 in yeast. The performance trend is the same as in

the previous data set. For all combinations of algorithms, the peak value of micro F1

is obtained with pruning for different thresholds of φ. Overall, pruning is enhancing
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the accuracy of the examined algorithms. Their accuracy is either kept constant, or

improved, sometimes substantially.
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Fig. 5. Micro F1 in yeast.

In analogy to micro F1 the average precision is depicted in Figures 6 and 7. In

enron, pruning is improving the average precision in all cases. Using a DT at both the

base and the meta-level gives the best performance in Figure 6(a) showing an almost

linear improvement as the φ threshold increases. When SVMs are used at the base-level,

average precision is almost constant with the peak values obtained always with the aid

of pruning.
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Fig. 6. Average precision in enron.

For the yeast dataset the conclusions are similar. With the exception of base-level

DTs with meta-level LRs, where the performance shows an insignificant decrease, in

all other cases pruning seems to improve average precision, including the peak perfor-

mance. Especially the combination of base and meta-level DT seems to significantly

benefit from pruning.

In order to validate the usefulness of pruning we have employed two data sets,

three learning algorithms in eight different configurations and two different metrics.
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Fig. 7. Average precision in yeast.

According to our experiments, the learning procedure seems to benefit from pruning. In

several cases there are significant performance improvements, while in all other cases

there is no substantial deviation from the accuracy of the baseline 2BR results.

Moreover, the label elimination that takes place, significantly reduces the system

complexity, thus increasing its time-efficiency, in all cases where |φ| > 0. Table 3 shows

the reduction of the average number of classifiers employed in the meta-level learning

for different φ thresholds. It suggests that if we bounded the number of labels from

the base-level that contribute to the prediction of a label at the meta-level, to a small

number (e.g. 5), we could achieve the same or better results at a linear time complexity

with respect to M .

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

enron 19.34 10.25 7.08 5.42 4.70 4.21 3.98 3.64 3.34 3.34

yeast 11.57 8.85 8.00 6.29 4.86 4.57 4.00 3.86 3.57 2.86

Table 3. Average number of classifiers being stacked for different φ thresholds and data sets.

5 Conclusions and Future Work

In our view, one of the important contributions of this paper is the use of the φ coeffi-

cient to explicitly quantify the correlation between labels. We believe that this can help

improve the scalability and predictive performance of other multi-label methods be-

yond BR2 as well. For example, in RAkEL [29], it could be used to construct subsets of

correlated labels, with potentially improved performance. It could play the role of the

similarity measure in the clustering phase of HOMER [27], perhaps leading to more

appropriate clusters. Finally, in DML-kNN [33], it could be utilized in the construction

of the margin vectors that are used to characterize the dependency level between labels.

One of the advantages of 2BR, as a classifier fusion method, is that it can encom-

pass additional base-level models at the meta-level. This can be very helpful when the
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objects to be classified are characterized by different representations (e.g. textual, mi-

croarray and clinical descriptors of gene functions) [11, 7]. It can also help with the

fusion of heterogeneous base-level classifiers, leading to an improvement of the overall

performance. Exploring this direction is among our near future plans, especially since

the results of this paper showed that different algorithms work well in different datasets.

In both of these scenarios (heterogeneous descriptors and learning algorithms) the prun-

ing is expected to play a more prominent role, as the dimensionality of the meta-level

feature vector will grow linearly by a factor equal to the number of different represen-

tations/algorithms, unless a hierarchical stacking approach is employed.

We also plan to investigate the relation of pruning to a number of variations of

the baseline 2BR algorithm, such as extending the meta-level feature vector with the

original base-level features [9, 17] and replacing the numeric meta-level features, which

represent the confidence in the binary decision of base-level classifiers, with binary

ones, representing the boolean decisions themselves [9, 15].
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4. Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Hierarchical classification: com-

bining bayes with svm. In ICML ’06: Proceedings of the 23rd international conference on

Machine learning, pages 177–184, 2006.

5. A. Clare and R.D. King. Knowledge discovery in multi-label phenotype data. In Proceedings

of the 5th European Conference on Principles of Data Mining and Knowledge Discovery

(PKDD 2001), pages 42–53, Freiburg, Germany, 2001.

6. Jacob Cohen, Patricia Cohen, Stephen G. West, and Leona S. Aiken. Applied Multiple Re-

gression/Correlation Analysis for the Behavioral Sciences. Psychology Press, 2002.

7. A. Dimou, G. Tsoumakas, V. Mezaris, I. Kompatsiaris, and I. Vlahavas. An empirical study

of multi-label learning methods for video annotation. In Proc. 7th International Workshop

on Content-Based Multimedia Indexing, CBMI ’09, Chania, Greece, 2009.

8. A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In Advances

in Neural Information Processing Systems 14, 2002.

9. S. Godbole and S. Sarawagi. Discriminative methods for multi-labeled classification. In

Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD 2004), pages 22–30, 2004.

10. Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multilabel text classification

for automated tag suggestion. In Proceedings of the ECML/PKDD 2008 Discovery Chal-

lenge, Antwerp, Belgium, 2008.
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