
Knowledge-based Fusion of Distributed Classifiers 1

A Knowledge-based Web Information System
for the Fusion of Distributed Classifiers

Grigorios Tsoumakas, Nick Bassiliades and Ioannis Vlahavas

Department of Informatics
Aristotle University of Thessaloniki

Greece

ABSTRACT
This chapter presents the design and development of WebDisC, a knowledge-based Web

information system for the fusion of classifiers induced at geographically distributed databases. The main

features of our system are: i) a declarative rule language for classifier selection that allows the

combination of syntactically heterogeneous distributed classifiers, ii) a variety of standard methods for

fusing the output of distributed classifiers, iii) a new approach for clustering classifiers in order to deal

with the semantic heterogeneity of distributed classifiers, detect their interesting similarities and

differences and enhance their fusion and iv) an architecture based on the Web services paradigm that

utilizes the open and scalable standards of XML and SOAP.

INTRODUCTION
Recently the enormous technological progress on acquiring and storing data in digital format has

led to the accumulation of significant amounts of personal, business and scientific data. Advances in

network technologies and the Internet have led to the availability of much of these data online. Personal

text, image, audio and video files are today accessible through Web pages, peer-to-peer systems and ftp

archives. Businesses have transferred their enterprise systems online providing their customers

information and support of excellent quality in a low cost manner. Huge scientific data from physics

experiments, astronomical instruments and DNA research are being stored today in server farms and data

grids, while at the same time software technology for their online access and integration is being

developed. Today, the grand challenge of Machine Learning, Knowledge Discovery and Data Mining

scientists is to analyze this distributed information avalanche in order to extract useful knowledge.

An important problem towards this challenge is that it is often unrealistic to collect

geographically distributed data for centralized processing. The necessary central storage capacity might

Knowledge-based Fusion of Distributed Classifiers 2

not be affordable, or the necessary bandwidth to efficiently transmit the data to a single place might not

be available. In addition, there are privacy issues preventing sensitive data (e.g. medical, financial) from

being transferred from their storage site.

Another important issue is the syntactic and semantic heterogeneity of data belonging to different

information systems. The schemas of distributed databases might differ, making the fusion of distributed

models a complex task. Even in the case where the schemas match, semantic differences must also be

considered. Real-world, inherently distributed data have an intrinsic data skewness property. For example,

data related to a disease from hospitals around the world might have varying distributions due to different

nutrition habits, climate and quality of life. The same is true for buying patterns identified in supermarkets

at different regions of a country.

Finally, systems that learn and combine knowledge from distributed data must be developed

using open and extensible technology standards. They must be able to communicate with clients

developed in any programming language and platform. Inter-operability and extensibility are of primal

importance for the development of scalable software systems for distributed learning.

The main objective of this chapter is the design and development of WebDisC, a knowledge-

based Web information system for the fusion of classifiers induced at geographically distributed

databases. It's main features are: i) a declarative rule language for classifier selection that allows the

combination of syntactically heterogeneous distributed classifiers, ii) a variety of standard methods for

fusing the output of distributed classifiers, iii) a new approach for clustering classifiers in order to deal

with the semantic heterogeneity of distributed classifiers, detect their interesting similarities and

differences and enhance their fusion and iv) an architecture based on the Web services paradigm that

utilizes the open and scalable standards of XML and SOAP.

In the rest of this chapter we initially present the technologies that constitute the Web services

framework and are at the core of the WebDisC system. We then give background information on

classification, classifier fusion and related work on distributed classifier systems. Subsequently, we

describe the architecture, main functionality and user interface of the WebDisC system along with the X-

DEVICE component of the system and the proposed classifier clustering approach. Finally, we conclude

this work and pose future research directions.

WEB SERVICES
A Web service is a software system identified by a URI, whose public interfaces and bindings are

defined and described using XML. Its definition can be discovered by other software systems. These

Knowledge-based Fusion of Distributed Classifiers 3

systems may then interact with the Web service in a manner prescribed by its definition, using XML

based messages conveyed by internet protocols (Champion et al., 2002).

The use of the Web services paradigm is expanding rapidly to provide a systematic and extensible

framework for application-to-application (A2A) interaction, built on top of existing Web protocols and

based on open XML standards. Web services aim to simplify the process of distributed computing by

defining a standardized mechanism to describe, locate, and communicate with online software systems.

Essentially, each application becomes an accessible Web service component that is described using open

standards.

 The basic architecture of Web services includes technologies capable of:

• Exchanging messages.

• Describing Web services.

• Publishing and discovering Web service descriptions.

Exchanging Messages

The standard protocol for communication among Web services is the Simple Object Access

Protocol (SOAP) (Box et al., 2000). SOAP is a simple and lightweight XML-based mechanism for

creating structured data packages that can be exchanged between network applications. SOAP consists of

four fundamental components: an envelope that defines a framework for describing message structure, a

set of encoding rules for expressing instances of application-defined data types, a convention for

representing remote procedure calls and responses, and a set of rules for using SOAP with HTTP. SOAP

can be used with a variety of network protocols, such as HTTP, SMTP, FTP, RMI/IIOP, or a proprietary

messaging protocol.

SOAP is currently the de facto standard for XML messaging for a number of reasons. First,

SOAP is relatively simple, defining a thin layer that builds on top of existing network technologies such

as HTTP that are already broadly implemented. Second, SOAP is flexible and extensible in that rather

than trying to solve all of the various issues developers may face when constructing Web services, it

provides an extensible, composable framework that allows solutions to be incrementally applied as

needed. Thirdly, SOAP is based on XML. Finally, SOAP enjoys broad industry and developer

community support.

SOAP defines four XML elements:

• env:Envelope is the root of the SOAP request. At the minimum, it defines the SOAP namespace.

It may define additional namespaces.

• env:Header contains auxiliary information as SOAP blocks, such as authentication, routing

information, or transaction identifier. The header is optional.

Knowledge-based Fusion of Distributed Classifiers 4

• env:Body contains one or more SOAP blocks. An example would be a SOAP block for RPC call.

The body is mandatory and it must appear after the header.

• env:Fault is a special block that indicates protocol-level errors. If present, it must appear in the

body.

SOAP is used in WebDisC for the exchange of messages between the Portal and the distributed

classifiers. Examples of those messages can be found in Figures 9, 10 and 11.

Describing Web Services

The standard language for formally describing Web services is Web Services Description

Language (WSDL). WSDL (Chinnici et. al, 2002), is an XML document format for describing Web

services as a set of endpoints operating on messages containing either document-oriented or procedure-

oriented (RPC) messages. The operations and messages are described abstractly, and then bound to a

concrete network protocol and message format to define an endpoint. Related concrete endpoints may be

combined into services. WSDL is sufficiently extensible to allow description of endpoints and their

messages regardless of what message formats or network protocols are used to communicate. A complete

WSDL definition of a service comprises a service interface definition and a service implementation

definition, as depicted in Figure 1.

Figure 1: WSDL service implementation and interface definitions

Service
Implementation

Definition

Service
Interface

Definition

Service

Port

Binding

PortType

Message

Type

A service interface definition is an abstract or reusable service definition that may be instantiated

and referenced by multiple service implementation definitions. A service interface definition can be

thought of as an IDL (Interface Definition Language), Java interface, or Web service type. This allows

common industry standard service types to be defined and implemented by multiple service

implementers.

Knowledge-based Fusion of Distributed Classifiers 5

In WSDL, the service interface contains elements that comprise the reusable portion of the

service description: binding, portType, message and type elements. In the portType element, the

operations of the Web service are defined. The operations define what XML messages can appear in the

input, output and fault data flows. The message element specifies which XML data types constitute

various parts of a message. The message element is used to define the abstract content of messages that

comprise an operation. The use of complex data types within the message is described in the type

element. The binding element describes the protocol, data format, security and other attributes for a

particular service interface (portType).

The service implementation definition describes how a particular service interface is implemented

by a given service provider. It also describes its location so that a requester can interact with it. In WSDL,

a Web service is modeled as a service element. A service element contains a collection of port elements.

A port associates an endpoint (e.g. a network address location) with a binding element from a service

interface definition.

Examples of WSDL definitions for all WebDisC Web services can be found in (WebDisC, 2003).

Publishing and Discovering Web Service Descriptions

While there are some established standards for Web service description and communication, the

publishing and discovery of Web services can be implemented with a range of solutions. Any action that

makes a WSDL document available to a requestor, at any stage of the service requestor's lifecycle,

qualifies as service publication. In the same way, any mechanism that allows the service requestor to gain

access to the service description and make it available to the application at runtime qualifies as service

discovery.

The simplest case of publishing a Web service is a direct publish. This means that the service

provider sends the service description directly to the service requestor. This can be accomplished using an

email attachment, an FTP site, or even a CDROM distribution. Slightly more dynamic publication uses

Web Services Inspection Language (WSIL) (Brittenham, 2001). WSIL defines a simple HTTP GET

mechanism to retrieve Web services descriptions from a given URL. Another means of publishing service

descriptions available to Web services is through a Universal Description, Discovery and Integration

(UDDI) registry (Bellwood et al., 2002). There are several types of UDDI registries that may be used

depending on the scope of the domain of Web services published to it. When publishing a Web service

description to a UDDI registry, complete business context and well though out taxonomies are essential if

the service is to be found by its potential consumers.

The X-DEVICE system (Bassiliades et al., 2003a) is used in WebDisC, for registering and

discovering Web services for distributed classification. More details are given later in the chapter.

Knowledge-based Fusion of Distributed Classifiers 6

CLASSIFIER FUSION: METHODS AND SYSTEMS
This section introduces the learning task of classification, the rationale for classifier fusion,

established methods and existing systems that perform classifier fusion.

Classification

Supervised classification is one of the most common machine learning and data mining tasks

(Saitta, 2000). It deals with the problem of identifying interesting regularities between a number of

independent variables and a target or dependent categorical variable in a given data set. For example,

given a set of training instances (xi1, xi2, …, xik, yi), i = 1..N, the task is to compute a classifier, or model,

or concept that approximates an unknown function y=f(x) that correctly labels any instance drawn from

the same source as the training set.

There exist many ways to represent a classification model and many more algorithms to generate

it. Typical classifier learning approaches include concept learning, neural networks, decision trees, rule

learning, Bayesian learning and instance-based learning. All these approaches construct models that share

the common ability to classify previously unknown instances of a domain based on instances of the same

domain that were used for their training.

The output of a classifier can be i) the label of a class, ii) rankings for all the classes and iii)

measures of uncertainty such as belief, confidence, probability, possibility, plausibility or other for each

class. Consider for example, a domain for predicting tomorrow's weather with three possible classes:

sunny, windy, rainy. The corresponding output for the three types of classifiers could be: i) sunny, ii) 1 -

sunny, 2 - windy, 3 - rainy and iii) 0.8 - sunny, 0.5 - windy, 0.1 - rainy. Classifiers that output class labels

are commonly called hard classifiers, while classifiers that output measures of uncertainty are called

distribution/soft classifiers. Classifiers that output rankings are not so common in the machine learning

literature.

Another distinction among classifiers is whether they are homogeneous or heterogeneous. There

are two forms of classifier heterogeneity. According to the first, two classifiers are considered

homogeneous if they are created using the same learning algorithm. For example a naive Bayes classifier

and a decision list are heterogeneous classifiers, while two neural networks are homogeneous classifiers.

Another form of heterogeneity is based on the schema of the training data of the two classifiers. For

example, two decision trees that both predict tomorrow's weather, but one is based on temperature and

wind speed, while the other on atmospheric pressure and humidity are considered heterogeneous

classifiers. In this chapter, the term heterogeneity will be used with the latter meaning.

Knowledge-based Fusion of Distributed Classifiers 7

Fusion Methods

Classifier Fusion has been a very active field of research in the recent years. It was used for

improving the classification accuracy of pattern recognition systems, as single classification learning

algorithms were approaching their limits. It was also used as a method for scaling up data mining to very

large databases, through combining classifiers trained in parallel from different parts of the database.

Finally, it was used for learning from geographically distributed databases, where bandwidth or privacy

constraints forbid the gathering of data in a single place, through the fusion of locally learned

classification models.

There are two general groups of Classifier Fusion methods. The first group encompasses methods

that combine the outputs of the classifiers, while the second group deals with the structure of the multiple

classifier system. We will focus on the former group of methods, as WebDisC implements some of them

and provides the necessary infrastructure for implementing the rest.

Methods that fuse classifier outputs can be further categorized based on two properties. The first

is the classifier output type on which they can operate, and the second is the need of training data for the

fusion process. According to these, Table 1 presents the main methods. WebDisC currently implements

the simple methods of Majority Voting and the Sum, Product, Min, Max and Median rules.

Table 1: Classifier fusion methods

 Re-Training

Output Yes No

Label Knowledge-Behavior Space
(Huang & Suen, 1995)

Majority Voting (Lam & Suen, 1995)

Ranking The Highest Rank

Logistic Regression

Intersection of Neighborhoods

Union of Neighborhoods

Borda Count

Distribution Stacked Generalization (Wolpert, 1992)

Dempster-Shaffer Combination (Rogova, 1994)

Fuzzy Templates (Kuncheva et al., 1995)

Fuzzy Integrals (Tahani & Keller, 1990)

Sum, Product, Min, Max, Median rules
(Kittler et al., 1998)

Knowledge-based Fusion of Distributed Classifiers 8

Majority Voting works for both hard and distribution classifiers. In the latter case the class with

the maximum certainty measure receives one vote, breaking ties arbitrarily. The Sum, Min, Max, Prod

and Median rules apply to distribution classifiers only. An interesting study of these rules for classifier

combination can be found in (Kittler et al., 1998).

Let C = {C1, C2, ..., CN} be a set of classifiers and L = {L1, L2,..., LK} be a set of class labels. Hard

classifiers receive an input instance x and output an element of the set L. Distribution classifiers receive

an input instance x and output a k-dimensional vector Ci(x) = [ci,1(x), ci,2 (x), ..., ci,k(x)], where ci,j(x) is the

certainty measure that classifier Ci gives to label Lj.

For the Majority Voting combination of hard classifiers, the output is the element of set L that got

the most votes (outputs) from the Ν classifiers. For the Sum, Min, Max, Prod and Median rules the output

is a k-dimensional vector [r1(x), r2(x),..., rk(x)], where:

ri(x) = op(c1,i(x), c2,i(x), ..., cN,i(I))

and op is the respective operation (average, minimum, maximum, product and median).

Fusion Systems

Despite the availability of many classifier fusion methods, there are few systems that implement

such methods in a distributed database scenario. A reason is that most of these methods were used for

pattern recognition tasks, where data are usually gathered at a single place and there are no distributed

computing requirements. In the following paragraphs we summarize some of the most important work on

system development aimed at classifier learning and combination from distributed data.

A system that learns and combines classifiers from distributed databases is Java Agents for Meta-

Learning (JAM) (Stolfo et al., 1997). It is implemented in Java and uses the Java technology of Remote

Method Invocation (RMI) for distributed computing. An important limitation to the extensibility of the

system is the fact that clients have to be written in Java. Therefore, JAM is bound to be a closed system

that is intended for use in a group of firmly-coupled distributed databases. Furthermore, in contrast to

WebDisC, it cannot be used for the fusion of heterogeneous classifiers.

A CORBA infrastructure for distributed learning and meta-learning is presented in (Werges &

Naylor, 2002). Although CORBA is a standard-based distributed object technology, is has been surpassed

by the Web services technology. In addition, the presented infrastructure is very complex as the client

developers have to implement a lot of different interfaces. The lack of open standards such as XML and

SOAP and the complexity of the system hinder its extensibility. Furthermore, like JAM it combines

homogeneous classifiers.

Another system that is built using CORBA technology is MAS (Botia et al., 2001). This is a

sophisticated system with some interesting features that add to its extensibility. These include a common

services interface for all learning agents and an X.500-based directory service as a repository for the

Knowledge-based Fusion of Distributed Classifiers 9

system components. However, as stated above, these standards have been surpassed by Web services

technologies which are open, scalable and extensible.

THE WEBDISC SYSTEM
WebDisC is a knowledge-based Web information system for the fusion of classifiers induced at

geographically distributed databases. The architecture of WebDisC is based on the new and promising

Web services paradigm. It further encompasses a Web-based interface that allows users to interact with

the system through guided procedures. It's main functionality includes: i) a declarative rule language for

classifier selection that allows the combination of syntactically heterogeneous distributed classifiers, ii) a

variety of standard methods for fusing the output of distributed classifiers and iii) a new approach for

clustering classifiers in order to deal with the semantic heterogeneity of distributed classifiers, detect their

interesting similarities and differences and enhance their fusion. The rest of this section describes the

architecture, functionality, methodologies and user interface of the system.

Architecture and Main Functionality

The architecture of WebDisC comprises 3 basic components as depicted in Figure 2: i) Clients, ii)

The Portal and iii) WebDisC Nodes.

Figure 2: The architecture of WebDisC

WebDisC NODE

 wsClassify

wsGetClassifier

wsGetData

CLIENT

CLIENT

CLIENT DB

C

PORTAL

X-DEVICE

wsRegister wsDistClassify

wsCluster

The WebDisC Nodes

WebDisC Nodes are databases located at different geographical areas along with local

classification models that were induced from those databases using a machine learning/data mining

algorithm.

WebDisC Nodes expose the following web services:

Knowledge-based Fusion of Distributed Classifiers 10

• wsClassify takes as input the attribute-value pairs of an unclassified example and outputs the

classification result.

• wsGetClassifier takes an empty input and returns the classifier of the WebDisC Node in PMML

format (Data Mining Group, 2002).

• wsGetData returns a vector of tuples from the WebDisC Node's database. It takes as input an

integer indicating the number of tuples that will be transferred.

Notice that the WSDL descriptions for all the Web services of our system can be found in

(WebDisC, 2003).

The Portal

The Portal is the coordinating component of the system. It consists of the X-DEVICE deductive

XML database system and the following web services: wsRegister, wsDistClassify and wsCluster. In

addition, it offers a Web-based interface for thin client access, that also implements the fusion methods.

X-DEVICE's main purpose is the storage of meta-data regarding the distributed classifiers that

are registered with WebDisC. These meta-data include: description, names and types of the input and

output attributes, name of learning algorithm, ability to handle missing values and the URI of the Web

services.

Figure 3 shows the DTD for the classifier's meta-data, which also define the type of objects that

are stored in X-DEVICE for each classifier, according to the XML-to-object mapping scheme of X-

DEVICE (see Figure 8). Notice that the actual XML Schema1 data types for attType and address

elements are xs:anyType and xs:anyURI, respectively. Figure 4 shows sample metadata for a classifier

registered in X-DEVICE, according to the DTD of Figure 3. More on X-DEVICE will be presented in the

corresponding section.

Figure 3: DTD for classifier metadata

 <!ELEMENT classifier (name, description, address,
 classificationMethod, acceptsMissingValues,

 classificationAttribute, inputAttribute*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT classificationMethod (#PCDATA)>
<!ELEMENT acceptsMissingValues (#PCDATA)>
<!ELEMENT classificationAttribute (attName, attName)>
<!ELEMENT inputAttribute (attName, attType)>
<!ELEMENT attName (#PCDATA)>
<!ELEMENT attType (#PCDATA)>

Knowledge-based Fusion of Distributed Classifiers 11

Figure 4: Sample classifier metadata

<classifier>
 <name>Classifier1</name>
 <description>A local classifier that uses a Decision Tree</description>
 <address>http://startrek.csd.auth.gr/Classifier1</address>
 <classificationMethod>Decision Tree</classificationMethod>
 <acceptsMissingValues>true</acceptsMissingValues>
 <classificationAttribute>
 <attName>loan</attName>
 <attType>xs:string</attType>
 </classificationAttribute>
 <inputAttribute>
 <attName>income</attName>
 <attType>xs:integer</attType>
 </inputAttribute>
 <inputAttribute>
 <attName>card</attName>
 <attType>xs:string</attType>
 </inputAttribute>
 <inputAttribute>
 <attName>home</attName>
 <attType>xs:string</attType>
 </inputAttribute>
</classifier>

wsRegister is the web service that WebDisC Nodes use in order to register with the system. This

service takes as input the classifier meta-data of a WebDisC Node and adds them within X-DEVICE (see

Figure 9).

wsDistClassify, implements a new approach for distributed classification. It takes as input the

name of the dependent attribute and the names and values of some independent attributes of an

unclassified example. It also takes as input the name of a predefined method or a set of user-defined X-

DEVICE rules that specify a strategy for selecting the classifiers that should be used for classifying this

example, amongst all suitable classifiers. The selection strategies offered by the system along with the

specifications for describing user-defined strategies are further explained on page 21. The service

retrieves from X-DEVICE the URIs and SOAP messages of the selected classifiers and calls the

wsClassify web service of the distributed classifiers passing the names and values of the corresponding

independent attributes as arguments. The output of the service is a list of the collected results.

wsCluster, implements a new approach for clustering distributed classifiers. It takes as input a list

of URIs that correspond to a group of Ν classifiers that all share the same input and output attributes and

calls their wsGetData and wsGetClassifier services. It so retrieves the actual classifiers and necessary data

to centrally run the clustering algorithm that is explained in the Clustering Distributed Classifiers section.

The output of the service is the clustering result in the form of a vector of size Ν with numbers indicating

the cluster of each classifier.

Knowledge-based Fusion of Distributed Classifiers 12

Finally, the Portal offers a Web-based user interface with guided procedures for using the system.

Users of WebDisC can select from the main page one of the tasks of classification or clustering and are

directed to the corresponding pages. Data are entered via dynamically created HTML forms from

classifier meta-data stored in the X-DEVICE system. Classification and clustering results are also

presented in the Web-browser. Java servlets handle the form input data and the preparation of results. The

user interface is detailed in the following subsection.

The Clients

Thick clients (applications) that want to exploit the functionality of WebDisC can directly use the

Portal's wsDistClassify and wsCluster Web services. In addition, thin clients (Web browsers) can access

the functionality of WebDisC by visiting the system's web pages and perform one of the tasks through

guided procedures.

User Interface

The main Web page of WebDisC allows users to select either the main task of classification or

that of clustering.

Classification

The classification data entry page contains a form where users can fill in the details of the

example to be classified and a form for selecting or entering the classifier selection strategy. Figure 5

shows this page completed with values for a specific domain, regarding the approval of a loan application.

Figure 5: Example of the classification data entry Web page of WebDisC

Knowledge-based Fusion of Distributed Classifiers 13

In the general case, users first select one of the available output attributes from a combo-box. The

entries of this combo-box are dynamically created from the meta-data of the registered classifiers using a

simple X-DEVICE query. Once an output attribute has been selected, the page reloads with a table

containing the names of all the input attributes that can be used to predict this output attribute. Again this

is performed dynamically through a simple X-DEVICE query. Users can fill in the values for these

attributes in the corresponding text-boxes. If an attribute value is left unspecified then it is ignored.

After entering the data of the example, users can select one of the default classifier selection

strategies or enter their own using the X-DEVICE query language. The default strategies are: i) Select the

classifiers that have at least one input attribute in common with the attributes of the new example, ii)

select the classifiers that have at least N% of their input attributes in common with the attributes of the

new example and iii) select the classifiers that have all their input attributes in common with the attributes

of the new example. This last strategies select homogeneous classifiers.

After selecting a strategy, users can press the classify example button, which calls the wsClassify

service of the Portal through a Java servlet passing the entered data and the selection strategy as

arguments. The classification results that the wsClassify service outputs are subsequently visualized on

another Web page by a table with a row for each classifier result. An example of such a table filled in

with values for the loan application example is depicted in Figure 6.

In this example, 7 classifiers from 3 different banks registered with WebDisC match the input

data that the user entered. The loan assessment units of the banks have homogeneous classifiers that take

as input all three attributes, while the headquarters of each bank have classifiers that use a different

combination of input attributes. Furthermore, we notice only bank A uses classifiers that output

distributions, while the rest classifiers output class labels. Another thing that can be noticed is that banks

A and C output a yes decision to the loan application, while bank Β classifiers output a no decision.

Column CL of the table concerns the clustering process and will be subsequently explained.

At the bottom of the page there is a fuse button, which users can press for combining the results

of classifiers. The users can select one of the five supported combination methods as explained in the

Classifier Fusion:Methods and Systems section. By default, all classifiers are selected for participating in

the combination. To exclude one or more classifiers, users can uncheck the check box in the last column

(ON) of the table. When the fuse button is pressed the page reloads with the fusion result presented in the

final row of the classifier results table, as depicted in Figure 6. In this example, the Majority Voting

decision is yes as five out of the 7 classifiers output yes. If one of the other fusion methods were selected,

then the classifiers of banks Β and C would not have taken part in the fusion, because they are not

distribution classifiers, as these methods demand.

Knowledge-based Fusion of Distributed Classifiers 14

Figure 6: Example of the classification results Web page of WebDisC

Clustering

The clustering page contains a combo-box for selecting the output attribute similarly to the

classification page. Upon selecting this attribute the page reloads with a table that has a row for each

group of homogeneous classifiers that can predict it. The content of this table is dynamically calculated

through a simple query to X-DEVICE. Each row describes the input attributes of the classifier group and

has a radio button next to it so that only one group can be selected.

Figure 7 shows the clustering page for the loan application example of the previous section. There

are four groups of homogeneous classifiers. The first corresponds to classifiers from the four loan

assessment units, while the rest from each of the bank headquarters.

Knowledge-based Fusion of Distributed Classifiers 15

Figure 7: Example of the clustering Web page of WebDisC

Pressing the cluster button at the bottom of the page will call the wsCluster service of the Portal

passing as parameters the URLs of the classifiers that belong to the selected group. The result of the

clustering process will be stored along with the classifier meta-data in X-DEVICE for future use in a

classification process. Going back to Figure 6, we can see the result of clustering the four loan assessment

units of the banks. Column CL of the table has as value for each classifier the number of the cluster to

which it belongs. We can see that there are two groups. One contains the classifiers from the loan

assessment units of bank A and C and the other the classifier from the loan assessment unit of bank B.

Classifier clustering aims at discovering semantic differences that arise from the geographical

distribution of the databases. Using the above example, banks A and C could belong to poorer countries

than bank Β and thus consider the income of the example as high enough for the loan to be granted. Bank

Β however, considers the income low for granting the loan. In this case bank Β classifiers should never be

fused with bank A and C classifiers due to semantic differences of the classification models. Having

performed the clustering process, the user of WebDisC has gained this knowledge and can avoid fusing

classifiers belonging to different clusters. Details of the clustering algorithm can be found in the

Clustering Distributed Classifiers section.

Knowledge-based Fusion of Distributed Classifiers 16

THE X-DEVICE COMPONENT
In this section, we initially present an overview of the X-DEVICE system, a deductive object-

oriented XML database system (Bassiliades et al., 2003a) that is used as a Web service registry

component for the WebDisC system. Then, we describe in detail the functionality of X-DEVICE within

WebDisC.

Overview of the X-DEVICE System

In X-DEVICE, XML documents are stored into the OODB by automatically mapping the DTD to

an object schema. Furthermore, X-DEVICE employs a powerful rule-based query language for

intelligently querying stored Web documents and data and publishing the results. X-DEVICE is an

extension of the active object-oriented knowledge base system DEVICE (Bassiliades et al., 2000).

DEVICE integrates deductive and production rules into an active OODB with event-driven rules (Diaz &

Jaime, 1997), on top of Prolog. This is achieved by translating the condition of each declarative rule into a

set of complex events that is used as a discrimination network to incrementally match the condition

against the database.

The advantages of using a logic-based query language for XML data come from the well-

understood mathematical properties and the declarative character of such languages, which both allow the

use of advanced optimization techniques, such as magic-sets. Furthermore, X-DEVICE compared to the

Xquery (Boag et al., 2002) functional query language has a more high-level, declarative syntax that

allows users to express everything that XQuery can express, in a more compact and comprehensible way,

with the powerful addition of general path expressions, which is due to fixpoint recursion and second-

order variables.

XML Object Model

The X-DEVICE system translates DTD definitions into an object database schema that includes

classes and attributes, while XML data are translated into objects. Generated classes and objects are

stored within the underlying object-oriented database ADAM (Gray et al., 1992). The mapping of a DTD

element to the object data model depends on the following:

• If an element has PCDATA content (without any attributes), it is represented as a string attribute

of the class of its parent element node.The name of the attribute is the same as the name of the

element.

• If an element has either a) children elements, or b) attributes, then it is represented as a class that

is an instance of the xml_seq meta-class. The attributes of the class include both the attributes

of the element and the children elements. The types of the attributes of the class are determined as

follows:

Knowledge-based Fusion of Distributed Classifiers 17

� Simple character children elements and element attributes correspond to object attributes

of string type. Attributes are distinguished from children elements through the att_lst

meta-attribute.

� Children elements that are represented as objects correspond to object reference

attributes.

The order of children elements is handled outside the standard OODB model by providing a

meta-attribute (elem_ord) for the class of the element that specifies the correct ordering of the children

elements. This meta-attribute is used when (either whole or a part of) the original XML document is

reconstructed and returned to the user. The query language also uses it.

Alternation is also handled outside the standard OODB model by creating a new class for each

alternation of elements, which is an instance of the xml_alt meta-class and it is given a unique system-

generated name. The attributes of this class are determined by the elements that participate in the

alternation. The structure of an alternation class may seem similar to a normal element class; however the

behavior of alternation objects is different, because they must have a value for exactly one of the

attributes specified in the class.

The mapping of the multiple occurrence operators, such as "star" (*), etc, are handled through

multi-valued and optional/mandatory attributes of the object data model. The order of children element

occurrences is important for XML documents, therefore the multi-valued attributes are implemented as

lists and not as sets.

Figure 8 shows the X-DEVICE representation of the XML document in Figure 4

Figure 8: X-DEVICE representation of the XML document in Figure 4

object 1#classifier
 instance classifier
 attributes
 name 'Classifier1'
 description 'A local classifier that uses a Decision Tree'
 address 'http://startrek.csd.auth.gr/Classifier1'
 classificationMethod 'Decision Tree'
 acceptsMissingValues true
 classificationAttribute 2#classificationAttribute
 inputAttribute [3#inputAttribute,4#inputAttribute,5#inputAttribute]

object 2#classificationAttribute
 instance classificationAttribute
 attributes
 attName loan
 attType xs:string

object 3#inputAttribute
 instance inputAttribute
 attributes
 attName income
 attType xs:integer

object 4#inputAttribute
 instance inputAttribute
 attributes
 attName card
 attType xs:string

object 5#inputAttribute
 instance inputAttribute
 attributes
 attName home
 attType xs:string

Knowledge-based Fusion of Distributed Classifiers 18

XML Deductive Query Language

X-DEVICE queries are transformed into the basic DEVICE rule language and are executed using

the system's basic inference engine. The query results are returned to the user in the form of an XML

document. The deductive rule language of X-DEVICE supports generalized path and ordering

expressions, which greatly facilitate the querying of recursive, tree-structured XML data and the

construction of XML trees as query results. These advanced expressions are implemented using second-

order logic syntax (i.e. variables can range over class and attribute names) that have also been used to

integrate heterogeneous schemata (Bassiliades et al., 2003b). These XML-aware constructs are translated

through the use of object meta-data into a combination of a) a set of first-order logic deductive rules,

and/or b) a set of production rules that their conditions query the meta-classes of the OODB, they

instantiate the second-order variables, and they dynamically generate first-order deductive rules.

In this section we mainly focus on the use of the X-DEVICE first-order query language to

declaratively query the meta-data of the classifier Web services that are represented as XML documents.

More details about DEVICE and X-DEVICE can be found in (Bassiliades et al., 2000) and (Bassiliades et

al., 2003a). The general algorithms for the translation of the various XML-aware constructs to first-order

logic can be found in (X-DEVICE, 2002).

In X-DEVICE, deductive rules are composed of condition and conclusion, whereas the condition

defines a pattern of objects to be matched over the database and the conclusion is a derived class template

that defines the objects that should be in the database when the condition is true. For example, rule R4

(see next subsection) defines that an object with attribute classifierID with value CL and attribute

address with value URL exists in class candidate_classifier if there is an object with OID I in

class init_candidate with an attribute method that its value equals string "At least one", an

attribute address with value URL and an attribute classifierID with value CL, which points to an

object of class classifier which in turn has an attribute acceptsMissingValues with value

"true".

Actually, rule R4 selects all the initial candidate classifiers if the selection method requires at

least one input attribute common to the user's classification request and the classifier accepts missing

values for some of its input attributes. Class candidate_classifier is a derived class, i.e. a class

whose instances are derived from deductive rules. Only one derived class template is allowed at the

THEN-part (head) of a deductive rule. However, many rules can exist with the same derived class at the

head (e.g. rules R15 and R16). The final set of derived objects is a union of the objects derived by all the

rules.

The syntax of such a rule language is first-order. Variables can appear in front of class names

(e.g. I, CL), denoting OIDs of instances of the class, and inside the brackets, denoting attribute values,

Knowledge-based Fusion of Distributed Classifiers 19

i.e. object references (CL) and simple values (URL), such as integers, strings, etc. Variables are

instantiated through the ":" operator when the corresponding attribute is single-valued, and the "∋"

operator when the corresponding attribute is multi-valued. Conditions can also contain comparisons

between attribute values, constants and variables. Negation is also allowed if rules are safe, i.e. variables

that appear in the conclusion must also appear at least once inside a non-negated condition.

Path expressions can be composed using dots between the "steps", which are attributes of the

interconnected objects, which represent XML document elements. For example rule R2 generates the set

of initial candidate classifiers by selecting all the registered classifiers that have at least one input attribute

common to the user's classification request. The object that represents the user's request is C@classify

and in order to retrieve names of input attributes the query navigates from classify through

inputVector and inputPair to attName.

The innermost attribute should be an attribute of "departing" class, i.e. inputVector is an

attribute of class classify. Moving to the left, attributes belong to classes that represent their

predecessor attributes. Notice the right-to-left order of attributes, contrary to the common C-like dot

notation, that stress out the functional data model origins of the underlying ADAM OODB (Gray et al.,

1992). Under this interpretation the chained "dotted" attributes can be seen as function compositions.

A query is executed by submitting the set of stratified rules (or logic program) to the system,

which translates them into active rules and activates the basic events to detect changes at base data. Data

are forwarded to the rule processor through a discrimination network (much alike in a production system

fashion). Rules are executed with fixpoint semantics (semi-naive evaluation), i.e. rule processing

terminates when no more new derivations can be made. Derived objects are materialized and are either

maintained after the query is over or discarded on user's demand. X-DEVICE also supports production

rules, which have at the THEN-part one or more actions expressed in the procedural language of the

underlying OODB.

The main advantage of the X-DEVICE system is its extensibility; it allows the easy integration of

new rule types as well as transparent extensions and improvements of the rule matching and execution

phases. The current system implementation includes deductive rules for maintaining derived and

aggregate attributes. Among the optimizations of the rule condition matching is the use of a RETE-like

discrimination network, extended with reordering of condition elements, for reducing time complexity

and virtual-hybrid memories, for reducing space complexity (Bassiliades & Vlahavas, 1997).

Furthermore, set-oriented rule execution can be used for minimizing the number of inference cycles (and

time) for large data sets (Bassiliades et al., 2000).

More examples of the X-DEVICE language will be presented and explained in the sequel when

needed for the description of the WebDisC functionality.

Knowledge-based Fusion of Distributed Classifiers 20

X-DEVICE Functionality in WebDisC

In this subsection we describe in detail the functionality of the X-DEVICE system within the

WebDisC system, as it has been previously presented in the WebDisC system architecture.

Classifier Registration

The initial task that X-DEVICE performs within WebDisC is to register the meta-data for the

classifiers of the WebDisC nodes. The DTD of the classifiers' meta-data has been given in Figure 3. The

WSDL description for the wsRegister service is shown in (WebDisC, 2003). New WebDisC nodes sent in

a SOAP message that contains their meta-data. A sample SOAP message is shown in Figure 9. The

schema of the incoming SOAP message is determined at the input message of the corresponding port type

of the WSDL description.

Figure 9: Sample SOAP message for registering a classifier

 <SOAP-ENV:Envelope xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:m0="http://startrek.csd.auth.gr/wsRegister.xsd">
 <SOAP-ENV:Body>
 <m:Register xmlns:m="http://startrek.csd.auth.gr/wsRegister.wsdl">
 <classifierName>Classifier1</classifierName>
 <classifierDescription>
 A local classifier that uses a Decision Tree
 </classifierDescription>
 <address>http://startrek.csd.auth.gr/Classifier1</address>
 <classificationMethod>Decision Tree</classificationMethod>
 <acceptsMissingValues>true</acceptsMissingValues>
 <inputAttribute>
 <m0:attName>income</m0:attName>
 <m0:attType>xs:integer</m0:attType>
 </inputAttribute>
 <inputAttribute>
 <m0:attName>card</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </inputAttribute>
 <inputAttribute>
 <m0:attName>home</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </inputAttribute>
 <classificationAttribute>
 <m0:attName>loan</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </classificationAttribute>
 </m:Register>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Input SOAP messages are stored within the X-DEVICE system using the schema for the SOAP

message found in the corresponding WSDL description. However, the top-level element node of the input

Knowledge-based Fusion of Distributed Classifiers 21

SOAP message is linked to an instance of the input_soap_message class, through the OID of the

object-element node and its attribute content.

The following X-DEVICE rule Rl iterates over all incoming SOAP messages that register a new

classifier and generates a new classifier object for each one of them.

Rl:
if I@input_soap_message(content:R) and
 R@register(classifierName:Name,classifierDescription:Desc,
 address:Address,classificationMethod:Method,
 acceptsMissingValues:AMV,
 classificationAttribute:CA,inputAttribute:IA)
then classifier(name:Name,description:Desc,address:Address,
 classificationMethod:Method,acceptsMissingValues:AMV,
 classificationAttribute:CA,inputAttribute:IA)

Actually, rule Rl transforms the XML data of SOAP messages (Figure 9) into classifier metadata

(Figure 4), stored as a set of objects (Figure 8).

Classifier Selection

One very important task of X-DEVICE is the selection of classifiers that are relative to the user's

request. Initially, rule R2 below pre-selects all classifiers that have at least one input attribute Att

common to the input SOAP message for the wsDistClassify service.

R2:
if I@input_soap_message(classify:C) and
 C@classify(select:Method,classificationAtt:CAtt,
 attName.inputPair.inputVector:Att) and
 CL@classifier(address:URL,attName.inputAttribute=Att,
 attName.classificationAttribute=CAtt)
then init_candidate(method:Method,classifierID:CL,address:URL)

Figure 10 shows an example of such a SOAP message. Notice that the classification attribute

CAtt of the registered classifier must also coincide with the requested classification attribute. The

selection strategy Method provided by the user is kept along the initial set of candidate classifiers in

order to be used for the next step of classifier selection.

Furthermore, all the input attributes of the input SOAP message that match some of the initial set

of candidate classifiers are also kept as instances of the candidate_atts class, using rule R3.

R3:
if I@input_soap_message(inputPair.inputVector.classify ∋ P) and
 Ρ@inputPair(attName:Att,attValue:Val) and
 IC@init_candidate(classifierID:CL) and
 CL@classifier(attName.inputAttribute=Att)
then candidate_atts(classifierID:CL,attribute:Att,value:Val)

The above classes, init_candidate and candidate_atts, constitute the programming

interface for the rules that implement the classifier selection strategy. Some of these strategies, such as At

Knowledge-based Fusion of Distributed Classifiers 22

least one, All, At least N%, are provided by the system. A knowledgeable user can also use the X-

DEVICE language to provide his/her own selection strategy.

Figure 10: Sample SOAP message for classifying an example through the wsDistClassify service

 <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:m0="http://startrek.csd.auth.gr/wsDistClassify.xsd">
 <SOAP-ENV:Body>
 <m:Classify xmlns:m="http://startrek.csd.auth.gr/wsDistClassify.wsdl">
 <inputVector>
 <inputPair>
 <m0:attName>income</m0:attName>
 <m0:attValue>14000</m0:attValue>
 </inputPair>
 <inputPair>
 <m0:attName>card</m0:attName>
 <m0:attValue>good</m0:attValue>
 </inputPair>
 <inputPair>
 <m0:attName>home</m0:attName>
 <m0:attValue>yes</m0:attValue>
 </inputPair>
 </inputVector>
 <classificationAtt>loan</classificationAtt>
 <select>At least one</select>
 </m:Classify>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Rule R4 below implements the selection of a classifier that has at least one common input

attribute with the input SOAP message. Notice that the set of the initially selected candidate classifiers

already satisfies the above requirement, therefore the following rule just checks if a classifier accepts

missing input values and then copies its OID and address to the output interface class

candidate_classifier.

R4:
if I@init_candidate(method='At least one',classifierID:CL,address:URL) and
 CL@classifier(acceptsMissingValues='true')
then candidate_classifier(classifierID:CL,address:URL)

The selection of the classifiers that all their input attributes are present at the input SOAP

message needs a more complicated treatment. Rule R5 iterates over all initial candidate classifiers and

excludes the ones that have an input attribute not present at the input SOAP message (instances of

candidate_atts class). Then, rule R6 copies to the candidate_classifier class the OID and

address of the initial candidate classifiers that have not been excluded by rule R5.

Knowledge-based Fusion of Distributed Classifiers 23

R5:
if I@init_candidate(method='All',attName.inputAttribute.classifierID:Att) and
 not C@candidate_atts(classifierID=CL,attribute=Att)
then exclude_candidate(classifier:I)

R6:
if C@init_candidate(method='All',classifierID:CL,address:URL) and
 not C1@exclude_candidate(classifier=C)
then candidate_classifier(classifierID:CL,address:URL)

Finally, the selection of a classifier if the input SOAP message has at least N% of the input

attributes of the classifier needs aggregate functions that count the total number of input attributes of the

classifier (rule R7) and the total number of the input attributes of the classifier that are present at the input

SOAP message (rule R8). Rule R9 retrieves the two numbers, calculates their ratio, and compares it to the

user-supplied percentage. Notice that the selected classifier needs to accept missing values. All three rules

make use of the prolog{} construct of X-DEVICE to call out arbitrary Prolog goals.

R7:
if I@init_candidate(method=N,attName.inputAttributes.classifierID:Att) and
 prolog{number(N)}
then candidate_total_atts(classifier:I,atts_no:count(Att))

R8:
if I@init_candidate(method=H,classifierID:CL) and
 C@candidate_atts(classifierID=CL,attribute:Att) and
 prolog{number(N)}
then candidate_existing_atts(classifier:I,atts_no:count(Att))

R9:
if C@init_candidate(method=N,classifierID:CL,address:URL) and
 CL@classifier(acceptsMissingValues='true') and
 CT@candidate_total_atts(classifier=C,atts_no:Total) and
 CE@candidate_existing_atts(classifier=C,atts_no:Existing) and
 prolog{number(N),P is 100*Existing/Total,P>=N}
then candidate_classifier(classifierID:CL,address:URL)

The addresses of the final set of candidate classifiers are returned to the requesting application

along with the corresponding SOAP messages that should be sent to the wsClassify services of the

WebDisC nodes. Figure 11 shows such a message.

The result is returned as an XML document and is calculated by the rules R10 to R14. Rule R10

creates a classify object that points to a selected classifier object. Notice the use of the exclamation mark

(!) in front of an attribute name to denote a system attribute, i.e. an auxiliary attribute that will not be a

part of the query result. Rule Rll constructs a classifyPair object for each attribute-value pair of

each selected classifier.

Knowledge-based Fusion of Distributed Classifiers 24

Figure 11: Sample SOAP message for classifying an example through the wsClassify service

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:m0="http://startrek.csd.auth.gr/wsClassify1.xsd">
 <SOAP-ENV:Body>
 <m:Classify xmlns:m="http://startrek.csd.auth.gr/wsClassify1.wsdl">
 <classifyVector>
 <classifyPair>
 <m0:attName>income</m0:attName>
 <m0:attValue>14000</m0:attValue>
 </classifyPair >
 <classifyPair >
 <m0:attName>card</m0:attName>
 <m0:attValue>good</m0:attValue>
 </classifyPair>
 </classifyVector>
 </m:Classify>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Rule R12 creates a classifyVector object for each selected classifier and links it with the

corresponding classifyPair objects. The list(CP) construct in the rule conclusion denotes that

the attribute classifyPair of the derived class classifyVector is an attribute whose value is

calculated by the aggregate function list. This function collects all the instantiations of the variable CP

(since many input attributes can exist for each classifier) and stores them under a strict order into the

multi-valued attribute classifyPair. Notice that the values of the rest of the variables at the rule

conclusion define a GROUP BY operation. More details about the implementation of aggregate functions

in X-DEVICE can be found in (Bassiliades et al., 2000) and (Bassiliades et al., 2003a).

Rule R13 links the classifyVector object with the corresponding classify object

through a derived attribute rule, which defines a new attribute classifyVector for class classify.

The values for this attribute are derived by this rule. Objects of class classify that do not satisfy the

condition of this class will have null value for this attribute. More details on derived attribute rules can be

found in (Bassiliades et al., 2000).

Finally, rule R14 constructs the top-level XML element of the result which is the SOAP message

built for each classifier, augmented with the address of the classifier. The keyword xml_result is a

directive that indicates to the query processor that the encapsulated derived class

(output_soap_message) is the answer to the query. This is especially important when the query

consists of multiple rules, as in this case.

R10:
if C@candidate_classifier(classifierID:CL)
then classify(!classifierID:CL)

Knowledge-based Fusion of Distributed Classifiers 25

R11:
if CL@classify(!classifierID:CL1) and
 A@candidate_atts(classifierID=CL1,attribute:Att,value:Val) and
then classifyPair(!classifierID:CL1,attName:Att,attValue:Val)

R12:
if CP@classifyPair(!classifierID:CL,attName:Att,attValue:Val)
then classifyVector(!classifierID:CL,classifyPair:list(CP))

R13:
if CL@classify(!classifierID:CL1) and
 CV@classifyVector(!classifierID=CL1) and
then CL@classify(classifyVector:CV)

R14:
if CL@classify(!classifierID:CL1) and
 C@candidate_classifier(classifierID=CL1,address:URL)
then xml_result(output_soap_message(!address:URL,classify:CL))

Further selection strategies can be defined by the user who must supply a complete set of X-

DEVICE rules that start from the initial set of candidate classifiers, filter out some of them based on

arbitrary criteria, and calculate the final set of candidate classifiers. The user should utilize the following

classes as input to his/her query:

• init_candidate(method,classifierID,address). Holds all the registered

classifiers that share an input attribute with the incoming request. Attribute method stores the

selection strategy of the request, classifierID points to the OID of the classifier

object, and address holds the URL address of the corresponding wsClassify Web service.

Attribute method has a value of user for user-defined selection strategy.

• candidate_atts(classifierID,attribute,value). Holds all the input attributes

and values of the input SOAP message that are shared with some registered classifier. Attribute

classifierID points to the OID of the classifier object, attribute holds the name of

the input attribute, and value holds the value of the input attribute.

The user-defined X-DEVICE query should return the set of selected classifiers as instances of the

candidate_classifier(classifierID, address) derived class. Attribute

classifierID points to the OID of the classifier object and address holds the URL address of

the corresponding wsClassify Web service. However, the user can avoid using the above output class

altogether if he/she makes some use of the pre-defined selection strategies, as the following example

shows.

We assume that a user wants to define a new selection strategy, so that a classifier can be selected

if at least one of the following conditions is true:

Knowledge-based Fusion of Distributed Classifiers 26

• The classification methodology is "Neural Network" and the input attribute "coverage" is at least

50%, or

• The classification methodology is "Decision Tree" and the input attribute "coverage" is at least

75%.

The following two rules use the init_candidate input class and copy an instance of this

class to a new instance by changing the selection strategy from user (the name of the user-defined

strategy) to the appropriate At least N% strategy, according to the classification method of the classifier.

Notice that the user need not directly involve output class candidate_classifier, but only

indirectly by re-feeding the init_candidate class.

R15:
if I@init_candidate(method=user,classifierID:CL,address:URL) and
 CL@classifier(classificationMethod='Neural Network')
then init_candidate(method=50,classifierID:CL,address:URL)

R16:
if I@init_candidate(method=user,classifierID:CL,address:URL) and
 CL@classifier(classificationMethod='Decision Tree')
then init_candidate(method=75,classifierID:CL,address:URL)

Finding Homogeneous Classifiers

One of the tasks of X-DEVICE is to provide to the wsCluster service the groups of homogeneous

classifiers, i.e. the group of classifiers that have exactly the same input and classification attributes, using

the following rules:

R17:
if C@classifier(classificationAttribute:CA,inputAttribute:IA) and
 not G@group(classificationAttribute=CA,inputAttribute≡IA)
then group(classificationAttribute:CA,inputAttribute:IA)

R18:
if G@group(class ificationAttribute:CA,inputAttribute:IA) and
 C@classifier(classificationAttribute=CA,inputAttributes≡IA)
then G@group(classifiers:list(C))

Rule R17 iterates over all classifiers and copies the classification and input attributes to an

instance of group class. Notice that the group is only created if it does not already exist. In order to

compare the multi-valued attribute inputAttribute we use the same-set operator (≡), since the order

of elements in each list may vary. Rule R18 iterates all the "similar" classifiers, for each created group,

and keeps their OID in the classifiers attribute of group, using the list aggregate function. Therefore,

Knowledge-based Fusion of Distributed Classifiers 27

the group class has three attributes: classificationAttribute, inputAttribute, and

classifiers; the two latter are multi-valued attributes.

Querying Registered Classifiers

The Web services of the portal might query X-DEVICE about the stored meta-data of the

registered classifiers. The following is an example that generates the list of input attributes that are

relevant for each classification attribute. This query is used by the portal to adjust dynamically the

classification input page (see Figure 5).

R19:
if C@classifier(attName.classificationAttribute:CA) and
 not Cl@corresponding_attributes(classificationAttribute=CA)
then corresponding_attributes(classificationAttribute:CA)

R20:
if Cl@corresponding_attributes(classificationAttribute:CA) and
 C@classifier(attName.classificationAttribute=CA,attName.inputAttribute:IA)
then Cl@corresponding_attributes(inputAttribute:set(IA))

Rule R19 creates an instance of corresponding_attributes class for each distinct

classification attribute and stores the name of the attribute in the attribute

classificationAttribute. Rule R20 iterates over all distinct classification attributes, i.e. all

instances of class corresponding_attributes, and then retrieves all the input attributes of all the

classifiers that have the same classification attribute. These input attributes are stored in the multivalued

attribute inputAttribute, using the set aggregate function. This function is similar to list, their

only difference being that no duplicate values are stored inside the set, which is implemented as a Prolog

list.

Finally, rule R21 creates a single instance of the class all_classification_attributes

that holds a list (set) of all the distinct classification attributes. This query is also used by the portal to

dynamically generate the values of the pull-down menu (Figure 5) of the classification data entry page.

R21:
if C@classifier(attName.classificationAttribute:CA)
then all_classification_attributes(classAtt:set(CA))

CLUSTERING DISTRIBUTED CLASSIFIERS
The proposed approach of classifier clustering is based on the notion of classifier distance, its

efficient calculation for all pairs of classifiers, and a clustering algorithm that takes as input the distances

and outputs the clusters.

Knowledge-based Fusion of Distributed Classifiers 28

Classifier distance

We here define classifier distance as a measure of how different two classification models are and

propose its empirical measurement based on the classifiers' predictions on instances with known classes

of an independent data set. By independent, we mean a data set whose instances were not part of the

classifiers' training set. This will ensure unbiased results, as the predictions of classifiers on their training

data tend to be optimistic.

If all classifiers are distribution classifiers then we propose the use of distance measures like

Euclidean Distance, Canberra Distance and Czekanowski Coefficient (Krzanowski, 1993). In this case,

the distance of two classifiers is defined as the average distance of their output vectors with respect to all

instances of the independent data set.

If all classifiers are hard classifiers, then some measures that can be used for calculating classifier

(dis)similarity are Yule's Q statistic, the correlation coefficient, the disagreement measure and the double-

fault measure (Shipp & Kuncheva, 2002).

If mixed types of classifiers are used, then one could adapt the distribution classifiers to the

statistics for hard classifiers by using the class of maximum support, breaking ties arbitrarily. Another

solution is to adapt the hard classifiers to the measures for distribution classifiers by giving a support of 1

to the predicted class and 0 to the rest. However, this will produce artificially increased distances between

two classifiers of different type.

The proposed empirical evaluation of classifier distance exhibits the following beneficial

properties:

• Independence of the classifier type. It is able to measure the distance of two classification models,

whether they are decision trees, rules, neural networks, Bayesian classifiers, or other. This is

useful in applications where different types of learning algorithms might be used at each

distributed node.

• Independence of the classifier opacity. It is able to measure the distance of two classification

models, even if they are black boxes, providing just an output with respect to an input. This is

useful in applications where the models are coming from different organizations that might not

want to share the details of their local models.

Distance calculation

WebDisC uses the disagreement measure for classifier distance because i) it is simple and fast to

compute ii) it can be computed incrementally, iii) it gives a value that directly expresses the distance of

two classifiers that can be used without any transformation for the clustering process, and iv) it can be

used for mixed type of classifiers.

Knowledge-based Fusion of Distributed Classifiers 29

The following equation defines the disagreement measure for two hard classifiers, Cx and Cy and

a data set D with Μ instances:

 ()
,

1,

M
i
x y

i
D x yd C C

M

δ
==
∑

where ,
i
x yδ equals 1 if classifiers Cx and Cy have different output on tuple i, and 0 otherwise.

Figure 12: Classifier distance calculation algorithm

Input:
 D: an array of M instances (union of N data samples)
 C: an array of N classifiers
Output:
 Dist: an array of

()1
2

N N −
 distances

Begin
 For i ← 1 to M
 begin
 // calculate the output of classifiers

 For x ← 1 to N

 O[x] ← C[x](D[i]);

 // update distances

 index ← 1;

 For x ← 1 to N-1

 For y ← x+1 to N
 begin

 If O[x] ≠ O[y] Then

 Dist[index] ← Dist[index]+1

 index ← index+1
 end
 end

 // normalize distances

 For index ← 1 To
()1

2
N N −

 Dist[index] ← Dist[index]/M;
End

Knowledge-based Fusion of Distributed Classifiers 30

The algorithm in Figure 12 shows the actual distance calculation process. Let D be the union of

the Ν data samples that the wsCluster Web service of the Portal gathers through the wsGetData Web

service of the WebDisC Nodes. Let DC be the list of the Ν classifiers that the wsCluster Web service of

the Portal gathers through the wsGetClassifier Web service of the WebDisC Nodes. For every instance of

D we calculate the output of all classifiers and then we update the disagreements for each pair of

classifiers, based on their output. In the end, the disagreements are normalized with respect to the number

of instances that were used for calculating them. The final output of the algorithm is a vector Dist with the

distance for each pair of classifiers based on the disagreement measure.

Clustering

Having calculated the pairwise distances of all distributed classifiers, we proceed by clustering

them using hierarchical agglomerative clustering. We chose this clustering algorithm because it does not

require from the user to specify the number of clusters which is completely unknown and it uses the

pairwise distances of objects, which have already been computed for the distributed classifiers as

explained in the previous section.

The clustering algorithm takes 3 inputs. The first input is the distance vector calculated by the

algorithm in Figure 12. The second input is the method for evaluating inter-cluster distances. There are

various methods that could be used here including single linkage, complete linkage, Ward's method and

weighted average linkage (Kaufmann & Rousseeuw, 1990). WebDisC uses the weighted average linkage

method. The third input is a cutoff value, that determines when the agglomeration of clusters will stop, in

order to produce the final clustering result.

That final clustering result is stored within the X-DEVICE system along with the meta-data of the

classifiers. This knowledge can be used to guide the selection of the distributed classifiers that will

participate in a combination as explained in The WebDisC System section.

CONCLUSIONS AND FUTURE TRENDS
This chapter has presented the WebDisC system, an approach for the fusion of distributed

classifiers based on Web services. Its main advantage over state-of-the-art systems for distributed

classification is its versatility, interoperability and scalability which stems from the use of open and

extensible standards based on XML for Web-based distributed computing. The use of the XML-based

PMML language for classifier exchange further adds to the inter-operability of WebDisC. Clients can be

easily developed in any programming language and operating system that is Web-aware.

From the point of view of classifier fusion methodology, WebDisC currently supports simple

techniques that do not require re-training of a complex classification model. Yet, it provides the necessary

Knowledge-based Fusion of Distributed Classifiers 31

infrastructure, through the wsGetData and wsGetClassifier Web services, for the implementation of any

classifier fusion methodology that requires re-training. Adding methodologies demands the extension of

the Portal's Java servlets, while the WebDisC Nodes do not require any modification at all. This shows

that WebDisC is a highly scalable and extensible system for classifier fusion.

In addition, WebDisC implements a novel approach towards the detection of interesting

similarities and differences among homogeneous classifiers. Clustering the distributed classifiers provides

useful knowledge for guiding the selection of classifiers that will participate in the fusion process, thus

enhancing the quality of the final classification results.

Furthermore, the X-DEVICE deductive object-oriented database system for XML data, provides

powerful mechanisms for querying the registered classifiers. Heterogeneous and homogeneous classifiers

can be easily selected and fused through the use of the standard classifier selection strategies. The users of

the system can also fine-tune the selection of classifiers that will participate in the fusion process

according to their requirements.

In the future, we intend to extend the system with more complex fusion methodologies that

require re-training. We will also investigate the implementation of such methodologies under the

constraint of avoiding moving raw data from the distributed databases (Tsoumakas & Vlahavas, 2002), in

order to avoid increased network communication overhead.

We also intend to enrich the user-interface of WebDisC with a user-profiling system. Its purpose

will be to keep the history of the user-defined classifier selection strategies for each different user of

WebDisC. This way strategies that have been successfully used in the past by a user can be retrieved and

re-used in the future.

Finally, we intend to address syntactic and semantic heterogeneity problems that arise from the

possibly different schemas of the distributed databases by empowering WebDisC with domain-specific

ontologies. This is an important future trend in Web information systems development, that is driven by

the Semantic Web vision.

ACKNOWLEDGEMENTS
Dr. Nick Bassiliades was supported by a postdoctoral scholarship from the Greek Foundation of

State Scholarshipes (F.S.S. – I.K.Y.)

REFERENCES
Bassiliades N. and Vlahavas I. (1997) Processing production rules in DEVICE, an active knowledge base

system. Data and Knowledge Engineering, 24(2):117-155.

Knowledge-based Fusion of Distributed Classifiers 32

Bassiliades N., Vlahavas I. and Elmagarmid A.K. (2000) Ε-DEVICE: An extensible active knowledge
base system with multiple rule type support. IEEE Transactions on Knowledge and Data
Engineering, 12(5):824-844.

Bassiliades N., Vlahavas I. and Sampson D. (2003a) Using logic for querying XML data. In D. Taniar
and W. Rahayu, editors, Web-Powered Databases, pages 1-35. Idea Group Publishing.

Bassiliades N., Vlahavas I., Elmagarmid A.K. and Houstis, E.N. (2003b) InterBase-KB: Integrating a
knowledge base system with a multi-database system for data warehousing. IEEE Transactions on
Knowledge and Data Engineering, 15(3), to appear.

Bellwood T., Clement L., Ehnebuske D., Hately A., Hondo M., Husband Y. L., Januszewski K., Lee S.,
McKee B., Munter J. and Von Riegen G. (2002) UDDI version 3.0. Retrieved May 15, 2003 from
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

Boag S., Chamberlin D., Fernandez M. F., Florescu D., Robie J. and Simeon J. (2002) XQuery 1.0: An
XML query language. Retrieved May 15, 2003 from http://www.w3.org/TR/xquery/.

Botia J. A., Gomez-Skarmeta A. F., Velasco J. R. and Garijo. M. (2001). A proposal for meta-learning
through a MAS (multi-agent system). In T. Wagner and O.F. Rana, editors, Infrastructure for
Agents, LNAI1887, pages 226-233.

Box D., Ehnebuske D., Kakivaya G., Layman A., Mendelsohn N., Nielsen H. F., Thatte S. and Winer D.
(2000). Simple Object Access Protocol (SOAP) version 1.1. Retrieved May 15, 2003 from
http://www.w3.org/TR/SOAP/

Brittenham P. (2001). An overview of Web Services Inspection Language. Retrieved May 15, 2003 from
http://www.ibm.com/developerworks/webservices/library/ws-wsilover.

Champion M., Ferris C., Newcomer E. and Orchard D. Web services architecture. Retrieved May 15,
2003 from http://www.w3.org/TR/ws-arch/.

Chinnici R., Gudgin M., Moreau J. and Weerawarana S. (2002). Web Services Description Language
(WSDL) version 1.2 working draft. Retrieved May 15, 2003 from http://www.w3.org/TR/wsdll2/.

Data Mining Group Web site (2002). Retrieved May 15, 2003 from http://www.dmg.org/.

Diaz O. and Jaime. A. (1997) EXACT: An extensible approach to active object-oriented databases.
VLDB Journal, 6(4):282-295.

Gray P.M.D., Kulkarni K.G. and Paton N.W. Object-Oriented Databases, A Semantic Data Model
Approach. Prentice Hall, 1992.

Y. S. Huang and C. Y. Suen. A method for combining multiple experts for the recognition of
unconstrained handwritten numericals. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17:90-93, 1995.

Kaufmann L. and Rousseeuw P. J. (1990) Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley Interscience.

Kittler J., Hatef M., Duin R. P. W. and Matas J. (1998). On combining classifiers. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(3):226-238.

Krzanowski W. J. (1993). Priniciples of Multivariate Analysis: A user's perspective. Oxford Science
Publications.

Kuncheva L.I., Kounchev R. K. and Zlatev R.Z. (1995). Aggregation of multiple classification decisions
by fuzzy templates. In Proceedings of the Third European Congress on Intelligent Technologies
and Soft Computing EUFIT'95, pages 1470-1474, Aachen, Germany.

Knowledge-based Fusion of Distributed Classifiers 33

Lam L. and Suen C. Y. (1995). Optimal combinations of pattern classifiers. Pattern Recognition Letters,
16:945-954.

Rogova G. (1994). Combining the results of several neural network classifiers. Neural Networks, 7:777-
781.

Saitta L. (2000) Machine learning: A technological roadmap. Technical report, University of Amsterdam.

Shipp C. A. and Kuncheva L. I. (2002) Relationships between combination methods and measures of
diversity in combining classifiers. Information Fusion, 3(2): 135-148.

Stolfo S. J., Prodromidis A. L., Tselepis S., Lee W. and Fan D. W. (1997). JAM: Java agents for meta-
learning over distributed databases. In Proceedings of the AAAI-97 Workshop on AI Methods in
Fraud and Risk Management.

Tahani H. and Keller J.M. (1990) Information fusion in computer vision using the fuzzy integral. IEEE
Transaction on Systems, Man and Cybernetics, 20:733-741.

Tsoumakas G. and Vlahavas I. (2002) Effective stacking of distributed classifiers. In Proceedings of the
15th European Conference on Artificial Intelligence, pages 340-344.

WebDisC Web site (2003). Retrieved May 15, 2003 from http://lpis.csd.auth.gr/systems/webdisc.html.

Werges S. C. and Naylor D. L. (2002). Corba infrastructure for distributed learning and meta-learning.
Knowledge-Based Systems, 15:139-144.

Wolpert D. (1992). Stacked generalization. Neural Networks, 5:241-259.

X-DEVICE Web site (2002). Retrieved May 15, 2003 from http://lpis.csd.auth.gr/systems/x-device.html.

	ABSTRACT
	INTRODUCTION
	WEB SERVICES
	Exchanging Messages
	Describing Web Services
	Publishing and Discovering Web Service Descriptions

	CLASSIFIER FUSION: METHODS AND SYSTEMS
	Classification
	Fusion Methods
	Fusion Systems

	THE WebDisC SYSTEM
	Architecture and Main Functionality
	The WebDisC Nodes
	The Portal
	The Clients

	User Interface
	Classification
	Clustering

	THE X-DEVICE COMPONENT
	Overview of the X-DEVICE System
	XML Object Model
	XML Deductive Query Language

	X-DEVICE Functionality in WebDisC
	Classifier Registration
	Classifier Selection
	Finding Homogeneous Classifiers
	Querying Registered Classifiers

	CLUSTERING DISTRIBUTED CLASSIFIERS
	Classifier distance
	Distance calculation
	Clustering

	CONCLUSIONS AND FUTURE TRENDS
	ACKNOWLEDGEMENTS
	REFERENCES

