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Abstract. In this paper we argue that incrementally updating the fea-
tures that a text classification algorithm considers is very important for
real-world textual data streams, because in most applications the distri-
bution of data and the description of the classification concept changes
over time. We propose the coupling of an incremental feature ranking
method and an incremental learning algorithm that can consider differ-
ent subsets of the feature vector during prediction (what we call a feature
based classifier), in order to deal with the above problem. Experimental
results with a longitudinal database of real spam and legitimate emails
shows that our approach can adapt to the changing nature of streaming
data and works much better than classical incremental learning algo-
rithms.

1 Introduction

The World Wide Web is a dynamic environment that offers many sources of
continuous textual data, such as web pages, news-feeds, e-mails, chat rooms,
discussion forums, usenet groups, instant messages and blogs. There are many
interesting applications involving classification of such textual data streams. The
most prevalent one is spam filtering [1]. Other applications include filtering of
pornographic web pages for safer child surfing [2, 3] and delivering personalized
news feeds [4]. Another recent application involves the filtering of web spam
[5], a name for web pages whose sole purpose is to mislead search engines into
including an irrelevant commercial web site in the results of a query.

The dynamic nature of the above data streams requires continuous or at
least periodic updates of the current knowledge in order to ensure that it always
includes the information content of the latest batch of data. This is important
in domains where the concept of each class and/or the data distribution changes
over time. For example in spam filtering, parts of the spam concept change over
time as different unsolicited commercials come into vogue [6]. Similarly, in a
personalized news feeder, the interests of a user are changing over time. This
phenomenon is also known as concept drift [7].

It is obvious that computationally efficient mining of data streams requires in-
cremental algorithms that can update the current knowledge without reprocess-
ing past data, that are either unavailable or too costly to be retrieved. The huge



amount of data that is constantly arriving from a stream, does not allow to per-
manently store all data, rather a small part of it (the latest batch) or a summary
of all the data that have been seen.

Textual data streams are also high-dimensional. Documents are usually rep-
resented as a bag-of-words and the feature vector for a collection of documents
in a typical application comprises several thousands of words. However, not all
features are necessary. Therefore, feature selection must be performed in order
to reduce the dimensionality of the problem and allow learning algorithms to
obtain higher quality of knowledge with less computational cost. For this rea-
son, a lot of studies on feature selection methods for text classification have been
performed in the past [8, 9].

However, to the best of our knowledge, no work exists on the issue of in-
crementally/periodically updating the features that a text classification algo-
rithm considers. We argue that this is very important for real-world textual
data streams, because the predictive power of features changes over time: words
that in the past have been important, become redundant with the passing of
time and new high-predictive words arise that were not considered before.

In order to deal with this issue, this paper proposes an approach for classifica-
tion of textual data streams that is incremental both with respect of the examples
that arrive and with respect to the subset of features that it considers over time.
To the best of our knowledge, such an approach has not been considered before,
not only for textual data, but also for any other type of high-dimensional data.

Our approach requires two components: a) an incremental feature ranking
method, and b) an incremental learning algorithm that can consider a subset
of the features during prediction. To verify the utility of incremental feature
selection, we experimentally evaluate our approach on a chronologically ordered
version of a spam and legitimate email collection. The results showed that incre-
mental feature selection offers higher accuracy compared to classical incremental
learning.

The rest of this paper is organized as follows: Section 2, presents background
knowledge on text classification. In Section 3, we describe the proposed approach.
In Section 4 we give details about the experimental setup, including the pre-
processing of the data set and the specific algorithms that were used. In Section
5 we present and discuss the results and finally in Section 6 we conclude and
propose some future work on this topic.

2 Automated Text Classification

Automated text classification has gained scientific interest in the last 20 years.
Applications like document organization [10], text filtering [11] and author iden-
tification [12] are some representative examples of the research outcome in the
field of text classification. The impressive growth of the world wide web in the
last decade resulted in many new interesting applications like web page classifica-
tion [13], e-mail organization [14] and spam filtering [1] and raised new research
issues [15].



An informal definition of text classification would be ”the categorization of
previously unseen documents into predefined classes”. In author identification
for example, the classes are the authors. In document organization, the classes
are a number of predefined topics and in spam identification there are only two
classes: a mail can be spam or legitimate. This is a binary classification problem
or else a text filtering problem.

The first problem we come across in any text learning task is that the data
cannot be immediately processed by a classifier. We have to first follow a proce-
dure to convert our text to a format that is acceptable by learning algorithms.
The most common approach is the vector space model, where every text docu-
ment is represented as a vector of feature weights −→dj =< w1j , . . . , w|V |j >, where
V is the set of words that occur at least once in a document and consists our
problem’s vocabulary. This is the so-called bag-of-words approach. Another op-
tion is to use phrases as features, although research has shown that this approach
does not improve effectiveness [16]. The weight for each word of the vector is ei-
ther tf-idf [17] (the term frequency in the collection of documents divided by the
frequency in the current document), or more commonly a binary value denoting
the existence or absence of the word in the document.

For text classification and especially for spam filtering applications, a widely
used classifier, mainly for its simplicity and flexibility is the Naive Bayes Clas-
sifier [18] which showed decent performance in the identification of junk e-mails
[1].

Feature selection has been studied extensively in the context of text clas-
sification [8, 9]. The reason is that text data are usually high-dimensional and
feature selection is essential for a) reducing the computational complexity of
machine learning algorithms, and b) improving the accuracy of classification.

Feature selection methods fall broadly into two categories: a) the filter ap-
proach, and b) the wrapper approach. In the wrapper approach feedback from
the use of the learning algorithm with the selected features is used to evaluate
these features. When the best set is found the algorithm is called to make new
classifications based on this set of features only. On the other hand, the filter
approach is totally independent of the classifier. Another useful categorization of
feature selection methods is based on whether they evaluate individual features,
or subsets of features.

Wrappers are usually more computationally intensive than filters due to ex-
tensive use of the learning algorithm. Methods that evaluate subsets of features
are also more computationally intensive due to the larger number of evaluations
that they have to consider. For this reason in text classification tasks, where the
dimensionality of the data is typically very large, filters that evaluate features
are usually considered. Features are ranked based on the result of the evaluation
and the top N features are selected for further classification use.



3 Our Approach

Our approach uses two components in conjunction: a) an incremental feature
ranking method, and b) an incremental learning algorithm that can consider a
subset of the features during prediction.

In Section 2 we noted that feature selection methods that are commonly used
for text classification are filters that evaluate the predictive power of all features
and select the N best. Such methods evaluate each word based on cumulative
statistics concerning the number of times that it appears in each different class
of documents. This renders such methods inherently incremental: When a new
labelled document arrives, the statistics are updated and the evaluation can
be immediately calculated without the need of re-processing past data. These
methods can also handle new words by including them in the vocabulary and
initializing their statistics. Therefore the first component of our approach can
be instantiated using a variety of such methods, including information gain, the
χ2 statistic and mutual information [8, 9].

The incremental re-evaluation and addition of words will inevitably result
into certain words being promoted to/demoted from the top N words. This
raises a problem that requires the second component of the proposed approach:
a learning algorithm that is able to classify a new instance taking into account
different features over time. This problem has not been considered before to the
best of our knowledge. We call learning algorithms that can deal with it feature
based, because learning is based on the new subset of features, in the same way
that in instance based algorithms, learning is based on the new instance.

Two inherently feature based algorithms are Naive Bayes (NB) and k Nearest
Neighbors (kNN). In both of these algorithms each feature makes an independent
contribution towards the prediction of a class. Therefore, these algorithms can be
easily expanded in order to instantiate the second component of our approach.
Specifically, when these algorithms are used for the classification of a new in-
stance, they should also be provided with an additional parameter denoting the
subset of the selected features. NB will only consider the calculated probabilities
of this subset, while kNN will measure the distance of the new instance with the
stored examples based only on this subset.

It is worth noticing that the proposed approach could work without an ini-
tial training set. This is useful in personalized web-content (e-mail, news, etc.)
filtering applications that we want to work based solely on our perception of the
target class. However, very often an initial collection of labelled documents is
available. Figure 1 presents algorithm InitialTraining for the initial training
of our approach, based on such a collection of Documents that belong to one of
several Classes.

The first step is to build the Vocabulary of distinct words that appear in all
documents of the collection using the BuildVocabulary function. We also ini-
tialize WordStats, which is a construct that will hold the number of appearances
of each Word in the Vocabulary for each different class of documents, for the
purpose of feature ranking. Next, for each Document in the collection of training
Documents we update the WordStats. Based on the calculated statistics, we sub-



input : Documents, Classes
output: Classifier, Vocabulary, WordStats, FeatureList

begin
Vocabulary ← BuildVocabulary(Documents)
foreach Word ∈ Vocabulary do

foreach Class ∈ Classes do
WordStats [Word][1][Class] ← 0
WordStats [Word][0][Class] ← 0

foreach <Document, DocClass> ∈ Documents do
foreach Word ∈ Vocabulary do

if Word ∈ Document then
WordStats [Word][1][DocClass] ← WordStats [Word][1][DocClass] + 1

else
WordStats [Word][0][DocClass] ← WordStats [Word][0][DocClass] + 1

FeatureList ← ∅
foreach Word ∈ Vocabulary do

Evaluation ← EvaluateFeature(Word, WordStats)
InsertSort(<Word, Evaluation>, FeatureList)

Classifier ← BuildClassifier(Documents, Vocabulary)
end

Fig. 1. Algorithm InitialTraining

sequently evaluate each Word in the Vocabulary using the metric of preference
and insert the Word and its Evaluation in the list FeatureList, which is sorted
according to the evaluation metric. Finally we train a feature based classifier
using all Documents and the complete Vocabulary. Note that the training of the
Naive Bayes classifier does not demand any other statistics than those already
collected in WordStats.

Figure 2 presents algorithm Update for the incremental update of our ap-
proach. When a new Document arrives as an example of a DocumentClass, the
first thing to happen is to check if it contains any new words. If a new Word is
present then it is added to the vocabulary (AddWord) and the WordStats of
this Word are initialized to zero. Then for each Word in the Vocabulary we update
the counts based on the new document, re-calculate the evaluation metric and
sort the list according to the new evaluations, as before. Finally, the classifier
must also be vertically updated based on the new example and also take into
account any new words. Note that for the Naive Bayes classifier updating the
WordStats is enough for this purpose.

Finally, when a new unlabelled Document arrives for classification, the fea-
ture based classifier of our approach considers just the top NumToSelect ranked
words from the sorted FeatureList. This process is performed by algorithm Clas-
sifyDocument shown in Figure 3.



input : Document, DocClass, Classes, Vocabulary
output: Classifier, Vocabulary, WordStats, FeatureList

begin
foreach Word ∈ Document do

if Word /∈ Vocabulary then
AddWord(Word, Vocabulary)
foreach Class ∈ Classes do

WordStats [Word][1][Class] ← 0
WordStats [Word][0][Class] ← 0

foreach Word ∈ Vocabulary do
if Word ∈ Document then

WordStats [Word][1][DocClass] ← WordStats [Word][1][DocClass] + 1
else

WordStats [Word][0][DocClass] ← WordStats [Word][0][DocClass] + 1

FeatureList ← ∅
foreach Word ∈ Vocabulary do

Evaluation ← EvaluateFeature(Word, WordStats)
InsertSort(<Word, Evaluation>, FeatureList)

Classifier ← UpdateClassifier(Document, DocClass)
end

Fig. 2. Algorithm Update

input : Classifier, Document, FeatureList, NumToSelect
output: Class

begin
FeatureSubset ← SelectFeatures(NumToSelect, FeatureList)
Class ← UseClassifier(Classifier, Document, FeatureSubset)

end

Fig. 3. Algorithm ClassifyDocument



4 Experimental Setup

In this section we present the data set, feature selection method and learning
algorithm that were used in the experiments.

4.1 Data Set

In order to evaluate the utility of the proposed approach for classification of
textual data streams, it is important to use real-world data. For the domain of
spam filtering this means that we need real-world spam and legitimate emails
chronologically ordered according to their date and time of arrival. In this way
we can approximate the time-evolving nature of this problem and consequently
we can evaluate properly the different approaches.

There are various collections of spam messages available on the Web, in-
cluding the repository of SpamArchive1, the public corpus of the SpamAssasin
project2 and the Ling-Spam corpus3. Our choice was the public corpus of Spa-
mAssassin for two main reasons: a) Every mail of the collection is available with
the headers, so we are able to extract the exact date and time that the mail was
sent or received, and b) It contains both spam and ham messages with a decent
spam ratio (about 20 percent).

The Spam Assassin collection comes in four parts (folders): spam, spam2,
ham, and easy ham which is a collection of more easily recognized legitimate
messages. In order to convert this collection into a longitudinal data set we
extracted the date and time that the mail was sent. Then we converted the time
into GMT time. Date was also changed where needed. We stamped each mail
with its date and time by renaming it in the format yyyy MM dd hh mm ss
(yyyy: year, MM: month, dd:day, hh: hours, mm: minutes, ss: seconds). If a mail
was more than once in the corpus (sometimes a user may get the same mail
more than once) we kept all copies. All attachments were removed. The boolean
bag-of-words approach was used for representing the mails.

4.2 Feature Selection Method and Learning Algorithm

The feature ranking method that we selected for the experiments is the χ2 sta-
tistic, for its simplicity and effectiveness [8]. As we mentioned in the precious
section, there are many other similarly simple metrics that could be used for in-
stantiating our framework [8, 9]. Here, we are not focusing on the effectiveness of
different feature selection methods, rather on whether the proposed incremental
feature selection approach is useful in textual data stream classification.

The algorithm that we selected is Naive Bayes. The k-NN algorithm is inef-
ficient for data-streams, because it needs to store all data. Naive Bayes on the
other hand store only the necessary statistics, and is therefore our choice for
incremental learning from textual data streams.
1 http://www.spamarchive.org
2 http://spamassassin.apache.org/
3 http://www.iit.demokritos.gr/skel/i-config/downloads/



The Naive Bayes (NB) classifier is a simplistic but practical Bayesian learn-
ing algorithm that performs extremely well in many text classification tasks. The
decision of the algorithm is determined by the following equation:

cNB = argmaxP (cj)
∏

P (wi|cj) (1)

Where cj is the i− th class of our classification problem. In our case, we have
only two classes. A mail can belong to class cL (legitimate mail) or cS (spam
mail). wi is the i− th word of a vocabulary built from our corpus by collecting
all distinct words. P (cj) expresses the probability a random document to belong
in the j− th class. It can be approximated from the training set by dividing the
number of documents of class j with the total number of training documents
available.

P (cj) =
|docsj |

|Examples| (2)

The P (wi|cj) probability represents the possibility the word wi to be present
in a document of class cj . Hence, it expresses how possible it is for our unlabelled
document to belong in class cj if it contains the word wj . This possibility can
be typically approximated by:

P (wi|cj) =
NumberOfT imesWordwiOccursinallcjDocuments

TotalNumberofcjdocuments
(3)

The simplicity of the NB classifier is obvious from all the above equations. To
classify a new document we only need to have the knowledge of the above proba-
bilities. We have expanded the Naive Bayes implementation of the Weka library
of machine learning algorithms [19] in order to be able to perform classification
using a subset of all features that were used for training.

The χ2 statistic of a word w and a class c can be calculated by the following
equation.

χ2(w, c) =
N × (AD − CB)2

(A + C)× (B + D)× (A + B)× (C + D)
(4)

where A is the number of times w and c co-occur, B is the number of times w
occurs without c, C is the number of times c occurs without w, D is the number
of times neither c nor w occur, and N is the total number of documents.

We have also expanded the implementation of the χ2 feature ranking method
of Weka [19] in order to perform incremental updates.

5 Results and Discussion

In the experiments, we compare the predictive performance of our approach
(NB3) with a classical incremental Naive Bayes classifier (NB2) and a non-



incremental Naive Bayes classifier (NB1). NB1 is only trained once on a per-
centage of the data, and uses the features that are selected based on this initial
training set. NB2 also uses a static feature space, but apart from the initial
training, each time a new document arrives, it updates the probabilities for each
feature. Our approach (NB3) also updates the probabilities not only for the se-
lected features but for all of the features and in addition it recalculates the χ2

rank of these features based on the updated probabilities. It therefore uses a
dynamic feature space, that may change over time. In addition our approach
can utilize new features that appear in new documents.

We varied the percentage of documents that were used for initial training
from 0.1 to 0.5 with a step of 0.1. Using a 0.1 percentage of initial training data
allows us to study the behavior of the filter for a longer time (0.9 of the whole
longitudinal data set), while an initial training of 0.5 simulates a short period of
online filtering. The number of features to select was set to 250 and 500.
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Fig. 4. (a) accuracy and (b) false positive rate when we select the top 250 features and
(c) accuracy and (d) false positive rate when we select the top 500 features

Figure 4 shows (a) the accuracy and (b) the false positive rate when we
select the top 250 features and (c) the accuracy and (d) the false positive rate



when we select the top 500 features. We first notice that the behavior of the three
approaches follows the same pattern independent of the number of features used.

The non-incremental Naive Bayes classifier (NB1) performs very badly when
run for a long time (0.1 to 0.4) and approximates the other two incremental
classifiers when half of the total data that it subsequently classifies are used for
training. This is something expected as incremental learning is important for
updating the current model with the latest data.

The incremental Naive Bayes classifier (NB2) also has problems when run for
a long time (0.1 to 0.3) and approximates NB3 when 0.4 or more of the total data
is used for its training. This actually shows that vertically incremental learning
alone cannot catch up with the changing nature of real-world data streams.

The feature based incremental Naive Bayes classifier together with the incre-
mental χ2 feature ranking method (NB3) shows much better behavior than the
other two classifiers even when little data is used for initial training (i.e. even
when run for a long time). This verifies our initial argument that incremental
feature selection is very important for classification of textual data streams.

6 Conclusions and Future Work

This paper argued that incremental feature selection is very important for the
classification of textual data streams due to the changes in data distribution and
class concept that occur over time. We presented an approach that combines an
incremental feature selection methods with what we called a feature based learn-
ing algorithm in order to deal with the above problem. The experimental results
show that the proposed approach offers better predictive accuracy compared to
classical incremental learning, and are encouraging for further work.

In the future we intend to experiment with maintaining statistics for a
fixed number of features over time instead of the whole vocabulary. This would
increase the efficiency of the proposed approach, due to the reduced storage
and processing requirements. We would like to see whether this would also in-
crease the effectiveness of the proposed approach in dealing with fast changing
data/concepts, as it focuses more aggressively on the latest data.
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