2nd Hellenic Conf. on Al, SETN-2002, 11-12 April 2002, Thessaloniki, Greece,
Proceedings, Companion Volume, pp. 249-256

Distributed Data Mining of Large Classifier
Ensembles

Grigorios Tsoumakas and Ioannis Vlahavas

Dept. of Informatics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
{greg, vlahavas}@csd.auth.gr

Abstract. Nowadays, classifier ensembles are often used for distributed
data mining in order to discover knowledge from inherently distributed
information sources and scale up learning to very large databases. One
of the most successful methods used for combining multiple classifiers
is Stacking. However, this method suffers from very high computational
cost in the case of large number of distributed nodes. This paper presents
a new classifier combination strategy that scales up efficiently and achieves
both high predictive accuracy and tractability of problems with high
complexity. It induces a global model by learning from the averages of
the local classifiers’ output. This way, fast and effective combination of
large number of classifiers is achieved.

1 Introduction

Classification is the most investigated machine learning task in the last 15 years
[7] with numerous algorithms and a variety of application domains. Classifier En-
sembles [3] is a rather recent subarea of machine learning that has been mainly
used for increasing the predictive accuracy of single classifiers, scaling up learn-
ing algorithms to very large data sets and learning from inherently distributed
data. It has been applied with success to a number of applications, playing an
important role to new research areas like Distributed Data Mining, Multiple
Classifier Systems and Information Fusion.

A particular approach that has been successfully applied to Distributed Data
Mining is Meta-Learning [2]. It is based on the methodology of Stacked General-
ization, also found as Stacking in the literature, originally developed by Wolpert
[9]. Meta-Learning involves learning a global classifier that models the way that
the output of many local classifiers correlates with the true class.

The accumulation of huge amounts of data and the increased networking of
information systems in our times, raises the question of how well can Stacking
scale up to large number of distributed nodes. This paper identifies a key problem
towards this direction and presents an alternative classifier combination strategy
that induces a global model by learning from the averages of the local classifiers’
output. This way, fast and effective distributed data mining of large classifier
ensembles is achieved.

The rest of the paper is organized as follows. In Section 2, we review related
methodologies on combining multiple classifiers for distributed data mining. In

Section 3, we identify the scaling problem of Stacking and present a new clas-
sifier combination strategy to deal with it. In Section 4 we present and discuss
comparative experimental results, and finally in Section 5 we conclude and pose
future research directions.

2 Related Work

The simplest method to combine a number of classifiers is majority voting. The
combined classification, outputs the class that gets the most votes from the en-
semble. An improved version of this method is to sum the posterior probabilities
of all the classifiers with respect to all classes and output the class with the
biggest sum. The disadvantage of majority voting is that if more than half of
the classifiers output a bad class then the result will be incorrect.

To deal with this deficiency, approaches that learn how to combine the output
of a number of classifiers were introduced. Stacked Generalization [9] is a method
that combines multiple classifiers by learning the way that their output correlates
with their true class on an independent set of instances. In the first step, N
classifiers Ci, i = 1..N are induced from each of N data sets Di, i = 1..N. Then,
for every instance ej, j = 1..LL of an evaluation set E, independent of the Di data
sets, the output of the classifiers Ci(ej) along with the true class of the instance
class(ej) are used to form an instance mj, j = 1..LL of a new data set M. Each
instance will be of the form C1(ej), C2(ej), ..., CN(ej), class(ej). In the last step,
a global classifier GC is induced from M.

Any algorithm suitable for classification problems can be used for learning
the Ci and GC classifiers. Independence of the actual algorithm used for learning
Ci, is actually one of the advantages of this method, as not every algorithm might
be available for each data set and not the same algorithm performs best for ev-
ery data set. As far as the algorithm for learning the GC is concerned, Ting and
Witten [8] showed that among a decision tree learning algorithm (C4.5), an in-
stance based learning algorithm variant (IB1), a multi-response linear regression
algorithm (MLR) and a Naive Bayes classifier, MLR had the best performance.

Chan and Stolfo [2], applied the concept of Stacked Generalization to dis-
tributed data mining, via their Meta-Learning methodology. They focused on
combining distributed disjoint data sets and investigated various schemes for
structuring the meta-level training examples. They found the best one to be us-
ing the dominating predictions of the distributed classifiers along with the correct
class. They also showed that Meta-Learning exhibits superior performance with
respect to majority voting for a number of domains. Furthermore, it can be effec-
tively used both in a distributed environment, and for scaling up learning to very
large databases. It is also combined with an excellent agent-based architecture,
which offers the ability to deal with heterogeneous environments [5]. However,
this method has the disadvantage that the meta-level model is not comprehen-
sible. It describes the way base classifiers correlate with the correct class and
not the way data correlate with the correct class. In addition it does not scale
efficiently to domains with large number of classes and distributed nodes.

Knowledge Probing [4] builds on the idea of meta-learning and in addition
uses an independent data set, called the probing set, in order to discover knowl-
edge about the data. The output of a meta-learning system on this independent
data set together with the attribute value vector of the same data set are used
as training examples for a learning algorithm that outputs a final model. In
this elegant way, the disadvantage of having a black box is overcome and the
result is a transparent predictive model. However, the choice of size and origin
of the probing set are issues that have to be thoroughly investigated, especially
in the context of a distributed environment. In addition it suffers from the same
problems in scaling up.

3 Scaling Up to Large Classifier Ensembles

As discussed in Section 2, stacking uses the output of a number of classifiers on
an independent evaluation data set to form a data set of meta-level instances.
The number of attributes in a meta-level instance is equal to the number of
participating classifiers in the ensemble. Therefore, the complexity of learning
the global classifier from the meta-level data set is also proportional to the
ensemble size.

Furthermore, Ting and Witten [8] have showed that stacking is effective
when the distribution of the posterior probability of the classifier estimates with
respect to all classes is used. This actually worsens the complexity of learning
the global classifier, because the number of attributes becomes the product of
the number of participating classifiers and the number of classes in the domain.

The two points mentioned above led us to the conclusion that there is a
problem in scaling up stacking, especially for domains with many classes. To
exemplify this, consider combining 1.000 classifiers for the task of English letter
recognition. In this domain there are 26 classes, the letters A to Z. Stacking in
this particular example will produce meta-level instances with 26.000 attributes.
It is practically impossible to learn a global model from such a data set within ac-
ceptable time for a class of algorithms including the most successful for stacking
MLR.

3.1 Owur Approach

We propose a new strategy for multiple classifier combination that deals with the
above-mentioned problem of stacking, while keeping the advantage of modeling
complex classifier ensemble behavior. The main idea is forming the meta-level
training examples using the average distribution of the posterior probability
of the classifier estimates with respect to all classes and then learning a final
classifier out of it as before.

Consider a classification task with C' classes, and an ensemble of N classifiers
Ci, i = 1..N, that we want to combine using our strategy on an independent eval-
uation data set E. Then, for every instance e, j = l..size(E), we calculate the
probability distribution of each classifier’'s C; output with respect to all classes,

PD; = [Py Py ... Pic], where Py, is the posterior probability that classifier
C; outputs class k. Finally, we average the PD; over all classifiers and get a meta-
level training example m; = [(D11 + ... + Dn1)/N ... (Di¢ + ... + Dn¢)/N].

The most important advantage is that the size of the attributes of the meta-
level training examples stays constant (equal to the number of classes in the
domain), irrespective of the number of local classifiers. This way, we achieve
tractability of modeling the ensemble behavior in the case of large classifier
ensembles.

In the previous example of English letter recognition, the combination of
1000 classifiers with the new strategy will produce meta-level instances with
only 26 attributes. Compared to the 26000 (or 1000 if distribution is not used)
attributes in stacking, it is obvious that there is a huge difference in the required
computational resources to learn the global model.

The disadvantage is that we lose the fine grain modeling of how each classifier
contributes to the prediction of stacking. Instead, we get a coarser model of
how the classifiers behave as an ensemble. But this is necessary to counter the
complexity in the large-scale scenario.

However, since learning is used to produce the final model, the methodology
can still model complex concepts and give correct classification even when more
than half of the participating classifiers output an erratic decision.

4 Experimental Results

In order to evaluate the proposed strategy, a set of experiments that compared
it to stacking and majority voting were conducted using four of the largest data
sets from the UCI Machine Learning Repository [1]. The data sets were split into
a variable number of parts to simulate a distributed environment. The names
and details of these data sets are described in Table 1.

Table 1. Details of data sets used in the experiments

Attributes Missing
Data Set Size Discrete Continuous Classes Values (%)
Adult 48.842 8 6 2 0.95
Letter 20.000 0 16 26 0
Nursery 12.960 8 0 5 0
Shuttle 58.000 0 9 7 0

The setup of the experiments is the following. Initially, the original data
set is randomly split into a percentage (25%) of evaluation data and the rest
(75%) is randomly split again into a variable number (10, 20, 50 and 100) of
distributed data sets. C4.5 [6] is then used to learn a local predictive model from
each one of the distributed data sets. Next, the predictions of all local models

are combined to form the meta-level training examples with both the traditional
stacking strategy (using the maximum sum of probabilities) and the proposed
one. Finally, a global classifier is induced from these examples using the C4.5
algorithm again.

Accuracy measurements for this classifier are obtained using 10-fold cross
validation. Moreover, the whole experiment described above is performed 10
times and the final results derive from averaging the partial results of each run.
This way realistic results are obtained.

Apart from the accuracy of the classification, a measure of time is also
recorded. This is the average time to create the meta-level training examples
(in one run of the experiment) and train the global classifier (in one fold of the
cross validation). Furthermore, in order to get a machine independent measure
of the computational complexity of each strategy, the size of the meta-level data
set is also recorded. This can be especially helpful in cases where the large num-
ber of distributed nodes and classes makes the experiments too time consuming
(recall that global training is performed 100 times in each experiment to get
realistic results) to be completed.

The final results on the four data sets are described in Table 2. The first
three columns provide useful information about the data sets, while the next
one gives the number of distributed data sets and thus classifiers. The next
three group of columns provide information about the meta-level training set
size in megabytes, the accuracy of the final global model in percent and the time
in seconds. Each group of columns gives comparative results with respect to each
of the three strategies, namely stacking (S), the proposed average stacking (AS)
and the classic majority voting (MV).

First of all, we can see that with respect to time, our approach has a similar
performance to majority voting. Its fast and has constant complexity with re-
spect to the number of classes and linear complexity with respect to the number
of distributed nodes, as mentioned in the theoretical analysis of the strategy
earlier in this paper. In contrast, stacking has linear complexity with respect to
the number of distributed nodes, but also linear complexity with respect to the
number of classes. This is why the largest training time was seen in the letter
data set that has 26 classes. The same conclusion can be drawn, by looking at
the size of the meta-level training examples, as the dominating time in an ex-
periment is the time to train the global classifier from the meta-level training
examples.

Regarding the accuracies, there is no consistent pattern that can be derived
from all the experiments. However, a first general pattern that can be noticed
is that as the number of distributed sites increases, the performance of all the
strategies decreases. This is obviously due to the fact that local classifiers are
trained on a few data.

Moreover, our approach is better than majority voting and worse than stack-
ing in most experiments excluding the letter dataset. In some cases it exhibits
better performance even from stacking (shuttle, 10 and 100 nodes), while in
other cases it performs worse than majority voting (adult, 20 and 50 nodes).

Table 2. Details of experimental results

Meta Size (Mb) Accuracy (%) Time (sec.)
Data Set D.N. S AS MV S AS MV S AS MV
Adult 10 1.05 0.14 - 85.46 85.17 85.09 16 11 10
20 1.95 0.14 - 85.35 84.31 84.55 22 11 10
50 4.85 0.14 - 84.92 84.18 8431 42 11 11
100 9.15 0.14 - 84.44 8417 8323 79 12 11
Letter 10 1.50 0.25 - 71.09 7121 7854 49 7 2
20 2.85 0.30 - 70.42 69.38 7589 92 9 3
50 6.97 0.41 - 7041 66.99 72.09 239 12 6
100 14.54 0.49 - 70.81 65.40 69.78 512 17 9
Nursery 10 0.23 0.05 - 94.15 93.35 92.60 4 2 2
20 0.49 0.05 - 93.98 93.14 9047 5 2 2
50 1.17 0.05 - 93.42 9238 8747 12 2 2
100 2.50 0.05 - 95.05 92.30 85.66 23 2 2
Shuttle 10 1.83 029 - 99.72 9980 9961 20 6 3
20 3.56 0.34 - 99.72 99.69 9954 34 6 4
50 7.84 0.33 - 99.69 99.66 99.44 8 7 5
100 13.85 0.35 - 99.64 99.72 9939 198 9 6

Actually, one can consider our approach as standing in the middle of majority
voting and stacking in terms of predictive power, and thus such performance was
expected.

However, the difference in accuracy is small in comparison to the difference in
time. Our approach achieves tractability in the case of large number of classifiers
and classes in comparison to stacking and increased accuracy in comparison to
majority voting. It can solve problems that stacking would not be able to solve
within acceptable time and achieves that with higher accuracy than majority
voting.

The only exception in the general patterns that were derived from the exper-
imental results, is the letter dataset. In this dataset majority voting performs
much better than the other two methods with the exception of the case of 100
nodes, where stacking exhibited the best accuracy, although within unacceptable
time. The difference of the letter data set with the other data sets is the much
larger number of classes. Further investigation of this issue should be done to
check whether there is a consistent pattern in the case of very large classes.

5 Conclusion and Future Work

This paper presented a new strategy for multiple classifier combination, that
exhibits high classification accuracy and low computational complexity. It is
therefore very useful for distributed data mining from large classifier ensembles.

Currently we are working on an expansion of this work aiming to take under
consideration issues such as resource and location constraints, that often appear
in high performance distributed data mining. Moreover, we plan to test soft
aggregation operators, such as max and min, for the combination of the local
classifiers estimates, and in addition use a fuzzy learning algorithm for the final
step of global classifier induction. Preliminary results from earlier experiments
towards this end, were promising.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

2. P. Chan and S. Stolfo. Meta-learning for multistrategy and parallel learning. In
Proceedings of the Second International Workshop on Multistrategy Learning, 1993.

3. Thomas G. Dietterich. Ensemble methods in machine learning. In Multiple Classifier
Systems, pages 1-15, 2000.

4. Y. Guo and J. Sutiwaraphun. Probing knowledge in distributed data mining. In
Proceedings of the PAKDD’99 Conference, Beijing, China, 1999.

5. A. Prodromidis, P. Chan, and S. Stolfo. Meta-learning in distributed data mining
systems: Issues and approaches, 2000.

6. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, San Mateo,
1993.

7. L. Saitta. Machine learning: A technological roadmap. Technical report, University
of Amsterdam, 2000.

8. K. Ting and I. Witten. Stacked generalization: When does it work?, 1997.

9. David Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.

	header: 2nd Hellenic Conf. on AI, SETN-2002, 11-12 April 2002, Thessaloniki, Greece, Proceedings, Companion Volume, pp. 249-256

