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Abstract. In this paper, we compare and combine two approaches for
multi-label classification that both decompose the initial problem into
sets of smaller problems. The Calibrated Label Ranking approach is
based on interpreting the multi-label problem as a preference learning
problem and decomposes it into a quadratic number of binary classifiers.
The HOMER approach reduces the original problem into a hierarchy of
considerably simpler multi-label problems. Experimental results indicate
that the use of HOMER is beneficial for the pairwise preference-based
approach in terms of computational cost and quality of prediction.

1 Introduction

Traditional single-label classification is concerned with learning from a set of
examples that are associated with a single label λ from a set of disjoint labels
L, |L| > 1. In multi-label classification, the examples are associated with a set
of labels P ⊆ L. Multi-label classification is of high practical relevance as it nat-
urally surfaces in many problems with textual, multimedia, or biological data3.

The methods that are proposed in the literature can be categorized into
two different groups [1]: i) problem transformation methods, and ii) algorithm
adaptation methods. The first group includes methods that are algorithm in-
dependent. They transform the multi-label classification task into one or more
single-label classification, regression or ranking tasks. The second group includes
methods that extend specific learning algorithms in order to handle multi-label
data directly. Recently, a special group of transformation methods that decom-
pose the original multi-label classification problem into a series of simpler prob-
lems has been proposed [2, 3]. These decompositive methods focus on dealing
with problems with large number of labels.

In this paper, we compare and combine two recently proposed decompositive
methods. The HOMER approach [2] decomposes the problem into a hierarchy
of simpler problems, where each problem uses a reduced number of possible
labels. The hierarchical structure of the labels is obtained by applying recursive
3 A collection of datasets can be found at http://mlkd.csd.auth.gr/multilabel.html



clustering to the initial set of labels. The Calibrated Label Ranking approach [3]
interprets a multi-label problem as a special case of a preference learning problem
[4]. The sets of relevant labels that are associated with the training examples
are interpreted as a bipartite preference relation between relevant and irrelevant
labels. Each possible pairwise preference is independently modeled with a binary
classifier. The predictions of these classifiers are then combined into an overall
ranking of all labels, and an artificial calibration label indicates the position
where the ranking should be split into relevant and irrelevant classes.

An obvious disadvantage of the preference-based approach is the need to train
a quadratic number of classifiers. Recent studies have shown that training time
is reasonable because: a) the individual problems are much smaller than in other
approaches (e.g. the binary relevance method), and b) an efficient algorithm for
prediction has recently been proposed [5]. However, the problem of having to
store a quadratic number of classifiers still remains to be solved, despite some
recent progress for particular families of base classifiers [6].

For this reason, we investigate the combination between HOMER and Cal-
ibrated Ranking, because the latter is expected to greatly benefit from the re-
duction in the number of labels that is provided by the former. In fact, our
experimental results indicate that HOMER is able to improve the classification
performance, training time, and classification time for the calibrated ranking
approach as well as for the binary relevance approach.

The following section recapitulates the two methods that we study and com-
bine. The extensive experimental study is presented in Section 3 while our con-
clusions are included in the last section of the paper.

2 Multi-label Classification Methods

In this section, the basic multi-label classification methods, HOMER and Cali-
brated Label Ranking (CLR) are described.

We represent an instance or object as a vector x̄ = (x1, . . . , xa) in a feature
space X ⊆ Ra. Each instance x̄i is assigned to a set of relevant labels Pi, a
subset of the n possible classes L = {λ1, . . . , λn}. For multi-label problems, the
cardinality |Pi| of the label sets is not restricted, whereas for binary problems it
is exactly one. For the latter case we denote the set of classes with L = {1,−1}
so that each object x̄i is assigned to a class λi ∈ {1,−1} , Pi = {λi}. Multi-label
learning algorithms are trained on a training set D = {(x̄i, Pi) | i = 1 . . . |D|}.

2.1 HOMER

HOMER follows the divide-and-conquer paradigm of algorithm design. The main
idea is the transformation of a multi-label classification task with a large set of
labels L into a tree-shaped hierarchy of simpler multi-label classification tasks,
each one dealing with a small number k << n of labels.

This tree-shaped hierarchy has n leaves, one leaf for each class λj of L. Each
internal node ν contains the union of the label sets of its children, Lν =

⋃
Lc, c ∈

children(ν). The root contains all labels, Lroot = L.



Each non-leaf node represents a multi-label prediction problem that assigns
a set of meta-labels to an example. A meta-label µν of a node ν is defined as
the disjunction of the labels contained in that node, i.e., µν ≡

∨
λj , λj ∈ Lν .

Meta-labels have the following semantics: a training example can be considered
to be annotated with meta-label µν if it is annotated with at least one of the
labels in Lν .

HOMER associates a multi-label classifier hν with each internal node ν of
the hierarchy. The task of hν is the prediction of one or more of the meta-labels
of its children. Therefore, the set of labels for hν is Mν = {µc | c ∈ children(ν)}.
Figure 1 shows a sample hierarchy produced for a multi-label classification task
with 8 labels {λ1, . . . , λ8}.

Fig. 1. Sample hierarchy for a multi-label classification task with 8 labels

For the multi-label classification of a new instance x̄, HOMER starts with
hroot and follows a recursive process forwarding x̄ to the multi-label classifier hc
of a child node c only if µc is among the predictions of hparent(c). Eventually, this
process may lead to the prediction of one or more single-labels by the multi-label
classifier(s) just above the corresponding leaf(ves). The union of these predicted
single-labels is the output of the proposed approach in this case, while the empty
set is returned otherwise.

In the training phase, HOMER creates the tree recursively in a top-down
depth-first fashion starting with the root. At each node ν, k child nodes are
first created using a clustering algorithm (see below). In case |Lν | < k, the
number of children is set to |Lν |. Each such child ν filters the data of its parent,
keeping only the examples that are annotated with at least one of its own labels:
Dν = {(x̄i, Pi) | (x̄i, Pi) ∈ Dparent(ν), Pi ∩ Lν 6= ∅}. The root uses the whole
training set, Droot = D. The examples in Dν are then transformed into meta-
examples (x̄i, Zi), where Zi = {µc | c ∈ children(ν), Pi ∩ Lc 6= ∅}, which are
subsequently used for training hν .



The main issue in the former process is how to distribute the labels of Lν to
the k children. We argue that labels should be evenly distributed to k subsets in
a way such that labels belonging to the same subset are as similar as possible.
Such a task can be thought of as clustering with the additional constrain of
equal cluster size. It has been considered in the past in the literature, under the
name balanced clustering [7]. In [2], a new balanced clustering algorithm named
balanced k-means has been proposed for HOMER, which guarantees that the
clusters will be of exactly the same size.

The justification for preferring similarity-based distribution is that if similar
labels of a node ν are placed in the same subset, then only a few (ideally just
one) meta-labels of hν will be predicted and thus the rest sub-trees will not
be activated. This will lead to reduced cost during the operation and testing of
HOMER. Another expected benefit is that each child node will probably contain
less training examples. The justification for preferring an even distribution is that
the multi-label classifiers at each node will deal with a more balanced distribution
of positive examples for each meta-label. This is expected to lead to improved
predictive performance.

We could consider HOMER as the combination of two components: a) an al-
gorithm that constructs a hierarchy on top of the labels of a multi-label dataset,
and b) a generalization of the well-known Pachinko-machine hierarchical classi-
fication algorithm [8] to the multi-label case.

In [2], HOMER, when using the well-known binary relevance classifier (BR)
as the base multi-label classifier in each internal node, has proven to outperform
BR in terms of quality of prediction and, especially, classification time. In this
paper, we also study the use of the Calibrated Label Ranking method as a
multi-label classifiers at the nodes of HOMER.

2.2 Calibrated Label Ranking and QWeighted

QCLR [5] is a recently proposed efficient approach for multi-label classification.
This algorithm combines three components: a) the pairwise decomposition of
multi-label problems [9], b) the calibrated label ranking [3] for determining a
bipartition (multi-label result) and c) an adaption of the QWeighted algorithm
[10] for efficient voting aggregation that is used for prediction.

In the pairwise binarization method for multiclass classification, one classifier
is trained for each pair of classes, i.e., a problem with n different classes is
decomposed into n(n−1)

2 smaller subproblems. For each pair of classes (λu, λv),
only examples belonging to either λu or λv are used to train the corresponding
classifier ou,v. In the multi-label case, an example is added to the training set
for classifier ou,v if λu is a relevant class and λv is an irrelevant class or vice
versa, i.e., (λu, λv) ∈ P ×N ∪N × P with N = L\P as negative label set. The
pairwise binarization method is often regarded as superior to binary relevance
because it profits from simpler decision boundaries in the subproblems [11, 12, 9].
The predictions of the base classifiers ou,v may then be interpreted as preference
statements that predict for a given example which of the two labels λu or λv is
preferred. In order to convert these binary preferences into a class ranking, we



use a simple voting strategy known as max-wins, which interprets each binary
preference as a vote for the preferred class. Classes are then ranked according to
the number of received votes. Ties are broken randomly in our case.

To convert the resulting ranking of labels into a multi-label prediction, we
use the calibrated label ranking (CLR) approach [3]. This technique avoids the
need for learning a threshold function for separating relevant from irrelevant
labels, which is often performed as a post-processing phase after computing a
ranking of all possible classes. The key idea is to introduce an artificial calibration
label λ0, which represents the split-point between relevant and irrelevant labels.
Thus, it is assumed to be preferred over all irrelevant labels, but all relevant
labels are preferred over λ0. As it turns out, the resulting n additional binary
classifiers { oi,0 | i = 1 . . . n} are identical to the classifiers that are trained by the
binary relevance approach. Thus, each classifier oi,0 is trained in a one-against-all
fashion by using the whole dataset with { x̄ |λi ∈ Px̄} ⊆ X as positive examples
and { x̄ |λi ∈ Nx̄} ⊆ X as negative examples. At prediction time, we will thus
get a ranking over n+ 1 labels (the n original labels plus the calibration label).

For the multiclass case, the voting strategy can be performed efficiently with
the Quick Weighted Voting algorithm (QWeighted), which computes the class
with the highest accumulated voting mass without evaluating all pairwise clas-
sifiers. It exploits the fact that during a voting procedure some classes can be
excluded from the set of possible top rank classes early on, because even if they
reach the maximal voting mass in the remaining evaluations they can no longer
exceed the current maximum. For example, if class λa has received more than
n − j votes and class λb has lost j binary votings, it is impossible for λb to
achieve a higher total voting mass than λa. Thus further evaluations with λb
can be safely ignored for the comparison of these two classes.

QWeighted can be adapted to multi-label classification by repeating the
process. We can compute the top class λtop using QWeighted, remove this
class from L and repeat this step, until the returned class has fewer votes than
the artificial label λ0, which means that all remaining classes will be considered
to be irrelevant. More precisely, during this procedure, we can go already to
the next iteration, if the current top ranked class λt has accumulated more votes
than the artificial label λ0. For the multi-label classification the information that
a particular class is ranked above the calibrated label is sufficient, and we do not
need to know by which amount. The class λt is then not removed from the set
of labels (opposing to the introductory sentence), because its incident classifiers
ot,j may be still be needed for computing the votes for other classes. However, it
can henceforth no longer be selected as a new top rank candidate. Self-evidently,
the information about which pairwise classifiers have been evaluated and their
results are carried through the iterations so that no pairwise classifier is evaluated
more than once.

It is easy to see that in the testing phase, the number of base classifier
evaluations for this approach for multi-label classification is bounded from above
by n+d ·CQW, since we always evaluate the n classifiers involving the calibrated
class, and have to do one iteration of QWeighted for each of the (on average)



Table 1. Name, number of examples used for training and testing, number of features
and labels, label cardinality and density, and number of distinct labelsets for each
dataset used in the experiments

examples distinct
name train test features labels cardinality density labelsets

HiFind 16452 16519 98 632 37.304 0.059 32734
eccv2002 42379 4686 36 374 3.525 0.009 3175
jmlr2003 48859 16503 46 153 3.071 0.020 3115
mediamill 30993 12914 120 101 4.376 0.043 6555

d relevant labels. Assuming that QWeighted on average needs CQW = n log n
base classifier evaluations as suggested in [10], we can expect an average number
of n+ dn log n classifier evaluations. Thus, the classification effectiveness of this
approach crucially depends on the average number d of relevant labels. We can
expect a high reduction of pairwise comparisons if d is small compared to n,
which holds for most real-world multi-label datasets.

3 Evaluation

In this section, after the presentation of the experimental setup, we will discuss
the effect of the several parameters of HOMER and then compare it in terms
of training time, classification time and predictive performance against its base
multi-label classifiers.

3.1 Setup

We conducted experiments on four large multi-label datasets with at least 100
labels and 10000 training examples. The first one, HiFind, contains 32769 music
titles annotated on average with 37 from 632 different labels [13]. The second
dataset, eccv2002 [14], is a popular benchmark for image classification and an-
notation methods. It is based on 5000 Corel images, 4500 of which are used for
training and the rest 500 for testing. The third one, jmlr2003, is produced from
the first (001) subset of the data accompanying [15]. It is based on 6932 images,
5188 of which are used to create the training set and the rest 1744 to create
the test set. The last one is based on the Mediamill Challenge dataset [16]. It
contains pre-computed low-level multimedia features from the 85 hours of inter-
national broadcast news video of the TRECVID 2005/2006 benchmark. Table
3.1 shows the number of examples used for training and testing, the number of
features, the number of labels, the label cardinality and density, and the number
of distinct labelsets for each dataset.

The experiments were conducted using the Mulan library of algorithms for
multi-label learning [17]. As base classifier we used the decision tree learner
J48 with standard settings, which is an implementation of C4.5 included in the
WEKA framework [18].



The effectiveness of all algorithms is evaluated with label-based micro-averaged
[19] recall, precision and F1 (the harmonic mean of recall and precision). Let P̂i
be the predicted label set for example x̄i, in contrast to the true label set Pi.
The micro-averaged recall and precision are calculated as follows:

Recall =
∑|D|
i=1 |P̂i ∩ Pi|∑|D|
i=1 |P̂i|

Precision =
∑|D|
i=1 |P̂i ∩ Pi|∑|D|
i=1 |Pi|

We also evaluate the efficiency of all algorithms based on their run time (for
training and classification).

3.2 Results of HOMER with QCLR

This section presents and discusses the results of using HOMER together with
QCLR as the multi-label algorithm for building models at each internal node of
the hierarchy. We experimented with 8 different numbers of partitions (i.e., k
ranges from 3 to 10) and 3 different methods for partitioning the set of labels
at each internal node: a) random and even distribution (R) of the labels to
the children nodes, b) clustering (C) using the expectation minimization (EM)
algorithm (as implemented in Weka [18]), and c) balanced clustering (B) using
the algorithm introduced in [2]. In addition to HOMER with QCLR4 as multi-
label classifier we ran the experiments using HOMER with BR5 and also using
the plain algorithms BR and QCLR without HOMER.

Training Time Figure 2 shows the training time of the HOMER variants in
seconds. We would expect that the training time of the random partitioning
variant should be less than that of the balanced clustering variant, since they
both deal with the same number of labels and create and train the same number
of multi-label classifiers, but balanced clustering needs some additional time to
distribute the labels according to similarity as well6. However, this is clearly
noticed only in eccv2002. In jmlr2003 there is no clear winner for all numbers of
partitions, while in mediamill and HiFind we notice that the balanced clustering
approach requires less time, independently of the multi-label learning algorithm
that is used (BR or CLR) and the number of partitions.

These results can be explained by the following observation. As clustering is
based on the values of the labels, the children produced with balanced clustering,
will contain labels that typically appear or do not appear together. This in turn
means that more examples of the parent node will be filtered, leading to a
reduced number of training examples. This was also observed in [2]. Here, we

4 In the following graphs this combination is denoted as CLR-R, CLR-B, CLR-C
respectively for all three different partitioning approaches

5 In the following graphs this combination is denoted as BR-R, BR-B, BR-C respec-
tively for all three different partitioning approaches

6 Proper evaluation should separately measure the time to build the models and the
time for balanced clustering. We will consider this in our future work.
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Fig. 2. Training time over number of partitions for the six HOMER variants
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notice that the gains in training time are higher for CLR compared to BR. This
is an expected result based on the previous observation, because CLR trains its
binary classifiers only on those examples where the values of the corresponding
labels differ.

One issue that still needs to be explained, is how this behavior is affected by
the different datasets. In this direction, we notice that the gains in training time
seem to be correlated with the density of the dataset. The reason, again based
on the previous observation, is that the lower the number of label appearances
with respect to the number of labels (density), the lower the gains that can be
achieved by clustering co-occurring labels together.

Concerning the plain clustering partitioning method, we notice that it is
clearly the worst one in terms of training apart from the mediamill dataset. The
plain clustering method requires more time to perform the clustering as it is
based on the expectation maximization algorithm. Mediamill is also the smallest
dataset, where it seems that the time required for clustering does not surpass
the gains from the clustering process. This is why plain clustering appears to be
better than random partitioning, especially for CLR. The loss in performance is
more evident in eccv2002 and jmlr2003 due to the lower density.

Testing Time Figure 3 shows the testing times of the HOMER variants in
seconds. Here the results are not as clear as in the case of the training time.
Apart from the jmlr2003 dataset, it seems that balanced clustering leads to less
testing time compared to random partitioning irrespectively of the multi-label
learning algorithm. Also plain clustering seems to be worse than the rest of the
partitioning methods in eccv2002 and jmlr2003 for most of the partition num-
bers. Finally, we could comment that the classification time seems to decrease
with respect to the number of partitions probably due the smaller height of the
tree (logk(n)).

Prediction Quality Figures 4 and 5 show the recall and precision results for
the HOMER variants on all four datasets. We can see that recall decreases,
while precision increases with the number of partitions, independently of the
multi-label learner and partitioning method used. One potential reason for this
behavior could be that smaller number of partitions lead to more general meta-
labels that are more difficult to distinguish. Apparently this leads to a more
relaxed prediction, so that at each inner node the multi-label classifier does
predict more meta-labels and as a consequence more of the original labels, but
with lower precision.

The recall of the CLR based HOMER variants seems to be larger than that
of the BR based HOMER variants, irrespectively of the number of partitions.
This is totally clear in mediamill and HiFind, but less clear in jmlr2003 and
eccv2002, though it stills holds if we compare the two learners under the same
partitioning method. As far as the partitioning method is concerned, there is no
clear trend with respect to recall, while the plain clustering method seems to
have the worst precision for both BR and CLR based HOMER.
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Fig. 4. Micro recall over number of partitions for the six HOMER variants
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The decrease in recall is stronger for CLR than for BR in the low density
datasets eccv2002 and jmlr2003. This means that in low density datasets, a small
number of partitions favors the recall of HOMER with CLR. On the other hand
the increase in precision is stronger for CLR than for BR in the high density
datasets mediamill and HiFind. This means that in high density datasets a large
number of partitions favors the precision of HOMER. A potential reason is the
fact that CLR underestimates the size of the predicted labelsets [3]. It seems
that this underestimation increases with the number of labels, as seen in the
results of CLR that are discussed later on in this paper.

Figure 6 shows the micro-averaged F1 measure of HOMER for the datasets.
As far as BR based HOMER is concerned no clear trend can be detected with
respect to the number of partitions. With respect to the partitioning method,
the plain clustering approach seems inferior to the rest, while no clear winner
between balanced clustering and random partitioning can be announced. As
far as CLR is concerned, as already outlined in the previous paragraphs, in
low density datasets we notice a decrease of F1 with respect to the number
of partitions, while in high density datasets we notice an increase of F1. We
could therefore consider this as a guideline for selecting the number of partitions
for HOMER with CLR based on the density of the dataset. Overall, the CLR
based HOMER seems to be achieving better results for a larger percentage of
different partition numbers, compared to the BR based HOMER. In terms of
the partitioning method, the plain clustering approach seems inferior to the rest
for both CLR and BR.

3.3 Comparison of HOMER against its base classifiers

For the direct comparison of HOMER against the flat approaches in Table 2 we
chose the configuration with balanced clustering and 10 partitions. Note that
no results could be retrieved for CLR on the HiFind dataset due to the high
memory requirements. To circumvent this problem for problems with a large
number of classes was a main objective of combining HOMER with CLR as base
classifier.

Prediction Quality It is especially interesting to observe the opposite behavior
in terms of recall and precision of the different approaches. CLR shows the
best precision performance with a large margin over the other algorithms on all
datasets. On the other hand, its recall values are particularly low. This confirms
previous results that CLR does underestimate the size of the predicted labelsets
[3]. Our results indicate that this is particularly true for datasets with a high
number of classes such as eccv2002, where CLR returns only 3.84% of the correct
labels, while 58.11% of the returned labels are actually correct, compared to the
36.58% by BR and around 28% by both HOMERs. On the other hand, on the
mediamill dataset, CLR’s gain in precision seems to make up its low recall,
thereby producing the highest average F1 value.

BR has a similar behavior of predicting relatively few labels with increasing
number of labels. This is probably due to the greater imbalance of positive to
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Fig. 6. Micro F1 over number of partitions for the six HOMER variants

negative examples for large problems, which leads to less frequent predictions of
positive examples than the class distribution would suggest. HOMER shifts the
trade-off between recall and precision to a more balanced level, increasing recall
but losing precision. The reason is probably the smaller problems in terms of
number of classes that CLR has to solve in the HOMER setting. This was already
shown in the correlative behavior between number of partitions and precision.
The effect can also be seen when using BR as multi-label base classifier technique
for HOMER, but it is less pronounced since the plain BR itself produces more
balanced results.

Due to the great differences in recall and precision between the algorithms,
we decided to omit the Hamming losses in Table 2 though this measure is usually
used for evaluating multi-label algorithms, since Hamming loss generally favors
algorithms with high precision and low recall,7 which in this case means to favor
CLR. The F1 measure, which returns the harmonic mean between recall and
precision, allows a more commensurate analysis in this particular case since it
penalizes greater differences to a higher degree. Except on the mediamill dataset,
for which the approx. 100 classes do not show a great impact on CLR’s recall,
HOMER achieves the highest micro-averaged F1 value. In particular it outper-
forms BR on every dataset, which is especially interesting since HOMER is the

7 Returning zero labels to returning 50 of which 25 are correct would result in the
same loss.



Table 2. Performance measures and computational costs on the different datasets.
Results for Binary Relevance (BR), QWeighted calibrated label ranking (QCLR),
HOMER with balanced clustering and 10 partitions and BR (H+BR), HOMER with
balanced clustering and 10 partitions and QCLR (H+QCLR) are shown.

Method mediamill jmlr2003 eccv2002 HiFind

micro Precision

BR 58.00 % 32.27 % 36.58 % 59.43 %
QCLR 73.89 % 56.18 % 58.11 % –
H+BR 56.98 % 26.48 % 28.91 % 55.31 %

H+QCLR 58.35 % 31.93 % 28.43 % 55.26 %

micro Recall

BR 44.79 % 9.85 % 7.42 % 45.73 %
QCLR 43.86 % 4.57 % 3.84 % –
H+BR 44.91 % 10.81 % 13.21 % 48.64 %

H+QCLR 48.77 % 10.28 % 15.07 % 54.06 %

micro F1

BR 50.55 % 15.09 % 12.34 % 51.65 %
QCLR 55.04 % 8.45 % 7.21 % –
H+BR 50.23 % 15.36 % 18.14 % 51.76 %

H+QCLR 53.13 % 15.55 % 19.70 % 54.65 %

Training Time

BR 2413.40 2801.17 2701.32 4179.66
QCLR 7423.19 6542.51 7460.14 –
H+BR 1065.21 1101.61 1144.47 2345.39

H+QCLR 1667.29 1871.00 1836.34 3801.53

Testing Time

BR 3.84 6.67 5.47 50.47
QCLR 103.59 119.28 154.65 –
H+BR 4.35 7.70 4.48 48.77

H+QCLR 4.90 9.26 5.62 60.02



direct competitor of BR in terms of computational costs. Similarly, HOMER+BR
beats the plain BR except for mediamill, for which both algorithm are almost
equal. HOMER+BR in general achieves less accurate predictions than using the
pairwise approach as base classifier: in terms of F1 HOMER+BR is beaten on
all datasets, in terms of recall and precision both algorithm are either almost
equal (HOMER+BR slightly ahead) or HOMER+QCLR is clearly on top.

Computational Time As shown in Table 2, HOMER is able to reduce the
training time in comparison to plain BR approx. between 60% and 44% for
using BR as base and between 33% and 10% for using QCLR. The first compar-
ison is especially interesting since HOMER+BR has to train more base classifiers
than BR: one classifier for each class at the leafs such as BR in addition to the
classifiers in the inner nodes. However, this is done obviously with less training
examples due to the filtering of examples at the inner nodes. Comparing the
two HOMER variants, we can observe that the overhead of training the pair-
wise classifiers is always less than training the one-against-all classifiers. Note
that QCLR has to train the same classifiers as BR for the comparison to the
calibrating artificial class plus the pairwise classifiers between real classes. This
may seem very surprising since training the pairwise classifiers requires |P |/|D|
times more training examples than training the BR classifiers8, i.e. the amount
is multiplied by the cardinality of the multi-label problem (cf. [3]). But when the
base classifier has a super-linear complexity in terms of training examples, the
reduced size of the binary subproblems by the pairwise approach may lead to a
reduced complexity [11], which is the case for J48. In addition, another factor
could be that by clustering the cardinality of the reduced multi-label problems
is often strongly reduced to the extreme case 1, where pairwise classifiers utilize
in total fewer trainings examples than BR. However, we defer the investigation
of this previously unseen observation for future work.

For testing, HOMER+BR is slightly slower than BR for the smaller mediamill
and jmlr2003, but for the greater datasets eccv2002 and HiFind it requires less
time. Although HOMER+BR has trained more base classifiers than the plain
BR approach, it may invoke less base classifiers since great part of the classifier
tree is pruned each time a meta-label is predicted as negative. This effect was
already observed in previous work on a dataset with almost 1000 classes [2].
HOMER+QCLR spends between 3% and 40% more time than BR, however,
testing costs are so small for J48 compared to training time that this increase is
almost not noticeable. Again, the overhead for evaluating the additional pairwise
classifiers in HOMER+QCLR only require a small fraction of the time needed
for the BR classifiers. Nevertheless it is not possible to simply compute the
overhead as difference between the time for HOMER+BR and +QCLR since
prediction accuracy, especially precision, also strongly influences the classifica-
tion time. As expected, CLR requires the most computations for learning and
8 This estimation of training examples is too rough for the special case |P |/|D| = 1,

which refers to a reduction to a multiclass problem. In this regard, the pairwise
classifiers use in total fewer examples than the One-Against-All classifiers [11].



predicting. However, the factor in training costs is proportional to the average
label set size per example, which makes the costs acceptable for most of the
multi-label problems since the label sets tend to be small. For prediction, the
usage of QWeighted is able to considerably reduce the costs in comparison to
the evaluation of all pairwise base classifier while maintaining the advantage of
the pairwise approach in terms of predictive performance.

4 Conclusions

This paper performed an empirical study of the performance of HOMER. Com-
pared to previous work [2], the experimental part examines an additional multi-
label learner for training each node of the hierarchy (QWeighted calibrated label
ranking) on four large multi-label datasets with a variety of characteristics. In-
terestingly, the results showed that the instantiation of the multi-label learner
of HOMER to QCLR can lead to better results compared to instantiating it to
BR at a small expense in training and classification time. HOMER improves the
training time of BR and this is even more important for QCLR. In terms of clas-
sification time HOMER substantially improves QCLR, while for BR the benefits
appear for the two largest datasets in terms of number of labels. Except for the
mediamill dataset (where the differences are rather small), HOMER managed to
improve the performance of the base multi-label learner (both BR and QCLR).

HOMER also deals with the scalability problem of QCLR in terms of memory
with respect to the number of labels, since it substantially reduces the amount
of needed classifiers. In the same manner it provides a significant reduction in
training and test time for the pairwise CLR methods. It is also shown that
HOMER is able to equilibrate recall and precision, especially for QCLR which
seems to underestimate the number of labels per instance for problems with a
high number of labels.
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