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Abstract. Nowadays, the number of protein sequences being stored in central 
protein databases from labs all over the world is constantly increasing. From 
these proteins only a fraction has been experimentally analyzed in order to de-
tect their structure and hence their function in the corresponding organism. The 
reason is that experimental determination of structure is labor-intensive and 
quite time-consuming. Therefore there is the need for automated tools that can 
classify new proteins to structural families. This paper presents a comparative 
evaluation of several algorithms that learn such classification models from data 
concerning patterns of proteins with known structure. In addition, several ap-
proaches that combine multiple learning algorithms to increase the accuracy of 
predictions are evaluated. The results of the experiments provide insights that 
can help biologists and computer scientists design high-performance protein 
classification systems of high quality. 

1   Introduction 

A crucial issue in bioinformatics is structural biology, i.e. the representation of the 
structure of several biological macromolecules. The knowledge of the 3D structure of 
proteins is a strong weapon in combating many diseases, since most of them are 
caused by malfunctions of the proteins involved in several functions of the human 
cells. Until now the biological effect of proteins could be identified only by expensive 
in vitro experiments. In the recent years, though, large databases were created for the 
recording and exploitation of biological data, due to the human DNA and protein 
decoding. With the contribution of modern data analysis techniques, such as machine 
learning and knowledge discovery, the issue has been approached computationally, 
thus providing fast and more flexible solutions. 

The function of a protein is directly related to its structure. Proteins are grouped 
into several families according to the functions they perform. All proteins contained 
in a family feature a certain structural relation, thus having similar properties. Patterns 
are short amino acid chains that have a specific order, while profiles are computa-
tional representations of multiple sequence alignments using hidden Markov models. 



We will refer to both profiles and patterns as motifs. Motifs have been widely used 
for the prediction of a protein’s properties, since the latter are mainly defined by their 
motifs. Prosite [1], Pfam [2] and Prints [3] are the most common databases where 
motifs are being recorded.  

Machine learning (ML) algorithms [4] can offer the most cost effective approach 
to automated discovery of a priori unknown predictive relationships from large data 
sets in computational biology [5]. A plethora of algorithms to address this problem 
have been proposed, by both the artificial intelligence and the pattern recognition 
communities. Some of the algorithms create decision trees [6,7], others exploit artifi-
cial neural networks [8] or statistical models [9]. 

An important issue however that remains is which from the multitude of machine 
learning algorithms to use for training a classifier in order to achieve the best results. 
The plot thickens if we also consider the recent advances in ensemble methods that 
combine several different classification algorithms for increasing the accuracy. This 
creates a problem to the ML expert who wants to provide the biologist with a good 
model for protein classification. 

In this paper we perform an empirical comparison of the performance of several 
different classification algorithms for the problem of motif-based protein classifica-
tion. Moreover, we exploit the combination of different classification algorithms in 
order to achieve accuracy improvement. Two main paradigms in combining different 
classification algorithms are used: classifier selection and classifier fusion. The first 
one selects a single algorithm for classifying a new instance, while the latter com-
bines the decisions of all algorithms. 

The rest of this paper is organized as follows. Section 2 presents the biological 
problem of motif-based protein classification, as well as methods for combining mul-
tiple classification algorithms in order to optimize the predictive performance. Section 
3 describes the details of the performed classification experiments for the comparison 
of several different classification algorithms. In Section 4 the results are presented 
and discussed, and finally, Section 5 concludes this work and points at the future 
outlooks. 

2   Problem Description 

2.1 The Motif-Based Protein Classification Problem 
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Fig.1. The protein classification problem 

The basic problem we are trying to solve can be stated as follows: “Given a set of 
proteins with known properties (that have been experimentally specified), we aim to 
induce classifiers that associate motifs to protein families, referred to as protein 
classes.” In Fig.1 this approach is designated.  

 
Any protein chain can be mapped into a representation based on attributes. Such a 
representation supports the efficient function of data-driven algorithms, which repre-
sent instances as classified part of a fixed set of attributes. A very important issue in 
the data mining process is the efficient choice of attributes. In our case, protein chains 
are represented using a proper motif sequence vocabulary [10].  

Suppose the vocabulary contains N motifs. Any given protein sequence typically 
contains a few of these motifs. We encode each sequence as an N-bit binary pattern 
where the ith bit is 1 if the corresponding motif is present in the sequence; otherwise 
the corresponding bit is 0. Each N-bit sequence is associated with a label that identi-
fies the functional family of the sequence (if known). A training set is simply a 
collection of N-bit binary patterns each of which has associated with it, a label that 
identifies the function of the corresponding protein. This training set can be used to 
train a classifier which can then be used to assign novel sequences to one of the 
several functional protein families represented in the training set. The data 
representation procedure is depicted in Figure 2. 
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Fig. 2. Data representation. 

2.2 Combining Multiple Classification Algorithms 

 
The main motivation for combining different classification algorithms is accuracy 
improvement. Different algorithms use different biases for generalizing from exam-
ples and different representations of the knowledge. Therefore, they tend to err on 
different parts of the instance space. The combined use of different algorithms could 
lead to the correction of the individual uncorrelated errors. There are two main para-
digms for handling an ensemble of different classification algorithms: Classifier Se-
lection and Classifier Fusion. The first one selects a single algorithm for classifying a 
new instance, while the latter fuses the decisions of all algorithms. This section pre-
sents the most important methods from both categories. 

Classifier Selection 
A very simple method of this category is found in the literature as Evaluation and 
Selection or SelectBest. This method evaluates each of the classification algorithms 
(typically using 10-fold cross-validation) on the training set and selects the best one 
for application on the test set. Although this method is simple, it has been found to be 
highly effective and comparable to other more complex state-of-the-art methods [11]. 

Another line of research proposes the selection of a learning algorithm based on its 
performance on similar learning domains. Several approaches have been proposed for 
the characterization of learning domain, including general, statistical and information-
theoretic measures [12], landmarking [13], histograms [14] and model-based data 
characterizations [15]. Apart from the characterization of each domain, the perform-
ance of each learning algorithm on that domain is recorded. When a new domain 



arrives, the performance of the algorithms in the k-nearest neighbors of that domain is 
retrieved and the algorithms are ranked according to their average performance. In 
[12], algorithms are ranked based on a measure called Adjusted Ratio of Ratios 
(ARR), that combines accuracy and learning time of algorithm, while in [16], algo-
rithms are ranked based on Data Envelopment Analysis, a multicriteria evaluation 
technique that can combine various performance metrics, like accuracy, storage 
space, and learning time. 

In [17,18] the accuracy of the algorithms is estimated locally on a number of ex-
amples that surround each test example. Such approaches belong to the family of 
Dynamic Classifier Selection [19] and use a different algorithm in different parts of 
the instance space. 

Two similar, but more complicated approaches that were developed by Merz[20] 
are Dynamic Selection and Dynamic Weighting. The selection of algorithms is based 
on their local performance, but not around the test instance itself, rather around the 
meta-instance comprising the predictions of the classification models on the test in-
stance. Training meta-instances are produced by recording the predictions of each 
algorithm, using the full training data both for training and for testing. Performance 
data are produced by running m k-fold cross-validations, and averaging the m evalua-
tions for each training instance. 

Classifier Fusion 
Unweighted and Weighted Voting are two of the simplest methods for combining not 
only Heterogeneous but also Homogeneous models. In Voting, each model outputs a 
class value (or ranking, or probability distribution) and the class with the most votes 
(or the highest average ranking, or average probability) is the one proposed by the 
ensemble. Note that this type of Voting is in fact called Plurality Voting, in contrast 
to the frequently used term Majority Voting, as the latter implies that at least 50% 
(the majority) of the votes should belong to the winning class. In Weighted Voting, 
the classification models are not treated equally. Each model is associated with a 
coefficient (weight), usually proportional to its classification accuracy. 

Stacked Generalization [21], also known as Stacking, is a method that combines 
multiple classifiers by learning a meta-level (or level-1) model that predicts the cor-
rect class based on the decisions of the base-level (or level-0) classifiers. This model 
is induced on a set of meta-level training data that are typically produced by applying 
a procedure similar to k-fold cross-validation on the training data: 

Let D be the level-0 training data set. D is randomly split into k disjoint parts D1 … 
Dk of equal size. For each fold i=1..i of the process, the base-level classifiers are 
trained on the set D \ Di and then applied to the test set Di. The output of the classifi-
ers for a test instance along with the true class of that instance form a meta-instance. 

A meta-classifier is then trained on the meta-instances and the base-level classifi-
ers are trained on all training data D. When a new instance appears for classification, 
the output of all base-level classifiers is first calculated and then propagated to the 
meta-level classifier, which outputs the final result. 

Ting and Witten [22] have shown that Stacking works well when meta-instances 
are formed by probability distributions for each class instead of just a class label. A 
recent study [11] has shown that Stacking with Multi-Response Model Trees as the 



meta-level learning algorithm and probability distributions, is the most accurate het-
erogeneous classifier combination method of the Stacking family. 

Selective Fusion [23,24] is a recent method for combining different classification 
algorithms that exhibits low computational complexity and high accuracy. It uses 
statistical procedures for the selection of the best subgroup among different classifica-
tion algorithms and subsequently fuses the decision of the models in this subgroup 
with (Weighted) Voting.  

3   Experimental Setup 

This section provides information on the dataset, participating algorithms and combi-
nation methods that were used for the experiments.  

3.1   Dataset 

The protein classes considered in are the 10 most important protein families: 
PDOC00064 (a class of oxydoreductases), PDOC00154 (a class of isomerases), 
PDOC00224 (a class of cytokines and growth factors), PDOC00343 (a class of struc-
tural proteins), PDOC00561 (a class of receptors), PDOC00662 (a class of DNA or 
RNA associated proteins), PDOC00670 (a class of transferases), PDOC00791 (a class 
of protein secretion and chaperones), and PDOC50007 (a class of hydrolases). For 
clarity of presentation, the Prosite documentation ID, i.e. the PDOCxxxxx number 
was used to represent that class. Similarly, the Prosite access number i.e. the PSxxxxx 
was used to represent that motif pattern or profile. During the preprocessing, a train-
ing set was exported, consisting of 662 proteins that belong in barely 10 classes. 
Some proteins belonged in more than one class, thus the problem could be defined as 
a multi-label classification problem. The approach taken was to create separate 
classes in order to represent the classification of each multi-labeled protein. Thus, for 
a protein that belonged in two or more classes, a new class was created that was 
named after both the protein classes in which the protein belonged. This resulted to a 
total of 32 different classes. GenMiner [25] was used for the preparation of data.  

3.2   Learning Algorithms and Combination Methods 

We used 9 different learning algorithms at the base-level. These are general-purpose 
machine learning algorithms spanning several different learning paradigms (instance-
based, rules, trees, statistical). They were obtained from the WEKA machine learning 
library [26], and used with default parameter settings unless otherwise stated:  

 
- DT, the decision table algorithm of Kohavi [27]. 
- JRip, the RIPPER rule learning algorithm [28]. 
- PART, the PART rule learning algorithm [29]. 



- J48, the decision tree learning algorithm C4.5 [7], using Laplace smoothing for 
predicted probabilities. 

- IBk, the k nearest neighbor algorithm [30]. 
- K*, an instance-based learning algorithm with entropic distance measure [31]. 
- NB, the Naive Bayes algorithm [32] using the kernel density estimator rather than 

assume normal distributions for numeric attributes. 
- SMO, the sequential minimal optimization algorithm for training a support vector 

classifier using polynomial kernels [33]. 
- RBF, WEKA implementation of an algorithm for training a radial basis function 

network [34]. 
 
The above algorithms were used alone and in conjunction with the following five 
different classifier combination methods: Stacking with Multi-Response Model Trees 
(SMT), Voting (V), Weighted Voting (WV), Evaluation and Selection (ES) and Se-
lective Fusion (SF). 

4   Results and Discussion 

For the evaluation of the algorithms and combination methods, we used 10-fold strati-
fied cross-validation. The original data set was split in 10 disjoint parts of approxi-
mately equal size and approximately equal class distribution. Each of these parts was 
sequentially used for testing and the union of the rest for training.  

Table 1 presents the results concerning the mean error for each of the algorithms. 
We notice that the lowest error is exhibited by SMO followed closely by IBk, DT, 
J48, K* and PART. JRip is a bit worse, while NB and RBF exhibit quite low per-
formance. The results verify the reputation of Support Vector Machines as a state-of-
the-art classification method. Decision Trees (J48) and Instance-Based Learning 
methods (IBk, K*) also perform well, while Rule Based methods (JRip, PART) fol-
low in performance.  

Table 1. Mean error rate of the learning algorithms 

 DT JRip PART J48 IBk K* NB SMO RBF 
Er. 0.024 0.035 0.026 0.024 0.023 0.024 0.610 0.021 0.739 
 

After this evaluation the biologist might choose to use SMO for modeling the pro-
tein classification algorithm. However, the rest of the well-performing algorithms 
could also be used and might generalize better than SMO. In addition the combina-
tion of all these algorithms, or perhaps a subset of them could give better results. To 
investigate this issue we experimented with the combination methods that were men-
tioned in the precious section. 

Table 2 presents the results concerning the mean error for each of the combination 
methods. ES simulates the process followed by someone that would like to use just 
the single best algorithm. 10-fold cross-validation is applied on the training set and 
the result of the evaluation guides the selection of the algorithm in the test set. This 



result, although good, it is worse than combining all the algorithms with Weighted 
Voting. This shows that the correction of uncorrelated errors through the voting proc-
ess has helped in reducing the error rate. Simple Voting on the other hand did not 
perform well, due to the existence of bad performing models, such as NB and RBF. 
The state-of-the-art method of SMT performed very badly. The reason is that the 
large number of classes (32) leads to a very high dimensionality for the meta-level 
data set, which does not allow a good model to be induced. The best overall method 
is SF, which combines the best subset of the models that is selected using statistical 
tests.  This result indicates that selection of the proper models and their combination 
can lead to very good results. It is worth noticing that SF selects and combines 6.3 
models on average on the 10 folds. This result reinforces the previous conclusion that 
the combination of multiple algorithms results in error reduction, especially when 
coupled with a method for selecting the appropriate models. 

Table 2. Mean error rate of the combination methods 

 SB V VW SF SMT 
Er. 0.024 0.195 0.021 0.019 0.558 

5   Conclusions and Future Work 

We have presented a comparative study of different classification algorithms and 
algorithm combination methods for the problem of motif-based protein classification. 
The results show that for a successful practical application of machine learning algo-
rithms in such a real-world problem, one requires: a) a number of different classifica-
tion algorithms, and b) a proper combination method that can automatically discard 
low performing models and combine the best models. 

One of the issues that need to be investigated in the future is the approach taken 
for dealing with the multiple classes that each protein belongs to. This problem is 
common in biological domains and has not been considered extensively by the ma-
chine learning community. In the sequel of this work we intend to explore the effec-
tiveness of alternative representations of the learning problem for the domain of pro-
tein classification.  
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