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A B S T R A C T

Tree-based ensembles such as random forest (RF) are essential methods for supervised learning. Whereas
traditional RFs assign equal weights to their trees, significant evidence suggests that tree weighting schemes
can enhance predictive performance. Previous works have focused solely on the predictive performance
of individual trees, assigning greater weights to high-performing trees. However, the predictive power
of RF arises not only from high performing trees but also from tree variety, a factor that has not been
considered before. In this paper we propose Markowitz RF, a tree weighting method that considers both tree
performance and variety, using a tree covariance matrix for risk regularization. Our method is formulated as
an adapted optimization process inspired by financial mathematics. It can be applied to binary and multi-class
classification, as well as regression tasks. Our experiments on 15 benchmark datasets indicate that MRF can
significantly outperform previously proposed tree weighting approaches and other learning methods in terms
of Precision-Recall AUC, mean absolute error and 𝐹1_𝑚𝑎𝑐𝑟𝑜.
1. Introduction

The recent advances in machine learning (ML) constitute a major
accomplishment of artificial intelligence (AI) research. The further
development of supervised learning, a well-studied ML paradigm, has
important implications for both academia and industry [1]. Tree-based
ensembles (TBE) are currently among the most popular supervised
learning methods [2].

Whereas the deep learning approach provides state-of-the-art results
for multimedia data (e.g., image, video, sound), according to [3],
TBEs are still among the best performing methods for tabular datasets.
For instance, most Kaggle competitions have been won by a combi-
nation of feature engineering and a TBE solution. Two well known
TBEs are random forest (RF) [4] and gradient boosting (GB) [5]. RF
combines multiple low-bias/high-variance trees in parallel in order
to decrease the total variance, while GB sequentially combines high-
bias/low-variance trees to decrease the total bias. Further on, we will
consider how these trees should be weighted for optimal results. Given
that GB inherently decides the appropriate tree weights, we will only
consider RF for the remainder of this work.

The traditional RF algorithm gives equal weights to every tree, a
strategy that we will denote as equally weighted trees (EWT). Previous
works claim that EWT is an arbitrary strategy that does not consider
factors such as tree performance (e.g., [6,7]). The same works have
proposed different weight allocation strategies that aim to improve

∗ Corresponding author.
E-mail addresses: elefthenk@csd.auth.gr (E. Kouloumpris), vlahavas@csd.auth.gr (I. Vlahavas).

upon EWT. Whereas the proposed weight allocation strategies take into
account tree performance, to the best of our knowledge, information re-
lating to the covariance between trees has not been considered before.
Therefore, weighting methods that rely only on tree performance run
the risk of giving significant weights to a small set of high performing,
but also significantly correlated trees that make similar mistakes. This
is an important issue because the predictive power of RF relies not
only on the predictive performance of independent trees, but also on
having a diverse set of uncorrelated trees (tree diversity).

In this paper, taking into account the influence of weights on tree
diversity, we propose a novel method for estimating the optimal
weights of RF trees. Our method is inspired by financial mathemat-
ics, in the same vein that neural networks and genetic algorithms
are inspired by neuroscience and biology. We also note that while
many ML methods are commonly used to solve problems in finance
(i.e., ML-based finance), in the opposite direction, we propose the
first finance-inspired ML method. More generally, our intention is
to demonstrate that financial mathematics can lead to innovative AI
research.

Although financial methods provide an initial inspiration, their
direct application to supervised learning is not fully adequate. On the
contrary, we propose several adaptations that are necessary to develop
https://doi.org/10.1016/j.neucom.2024.129191
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methods that are suitable for the supervised learning setting. Fur-
hermore, our ML-oriented treatment allows us to transform financial

formulas into familiar ML concepts.
Specifically, we adapt a method from modern portfolio theory called

ean–variance analysis (MVA), first introduced by H. Markowitz in
952 [8], in order to optimize RF tree weights in both regression and
lassification settings. Hence, we name our method Markowitz random

forest (MRF). MVA was originally designed for the construction of
ortfolios of financial assets (e.g., stocks) that have high expected
eturns, but that should also include a diverse set of assets. There-
ore, the main contribution of the paper is that it proposes the first
ree weighting method that takes into account both tree performance

and tree variety, through a constrained joint optimization process. In
alignment with standard ML terminology, the process is formulated as
a tree performance optimization task, augmented with a regularization
penalty that discourages the allocation of weight to trees that make too
similar mistakes.

Our experimental work on five binary classification, five regression
nd five multi-class classification datasets show that MRF can provide
mproved predictive performance compared to the traditional RF and
reviously proposed tree weighting methods. Through statistical tests,
everal improvements are proven statistically significant across several
atasets and learning tasks. These results provide substantial evidence
hat joint optimization of tree performance and variety can boost
he accuracy of RF models. The proposed method is also favorably
ompared against several well-known tree-based ensembles, including
GBoost, Extremely Randomized Trees (ERT), Oblique Forest (OblF)
nd Rotation Forest (RotF) [9–15]. This comparison demonstrates that

standard RF, with enhanced tree weighting alone, can rival advanced
multivariate split methods like OblF and RotF.

The remainder of the paper has the following structure. Section 2
presents and discusses previously proposed tree weighting methods for
RF. Section 3 provides the necessary background for RF and MVA.
Section 4 presents the proposed method and the experimental setup.
Section 5 reveals the experimental results and provides additional
iscussion. Section 6 presents a computational complexity analysis of
RF. Section 7 summarizes the advantages and disadvantage of the

proposed method. Finally, Section 8 concludes the paper.

2. Related work

Supervised learning is a well researched ML paradigm and is com-
monly used in modern AI applications. One possible taxonomy of its

ethods includes generalized linear models [16], tree-based meth-
ods [2], probabilistic methods [17], kernel methods [18], instance-
ased methods [19] and deep learning [20]. Currently, deep learning

and tree-based methods are among the leading fields of supervised
learning research.

Deep learning offers superior capabilities for automated representa-
tion learning on large multimedia and corpus datasets. This is achieved
through application-oriented artificial neural network (ANN) archi-
tectures, such as convolutional neural networks for computer vision
tasks [20] and the transformer architecture for natural language pro-
essing [21].

In contrast, tree-based methods are frequently the best performing
in problems with smaller tabular datasets that have heterogeneous
eatures [3]. These data have a mixed representation of categorical and
umerical features, and may also include missing or incorrect values.
or the above reasons, the representation learning capabilities of deep

learning are limited in this class of problems, while the datasets are
ften too small for training ANNs.

Such problems often arise in healthcare, business and engineering
omains, in which data collection can be a time-consuming, costly
nd error-prone process. Tree-based methods are also relevant when
odel interpetability is essential. TBEs include randomized trees such

s RF and extremely randomized trees (ERT) [9], and gradient boosting
 m

2 
method such as XGBoost [10]. In this paper, we consider the potential
of tree-weighted RF models, so the following paragraphs will present
the corresponding literature.

Li et al. [22] proposed tree weighted random forest (TWRF) in
order to weight trees according to their out-of-bag (OOB) performance
in terms of classification accuracy. TWRF reduced the effect of noisy
trees and was able to outperform RF and other traditional supervised
learning methods. Winham et al. [23] introduced another tree weighted

F in which weights reflected tree accuracy. Besides improving the
redictive performance of the ensemble, the latter work also empha-
ized the computation of feature importance. El Habib Daho et al.
24] introduced a variant of RF that, among other modifications, also
sed tree weighting. Similarly to the previously mentioned works, tree
eights reflected OOB performance. The final ensemble was evaluated

on several medical datasets.
Pham and Olafsson [25] considered a modified voting scheme that

sed Cesáro sequence averaging instead of the traditional average
oting. Essentially, this voting scheme relies on a sorted sequence of
he trees, with trees at the beginning of the sequence receiving larger
eights. They used two criteria to sort the trees: (a) OOB error rates and

b) accuracy on another training set. They provided both theoretical
nd empirical proof that Cesáro RF can outperform RF under certain
onditions. Devi et al. [6] proposed a tree weighting method in the
ontext of imbalanced financial data. Specifically, they assigned the

tree weights according to tree performance on the minority class. The
proposed system outperforms traditional RF in an unbalanced fraud
detection task.

Whereas the aforementioned works propose static weights that
are estimated during training time, Jain et al. [26] proposed the
xponentially weighted random forest (EWRF) scheme for dynamic
eight allocation at prediction time. For this purpose, they defined an

observation-tree similarity function based on the exponential function.
When predicting a new example, the trees that are most similar to
this test example receive the largest weights. The merit of dynamic
weight allocation at prediction time was proven by multiple experi-
ments. Gajowniczek et al. [27] experimented with weighting schemes
for both observations and trees, with the latter relying on a combination
of in-bag (INB) and OOB errors. Their solution was able to outperform
raditional ensemble algorithms and decrease false alarms on data from
hysionet/Computing in Cardiology Challenge, 2015.

Shahhosseini and Hu [7] proposed tree weighting methods based
on constrained optimization of accuracy and area under curve (AUC),
ncluding also several stacking-based solutions. The stacked solution
rained a second RF based on the first RF’s OOB predictions or probabil-
ties. More recently, Zhang et al. [28] worked with probability intervals

to introduce the cautious weighted random forest (CWRF). Based on the
heory of belief functions, they designed a convex optimization problem

that takes into account both determinacy (i.e., the preciseness of a
probability interval) and accuracy. Experiments on multiple benchmark
datasets showed the appropriateness of the method for problems in
which cautiousness is important or when data are of low quantity or
uality.

In summary, our study of the literature reveals significant evi-
ence that weighted tree RF methods can outperform the traditional
lgorithm. However, the majority of the reviewed methods rely only
n independent tree performance and have a strong focus on binary
lassification. The most recent works tend to formulate tree weight

allocation as a constrained optimization problem [7,28], which we
also do in this work. However, our formulation is different as it has a
ouble objective; instead of focusing only on independent tree perfor-
ance, it also encourages tree diversity. Furthermore, we consider the
erformance of our method across different learning tasks, including
ulti-class classification.
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3. Background

3.1. Random forest

RF is an integration of two ideas, namely the random subspaces
method (RSM) and bootstrap aggregating (bagging). Ho [29] proposed
RSM, a method that trains independent estimators on different feature
subspaces (i.e., columns of a design matrix) that are sampled with
replacement. Breiman [30] introduced bagging, which trains estimators
on multiple datasets by sampling examples (i.e., rows of a design
matrix) with replacement. He also coined the term RF for a method that
combines RSM/bagging and is specifically applied to decision trees [4].

RF starts by creating a number of samples via bagging, and then
fits a tree on each sample. The algorithm used to fit each tree differs
from the traditional decision tree algorithm. Specifically, for each
internal node, only a random subspace of features is considered for the
best split. This randomization contributes to the decrease of the total
variance of the ensemble, which results in an increased performance.

3.2. Mean–variance analysis

In portfolio management, an investor has to decide how to allocate
 certain capital 𝐶 to a number 𝑘 of financial assets (e.g., stocks) with
eturns 𝑠. Assuming that for each asset there is an expected future
eturn 𝑟𝑖 = E

[

𝑠𝑖
]

, 𝑖 ∈ [1, 𝑘], the allocation of capital is denoted by the
portfolio weights 𝑤𝑖, 𝑖 ∈ [1, 𝑘] such that 𝑤𝑖 > 0 and ∑𝑘

𝑖=1 𝑤𝑖 = 1. The
ectors of expected returns and weights for all assets are denoted as

𝑟 ∈ R𝑘 and 𝑤 ∈ R𝑘.
MVA determines the optimal allocation of investment funds across

a set of financial assets. This method requires two inputs: a vector of
expected returns 𝑟, as previously described, and a risk matrix denoted
𝐾. The standard risk matrix is estimated as the symmetric covariance
matrix of returns, 𝐾 = 𝑐 𝑜𝑣(𝑟) ∈ R𝑘𝑥𝑘. The entries 𝐾[𝑖, 𝑗] = 𝐾[𝑗 , 𝑖] = 𝜎𝑖𝑗
represent the risk associated with the covariance between stock returns
𝑠𝑖 and 𝑠𝑗 , as given in Eq. (1).

𝜎𝑖𝑗 = E
[

(𝑠𝑖 − E[𝑠𝑖])(𝑠𝑗 − E[𝑠𝑗 ])
]

(1)

A highly positive 𝐾[𝑗 , 𝑖] implies that if one stock underperforms,
he other is likely to underperform as well. When portfolio weights are

overly concentrated in stocks with highly positive covariance, this indi-
cates an increased risk of many stocks underperforming simultaneously.

According to modern portfolio theory, an investor typically aims
or a portfolio with high expected returns and low risk. Given a set of

expected returns 𝑟, the risk matrix 𝐾 and the weights 𝑤, it is possible to
estimate the expected performance and total risk of the entire portfolio.
The expected performance 𝑀 and the risk 𝑉 of a portfolio with weights
𝑤 are provided in Eqs. (2)–(3).

𝑀 =
𝑘
∑

𝑖=1
𝑤𝑖𝑟𝑖 = 𝑤𝑇 𝑟 (2)

𝑉 =
𝑘
∑

𝑖=1

𝑘
∑

𝑗=1
𝑤𝑖𝑤𝑗𝜎𝑖𝑗 = 𝑤𝑇𝐾 𝑤 (3)

The goal of MVA is to find portfolio weights 𝑤 that maximize the
expected portfolio performance (𝑀) while keeping the total risk (𝑉 )
low. These optimal portfolio weights can be estimated by optimizing
q. (4) for different values of the parameter 𝜆, which controls the
eturn/risk trade-off.
max
𝑤

𝑤𝑇 𝑟 − 𝜆𝑤𝑇𝐾 𝑤

s.t.
𝑘
∑

𝑖=0
𝑤𝑖 = 1

0 ≤ 𝑤𝑖 ≤ 1

(4)
3 
The above is a convex optimization problem that can be solved
with Quadratic Programming (QP) [31]. For a detailed explanation of
optimization methods in finance, consider the work of Cornuéjols and
Tutuncu [32].

In the upcoming Sections 4.3–4.5, a key step in adapting MVA for
the supervised learning setting is to formulate 𝑟 and 𝐾 in a way that
ccurately reflects expected tree performance and the risk associated
ith tree similarity. These formulations vary depending on the specific

ask—whether binary classification, multiclass classification, or regres-
sion. MVA then uses these adapted inputs to optimize tree weights
according to a two-fold objective: first, to assign greater weights to
high-performing trees, and second, to avoid concentrating weights on
trees that make similar mistakes, as this would diminish the ensemble’s
effectiveness.

4. Methods and data

4.1. Datasets and descriptive statistics

We performed our experiments on 15 datasets from the University
of California Irvine (UCI) ML Repository [47] and Kaggle Datasets,
provided in Table 1. The datasets are related to three different learning
asks. Among these, the five datasets that involve a binary classifica-

tion task are Cylinder Bands Data Set (bands) [33], Online Shoppers
Intentions (shoppers) [34], Default of Credit Card Clients (credit) [35],
Bank Marketing (bank-marketing) [36] and AIDS Clinical Trials Group
Study 175 (aids) [37]. The five datasets with a regression task are
Online News Popularity (news) [38], Superconductivity [39], Insurance
Company Benchmark (insurance) [40], Wine Quality (wine) [41] and
Cars Price (cars) from Kaggle Datasets. The remaining five datasets
related to multi-class classification problem are: Steel Plates Faults
(plates) [42], Statlog Image Segmentation (statlog) [43], Student’s
Performance in Higher Education (student) [44], Room Occupancy
stimation (room) [45] and Pen-Based Recognition of Handwritten

Digits (pen) [46].
Our pre-processing pipeline performs a removal of duplicate

records, one-hot encoding of categorical variables and the filling of
missing values with the mean value of each column. Statistics for the
processed datasets appear in the Table 2.

4.2. Technologies and programming packages

All experiments have been conducted with the Python programming
anguage, using the RF and ERT implementations of Scikit-learn and
he XGBoost package. For MVA we used the implementation of the
ython package PyPortfolioOpt. Furthermore, PyPortfolioOpt relies on
he cvxopt and cvxpy packages for the solution of convex optimization
roblems.

4.3. Markowitz random forest for binary classification

Our main goal is to apply a constrained joint optimization frame-
work, originally intended to solve portfolio management problems, as
a solution for the RF tree weighting problem. Specifically, we consider
the MVA framework, which has been explained in Section 3.2. As
mentioned in Section 1, we name this tree-weighted RF method as
MRF. In order to apply this solution of financial mathematics to our
supervised learning problem, which is a case of reducing one problem
to another, we consider the mapping of concepts presented in Table 3.

We elaborate on why MVA is an attractive framework for tree
weighting. Traditionally, investors are interested in portfolios with high
return potentials. However, given two portfolios with equal return po-
tentials, the investor will choose the most diversified portfolio (i.e., the
one that has less correlated assets). The other, less diversified portfolio
comes with additional and unnecessary risk (volatility) for the same

expected return. MVA is designed to optimize towards portfolios with
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Table 1
Datasets used for three learning tasks.
Problem Data id Dataset/Link Related work

Binary clf.

bands Bands Data Set Evans and Fisher [33]
shoppers Online Shoppers Intentions Sakar et al. [34]
defaults Default of Credit Card Clients Yeh and Lien [35]
bank-marketing Bank Marketing Moro et al. [36]
aids AIDS Clinical Trials Group Study 175 Hammer et al. [37]

Regression

news Online News Popularity [38]
superconductivity Superconductivity Hamidieh [39]
insurance Insurance Company Benchmark Putten et al. [40]
cars Cars Price Dataset (Kaggle Dataset)
wine Wine Quality Cortez et al. [41]

Multi-class clf.

plates Steel Plates Faults Buscema et al. [42]
statlog Statlog Image Segmentation UCI Machine Learning Repository [43]
students Student’s performance in higher education [44]
room Room Occupancy Estimation Singh et al. [45]
pen Pen-Based Recognition of Handwritten Digits Reisizadeh et al. [46]
i

a

t
𝐹
i
t

(

Table 2
Dataset statistics.

Dataset Rows Columns

bands 541 96
aids 2139 23
shoppers 12 330 28
credit 30 000 24
bank-marketing 41 176 63

insurance 5822 85
wine 6497 12
cars 19 237 783
superconduct 21 263 81
news 39 644 58

plates 1941 27
statlog 2310 19
students 4424 36
room 10 129 16
pen 10 992 16

Table 3
Mapping of concepts.

Portfolio management Tree weighting

Financial assets Decision trees
Assets weights Tree weights
Portfolio Ensemble (forest)
Portfolio total return Ensemble accuracy
Portfolio total risk Ensemble variance
Diversification Uncorrelated mistakes

high returns, that are also well-diversified. Similarly, RF works best
hen it consists of accurate trees, which are also less correlated to
ach other. Consequently, our application of MVA to tree weighting

can simultaneously consider both (a) tree performance and (b) promote
he diversification of trees by assigning more weight to uncorrelated
rees. Instead of a direct application of this financial method to tree
eighting, it is better to make several adaptations that make it more

uitable in the context of ML.
One first adaptation is that we consider only the correlation of trees

on prediction mistakes, that are either False Positives (FPs) or False
Negatives (FNs). The rationale is that the method should discourage
he allocation of weights to trees that make similar mistakes. The
econd adaptation is that covariance minimization is formulated as a
egularization penalty. This formulation is more common in the ML
iterature (e.g., Ridge or Lasso penalized regression).

As mentioned in Section 3.2, MVA requires an expected perfor-
ance vector 𝑟 and risk matrix 𝐾. We will explain how these are
esigned for the tree weighting problem. Initially, an RF model with
trees is fitted for a binary classification task on a training dataset 𝑋

with 𝑚 examples. Then, each tree 𝑅𝐹𝑗 predicts probabilities for each
example 𝑋𝑖. The positive class probability prediction of the 𝑗th tree on
the 𝑖th example is denoted as 𝑃 .
𝑖𝑗

4 
As a performance vector 𝑟 for MVA, we consider the Precision-Recall
Area Under Curve (PRAUC) of each tree. This has the benefit of being
ndependent of the decision threshold and suitable for imbalanced data

in binary classification. The assumption is that a weighted RF can
achieve higher PRAUC by giving more weight to trees that indepen-
dently achieve high PRAUC scores. The performance vector used in this
learning task is shown in Eq. (5), in which 𝑦 is the vector of actual
labels.

𝑟 = [𝑃 𝑅𝐴𝑈 𝐶(𝑃∶1, 𝑦),… , 𝑃 𝑅𝐴𝑈 𝐶(𝑃∶𝑛, 𝑦)] ∈ [0, 1] (5)

The risk estimation process involves a few more steps. First, for each
combination of example and tree we use the actual labels 𝑦𝑖 ∈ {0, 1} to
compute the probability given to the correct class (denoted as score),
s in Eq. (6).

𝑠𝑐 𝑜𝑟𝑒(𝑦𝑖, 𝑃𝑖𝑗 ) = 𝑃 𝑦𝑖
𝑖𝑗 (1 − 𝑃𝑖𝑗 )(1−𝑦𝑖) ∈ [0, 1] (6)

The scores for each example/tree combination are collected in a
performance matrix 𝑄, as depicted in Eq. (7):

𝑄 =
⎡

⎢

⎢

⎣

𝑠𝑐 𝑜𝑟𝑒(1, 1) … 𝑠𝑐 𝑜𝑟𝑒(1, 𝑘)
⋮ 𝑠𝑐 𝑜𝑟𝑒(𝑖, 𝑗) ⋮

𝑠𝑐 𝑜𝑟𝑒(𝑚, 1) … 𝑠𝑐 𝑜𝑟𝑒(𝑚, 𝑘)

⎤

⎥

⎥

⎦

∈ R𝑚×𝑘 (7)

To compute the risk estimation for a pair of trees (𝑎, 𝑏), we find
he set of all examples which are FP for at least one tree, denoted as
 𝑃 (𝑎, 𝑏) (Eq. (8)). The risk related to FPs is denoted as 𝑟𝑖𝑠𝑘𝐹 𝑃 (𝑎, 𝑏) and

s computed as the Pearson correlation coefficient (𝜌) of scores across
he FP set (Eq. (9)). A similar process is performed to estimate the FN

set 𝐹 𝑁(𝑎, 𝑏) and the corresponding risk 𝑟𝑖𝑠𝑘𝐹 𝑁 (𝑎, 𝑏) (Eqs. (10)–(11)).
The final risk 𝑟𝑖𝑠𝑘(𝑎, 𝑏) of the pair is estimated by averaging 𝑟𝑖𝑠𝑘𝐹 𝑃 (𝑎, 𝑏)
and 𝑟𝑖𝑠𝑘𝐹 𝑁 (𝑎, 𝑏), which gives equal weight to the two types of risk
Eq. (12)).

𝐹 𝑃 (𝑎, 𝑏) = {𝑖|𝑦𝑖 = 0 ∧ 𝑚𝑖𝑛(𝑄(𝑖, 𝑎), 𝑄(𝑖, 𝑏)) < 0.5} (8)

𝑟𝑖𝑠𝑘𝐹 𝑃 (𝑎, 𝑏) = 𝜌(𝑄[𝑖, 𝑎], 𝑄[𝑖, 𝑏])|𝑖 ∈ 𝐹 𝑃 (𝑎, 𝑏) (9)

𝐹 𝑁(𝑎, 𝑏) = {𝑖|𝑦𝑖 = 1 ∧ 𝑚𝑖𝑛(𝑄(𝑖, 𝑎), 𝑄(𝑖, 𝑏)) < 0.5} (10)

𝑟𝑖𝑠𝑘𝐹 𝑁 (𝑎, 𝑏) = 𝜌(𝑄[𝑖, 𝑎], 𝑄[𝑖, 𝑏])|𝑖 ∈ 𝐹 𝑁(𝑎, 𝑏) (11)

𝑟𝑖𝑠𝑘(𝑎, 𝑏) = 𝑟𝑖𝑠𝑘𝐹 𝑃 (𝑎, 𝑏) + 𝑟𝑖𝑠𝑘𝐹 𝑁 (𝑎, 𝑏)
2

(12)

Having computed all the pairwise risk estimations, a symmetric
risk matrix 𝐾 is simply formed by arranging all the pairwise risk
estimations, as in Eq. (13).

𝐾 =
⎡

⎢

⎢

𝑟𝑖𝑠𝑘(1, 1) … 𝑟𝑖𝑠𝑘(1, 𝑘)
⋮ 𝑟𝑖𝑠𝑘(𝑎, 𝑏) ⋮

⎤

⎥

⎥

∈ R𝑘×𝑘 (13)

⎣𝑟𝑖𝑠𝑘(𝑘, 1) … 𝑟𝑖𝑠𝑘(𝑘, 𝑘)⎦

https://archive.ics.uci.edu/ml/datasets/Cylinder+Bands
https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175
https://archive.ics.uci.edu/ml/datasets/online+news+popularity
https://archive.ics.uci.edu/ml/datasets/superconductivty+data
https://www.researchgate.net/publication/228921769_CoIL_Challenge_2000_Tasks_and_Results_Predicting_and_Explaining_Caravan_Policy_Ownership
https://www.kaggle.com/datasets/jarupula/machine-hack
https://www.archive.ics.uci.edu/dataset/186/wine+quality
https://archive.ics.uci.edu/dataset/198/steel+plates+faults
https://archive.ics.uci.edu/dataset/147/statlog+image+segmentation
https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success
https://archive.ics.uci.edu/dataset/864/room+occupancy+estimation
https://archive.ics.uci.edu/dataset/81/pen+based+recognition+of+handwritten+digits
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Assuming a vector of tree weights 𝑤, the total expected performance
𝑀 = 𝑤𝑇 𝑟 indicates the participation of high performing trees. Similarly,
he total risk 𝑉 = 𝑤𝑇𝐾 𝑤 captures the participation of trees that
end to make similar FPs or FNs. We design a utility function that
ncourages high values of 𝑀 and penalizes large values of 𝑉 . Then,

quadratic programming is applied on this utility function to obtain
he tree weights 𝑤 that solve the optimization problem in Eq. (14).

This formalization is common in ML literature and can be considered
as a regularized optimization task. Specifically, the main objective
of this process is to allocate the largest portion of weight to high
performing trees (by maximizing 𝑤𝑇 𝑟), with a regularization penalty
that discourages the existence of strong correlations between trees (by
minimizing 𝜆𝑤𝑇𝐾 𝑤). The parameter 𝜆 controls the relative strength of
the regularizer.
max
𝑤

𝑤𝑇 𝑟 − 𝜆𝑤𝑇𝐾 𝑤

s.t.
𝑘
∑

𝑖=0
𝑤𝑖 = 1

0 ≤ 𝑤𝑖 ≤ 1

(14)

A pseudocode illustration of the proposed method for binary classi-
ication is presented in Algorithm 1 of Appendix C.

4.4. Markowitz random forest for regression

The general outline for the MRF regression method is similar to
he one presented for classification. We define 𝑌𝑖𝑗 as the numerical
rediction of the 𝑗th tree on the 𝑖th example. The first difference
s the estimation of performance vector 𝑟. For this, negExpMAPE is
efined the negative exponential of the mean absolute percentage error
MAPE) (Eq. (15)). This performance definition offers three benefits:
t is scale independent, ranges from 0 to 1 and higher values are

more preferable. The performance vector 𝑟 contains the negExpMAPE
scores for all trees (Eq. (16)). If 𝑌𝑖𝑗 = 𝑦𝑖, the corresponding absolute
percentage error is estimated as 0.

𝑛𝑒𝑔 𝐸 𝑥𝑝𝑀 𝐴𝑃 𝐸(𝑦, 𝑌∶𝑗 ) = 𝑒𝑥𝑝(−𝑀 𝐴𝑃 𝐸(𝑦, 𝑌∶𝑗 )) ∈ [0, 1] (15)

𝑀 = [𝑛𝑒𝑔 𝐸 𝑥𝑝𝑀 𝐴𝑃 𝐸(𝑦, 𝑌∶1),… , 𝑛𝑒𝑔 𝐸 𝑥𝑝𝑀 𝐴𝑃 𝐸(𝑦, 𝑌∶𝑛)] ∈ [0, 1]𝑘 (16)

The risk matrix for regression is computed as follows. For every
ntry of tree/sample, we compute the regression residual (RS) pre-
ented in Eq. (17). The signed residuals are used instead of the absolute

residuals, in order to capture if two trees tend to simultaneously
overestimate or underestimate the actual targets. The 𝑅𝑆 values are
sed to populate a performance matrix Q, as in Eq. (18). Then, the risk

matrix 𝐾 is computed as the covariance matrix of 𝑄 (Eq. (19)).

𝑅𝑆(𝑦𝑖, 𝑌𝑖𝑗 ) = (𝑦𝑖 − 𝑌𝑖𝑗 ) ∈ R (17)

𝑄 =
⎡

⎢

⎢

⎣

𝑅𝑆(1, 1) … 𝑅𝑆(1, 𝑘)
⋮ 𝑅𝑆(𝑖, 𝑗) ⋮

𝑅𝑆(𝑚, 1) … 𝑅𝑆(𝑚, 𝑘)

⎤

⎥

⎥

⎦

∈ R𝑚×𝑘 (18)

𝐾 = 𝑐 𝑜𝑣(𝑄) ∈ R𝑘×𝑘 (19)

Having computed the necessary inputs 𝑟 and 𝐾 for MVA, the remain-
ing steps are identical to those of the classification scenario presented
in the previous section. In the regression scenario, the optimization
method allocates high weights to trees with low MAPE errors (by
maximizing 𝑤𝑇 𝑟), whereas the regularization penalty discourages trees
that simultaneously overestimate or underestimate the actual targets
(by minimizing 𝜆𝑤𝑇𝐾 𝑤). A pseudocode illustration of the proposed

2 of Appendix C.
method for regression is presented in Algorithm

5 
4.5. Markowitz random forest for multi-class classification

Section 4.3 developed the MRF formalization for binary classi-
fication problems. It is possible to extend this approach to handle

ulti-class classifications problems. For this purpose, we redefine the
xpected performance vector and the risk matrix. As an expected per-

formance vector 𝑟, we consider the 𝐹1_𝑚𝑎𝑐 𝑟𝑜 score of each tree, which
indicates its predictive ability equally among the different classes. This
s shown in Eq. (20). We define 𝑃 (𝑖, 𝑗 , 𝑐) as the predicted probability

for class 𝑐 on the 𝑖𝑡ℎ example by the 𝑗𝑡ℎ tree. Note that 𝑃 (∶, 𝑗 , ∶)
orresponds to all predictions made by the 𝑗th tree.

𝑟 = [𝐹1_𝑚𝑎𝑐 𝑟𝑜(𝑃 (∶, 1, ∶), 𝑦),… , 𝐹1_𝑚𝑎𝑐 𝑟𝑜(𝑃 (∶, 𝑘, ∶), 𝑦)] ∈ [0, 1]𝑘 (20)

Assume also that 𝐷(𝑖, 𝑗) is the class that receives the highest proba-
ility on the 𝑖𝑡ℎ example by the 𝑗𝑡ℎ tree, as in Eq. (21).

𝐷(𝑖, 𝑗) = 𝑎𝑟𝑔𝑐𝑚𝑎𝑥{𝑃 (𝑖, 𝑗 , 𝑐)} ∈ [1, 2,… , 𝐶] (21)

The binary setting considered two types of risk based on FP and
FN examples, which are the mistakes related to two classes (positive
nd negative) for a pair of trees. To generalize this for more than two
lasses, we consider that each class carries a different type of risk. For

each class 𝑐 ∈ {1, 2,… , 𝐶} and every pair of trees (𝑎, 𝑏), we detect the
set of mistakes on this class from either of the trees in the pair, denoted
s 𝐹 𝑆𝑐 (𝑎, 𝑏) (Eq. (22)). Following this, the risk related to each class 𝑐

is estimated by computing the correlation coefficient (𝜌) on the class
mistakes across all predicted probabilities (Eq. (23)).

𝐹 𝑆𝑐 (𝑎, 𝑏) = {𝑖|(𝐷(𝑖, 𝑎) ≠ 𝑐 ∨𝐷(𝑖, 𝑏) ≠ 𝑐) ∧ 𝑦𝑖 = 𝑐} (22)

𝑟𝑖𝑠𝑘𝑐 (𝑎, 𝑏) = 𝜌𝑖∈𝐹 𝑆𝑐 (𝑎,𝑏){𝑃 (𝑖, 𝑎, ∶), 𝑃 (𝑖, 𝑏, ∶)} (23)

The risks related to the classes are averaged in a single scalar
𝑖𝑠𝑘(𝑎, 𝑏), a process that gives equal weight to the different types of
isk (Eq. (24). Then, these can be arranged in a matrix to form the risk
atrix 𝐾, as in Eq. (25).

𝑟𝑖𝑠𝑘(𝑎, 𝑏) = E𝑐 [𝑟𝑖𝑠𝑘𝑐 (𝑎, 𝑏)] (24)

𝐾 =
⎡

⎢

⎢

⎣

𝑟𝑖𝑠𝑘(1, 1) … 𝑟𝑖𝑠𝑘(1, 𝑘)
⋮ 𝑟𝑖𝑠𝑘(𝑎, 𝑏) ⋮

𝑟𝑖𝑠𝑘(𝑘, 1) … 𝑟𝑖𝑠𝑘(𝑘, 𝑘)

⎤

⎥

⎥

⎦

∈ R𝑘×𝑘 (25)

The remaining optimization steps are equivalent to those describe
n the binary classification case (Section 4.3). In the multi-class setting,

MVA attempts to allocate high weights to trees that achieve high
performance, considering all classes equally (by maximizing 𝑤𝑇 𝑟). This
is regularized with a penalty that aims to discourage trees that make
highly correlated mistakes (by minimizing 𝜆𝑤𝑇𝐾 𝑤).

This penalty influences the ensemble in two ways. First, it discour-
ages trees from misclassifying the same examples. Second, even when
trees do misclassify the same examples, it encourages them to predict
different incorrect classes, therby reducing the concentration of pre-
dicted probability on a single mistaken class. A pseudocode illustration
of the proposed method for multi-class classification is presented in
Algorithm 1 of Appendix C.

4.6. Supervised methods and tree weighting benchmarks

Whereas the baseline method in this work is the traditional RF, it is
also important to evaluate how MRF fairs against previously proposed
tree weighting schemes. Therefore, we also compare our new method
with the score-weighted forest (SWRF) and the OOB-weighted random
forest (OWRF), based on the works of Li et al. [22] and Gajowniczek
t al. [27], respectively. Generally, assuming a performance score has

been given to each tree, the computed weights for the two methods
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are estimated as in Eqs. (26)–(27). In these Equations, 𝑤𝑗 denotes
he weight for the 𝑗th tree, 𝑠𝑐 𝑜𝑟𝑒

⟨𝑡𝑟𝑎𝑖𝑛⟩(𝑗) refers to the performance of
the tree on the entire training set (including INB and OOB portions),
whereas 𝑠𝑐 𝑜𝑟𝑒

⟨𝑂 𝑂 𝐵⟩(𝑗) refers only to the OOB score of the particular
tree.

𝑤𝑗 =
𝑠𝑐 𝑜𝑟𝑒

⟨𝑡𝑟𝑎𝑖𝑛⟩(𝑗)
∑𝑘

𝑧=1 𝑠𝑐 𝑜𝑟𝑒⟨𝑡𝑟𝑎𝑖𝑛⟩(𝑧)
(26)

𝑤𝑗 =
𝑠𝑐 𝑜𝑟𝑒

⟨𝑂 𝑂 𝐵⟩(𝑗)
∑𝑘

𝑧=1 𝑠𝑐 𝑜𝑟𝑒⟨𝑂 𝑂 𝐵⟩(𝑧)
(27)

Subsequently, in order to specify the above methods for the cases
f classification and regression, we only need to determine the scoring

functions. Based on the aforementioned works, for classification tasks
we use accuracy score and for regression we consider the reciprocal of
he mean absolute error (MAE) as a score 1∕(𝑀 𝐴𝐸 + 𝜖), where 𝜖 is a
mall floating number to avoid division by zero.

We also introduce another benchmark method named Independent
ariance Random Forest (IVRF). IVRF is a simplification of MRF that
onsiders only the independent variance of each tree and ignores the

pairwise tree covariances. Assuming that the expected performance of
a tree is 𝑟𝑗 and the corresponding variance is 𝜎2𝑗 , IVRF assigns this tree
a score 𝑠𝑐 𝑜𝑟𝑒𝑗 = 𝑟𝑗∕𝜎2𝑗 . The final weights are derived by scaling the tree
scores so that they sum to 1. The comparisons between MRF and IVRF
n Section 5 provide evidence that the consideration of pairwise tree

covariance can lead to superior results.
Furthermore, we compare the performance of MRF against five well-

eceived supervised learning models : XGBoost, ERT, OblF and RotF.
XGBoost is an advanced gradient boosting model that achieves state-
of-the-art results in several problems. ERT is an extremely randomized
version of RF that reduces the tendency of trees to overfit the data.
Therefore, these comparisons allow us to investigate the potential of
MRF to achieve competitive results against methods favored by the ML
community.

The remaining supervised methods consist of recently proposed
ariants of Random Forest (RF) that rely on multivariate splitting.
blF employs Support Vector Machines (SVM) at each node to create
ultivariate splits. RotF applies Principal Component Analysis (PCA)

o randomly partitioned feature subsets, which enhances data diversity
nd makes it an implicitly multivariate method.

4.7. Hyper-parameter tuning

Our hyper-parameter tuning process is similar for the regression and
lassification tasks. We use the Tree-structured Parzen Estimator (TPE)
ptimizer from the hyperopt package to tune both RF, XGBoost and
RT using three-fold CV (3-CV) on the training portion of the data. The
earch space distribution that was considered for each hyper-parameter
s presented in Table B.4 of Appendix B.

The optimization objectives for binary classification, regression and
ulti-class classification are PRAUC, MSE and 𝐹1_𝑚𝑎𝑐 𝑟𝑜, respectively.
 sequence of 20 optimization steps is considered in each learning task.
or classification tasks, class weights that are inversely proportional
o class frequencies are considered to handle class imbalance. The
andomized ensembles RF and ERT that are trained during 3-CV are
ombined through model aggregation, whereas the boosting ensemble
GBoost is retrained on the full training set.

The four weighting methods are applied on the same standard RF
odel that is tuned once for each task. This makes the results of

ree weighting more comparable, as the forest is fixed and only the
ree weights differ in each variant. MRF considers only the out-of-
ample portion of the training set of each tree to estimate expected
erformance, while the entire training set is used for the estimation
f the risk matrix. Furthermore, MRF has an additional regularization
oefficient 𝜆, that is fixed to a reasonable value of 0.5 for every dataset

and learning task. Additionally, as suggested in the PyPortfolioOpt
manual, an inverse 𝐿2 norm penalty with a coefficient of 0.1 is applied
to encourage non-zero weights.
6 
5. Experimental results

This section describes the supervised learning experiments con-
ducted in this work. First, it presents the processes of cross-validation,
yperparameter optimization, and statistical significance testing. Then,
t details the experimental results for each method on the three learning
asks, elaborating on the most significant findings.

5.1. Experimental design

Experiments relating to three different learning tasks were per-
ormed on the 15 datasets mentioned in Section 4.1. For every dataset,

the main experiment is repeated for 20 random trials, in which the
ata are always randomly split into train/test at the respective ratios of
0% and 20%. Furthermore, a 3-fold cross validation (3-CV) process is
pplied for each random trial to the training portion of the data, which
nables hyper-parameter optimization. For the classification tasks, both
he train/test split and the 3-CV on training data are stratified with
espect to the classes. The reported performance metrics are estimated
s averages over the random trial test results.

Additionally, the Friedman and post-hoc Nemenyi statistical tests
[48] are applied across the random trials to investigate whether there
are statistical differences in performance (Friedman), and for which
pairs of learning methods (Nemenyi). Every Friedman test that was
performed revealed a statistically significant difference, so the corre-
sponding post-hoc Nemenyi tests for all learning tasks and datasets are
provided in Tables A.1–A.3 of Appendix A.

5.2. Tree weighting for binary classification

The test results for the binary classification tasks are provided
in Table 4, with the performance estimates retrieved by averaging
across 20 random trials. For each dataset, the methods are sorted by
their PRAUC score, which is deemed the most critical metric. PRAUC
indicates the ability of the method to detect a positive minority class
and is independent to the selection of a decision threshold.

XGBoost achieves the highest PRAUC scores in two datasets (aids
nd bank), MRF is the best performing in two other datasets (credit and
hop), and RotF is the best performing in one dataset (bands). This
uggests that the optimal tree ensemble approach varies by dataset,
ndicating that practitioners should experiment with multiple tree en-
emble methods. Furthermore, MRF is second best performing for the
ids and banks dataset, whereas XGBoost is among the lowest per-
orming for credit and shop. Therefore, MRF achieves the best average

rank in terms of PRAUC, and is followed by XGBoost. ERT and OblF
are outperformed across all metrics by other methods for every binary
lassification task.

The Nemenyi post-hoc tests provided in Table A.1 of Appendix A
reveal which performance differences should be considered statisti-
cally significant. Notably, MRF is able to outperform other supervised
learning methods ( RotF, OblF, ERT and XGBoost) with statistical
significance on two datasets (credit and shop).

In terms of the threshold sensitive metrics, XGBoost generally
achieves the best precision in all datasets, except for credit, in which
MRF is better. Regarding recall, MRF achieves notable improvements
for aids and banks at 84.18% and 92.28%, respectively, as well as the
est average recall. 𝐹1 seems to be highly data dependent, with MRF
eading in bank and shop, IVRF in credit and aids, and RotF in bands.

MRF achieves low performance on the smallest dataset (bands),
which we presume has too few examples for an accurate estimation
of the risk matrix. However, the pairwise tests indicate that there are
no statistically significant differences for this dataset among the best
performing methods.

ROC and accuracy are two metrics that do not consider the effect of
class imbalance. XGBoost presents the highest ROC and accuracy, but at
a significant cost of a low recall compared to other methods. Regarding
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Table 4
Predictive performance on test set for binary classification.

Data Method PRAUC ROC 𝐹1 Precision Recall acc. Time

aids

XGB [10] 0.8644 0.9414 0.7570 0.8148 0.7125 0.8901 0.0502
MRF 0.8587 0.9410 0.7720 0.7136 0.8418 0.8792 2.3863
IVRF 0.8499 0.9384 0.7744 0.7240 0.8332 0.8820 1.2378
SWRF [22] 0.8464 0.9373 0.7739 0.7269 0.8284 0.8824 0.3250
OWRF [27] 0.8464 0.9372 0.7737 0.7267 0.8279 0.8822 0.3509
RF [4] 0.8455 0.9369 0.7733 0.7274 0.8264 0.8822 0.2554
RotF [13] 0.8108 0.9164 0.7406 0.8341 0.6668 0.8867 2.7725
ERT [9] 0.7974 0.9143 0.7362 0.6951 0.7841 0.8633 0.2105
OblF [11] 0.7080 0.8971 0.7158 0.6059 0.8769 0.8305 0.4659

bands

RotF [13] 0.8133 0.8473 0.7201 0.7691 0.6815 0.7789 3.7676
XGB [10] 0.7964 0.8215 0.6327 0.7708 0.5554 0.7381 0.0451
OWRF [27] 0.7916 0.8179 0.6541 0.7078 0.6196 0.7266 0.4885
SWRF [22] 0.7914 0.8177 0.6556 0.7093 0.6207 0.7280 0.4387
RF [4] 0.7914 0.8177 0.6548 0.7067 0.6217 0.7261 0.3545
IVRF 0.7910 0.8163 0.6424 0.7072 0.6043 0.7211 1.6720
MRF 0.7889 0.8153 0.6477 0.7037 0.6109 0.7225 4.7822
ERT [9] 0.7821 0.8088 0.6823 0.6858 0.6859 0.7317 0.2343
OblF [11] 0.7089 0.7364 0.6305 0.5839 0.6967 0.6564 0.2010

bank

XGB [10] 0.6590 0.9461 0.5224 0.6916 0.4216 0.9135 0.1856
MRF 0.6474 0.9443 0.5929 0.4364 0.9248 0.8569 26.3127
IVRF 0.6291 0.9383 0.5841 0.4310 0.9059 0.8546 11.3719
SWRF [22] 0.6283 0.9380 0.5834 0.4303 0.9059 0.8542 2.6749
OWRF [27] 0.6283 0.9380 0.5835 0.4304 0.9059 0.8543 2.4041
RF [4] 0.6280 0.9379 0.5833 0.4304 0.9052 0.8543 0.8174
RotF [13] 0.5600 0.9184 0.5134 0.6201 0.4384 0.9064 49.2010
ERT [9] 0.5389 0.8970 0.5173 0.4153 0.6857 0.8558 0.7604
OblF [11] 0.4972 0.8921 0.4924 0.3573 0.8067 0.8134 0.8926

credit

MRF 0.5580 0.7813 0.5448 0.5232 0.5685 0.7899 21.1384
IVRF 0.5566 0.7818 0.5455 0.5210 0.5725 0.7890 9.2606
SWRF [22] 0.5566 0.7818 0.5453 0.5207 0.5724 0.7888 2.5570
OWRF [27] 0.5566 0.7818 0.5454 0.5208 0.5725 0.7889 2.1465
RF [4] 0.5565 0.7818 0.5453 0.5207 0.5724 0.7888 1.4164
XGB [10] 0.5424 0.7745 0.2439 0.4197 0.1739 0.8004 0.0667
ERT [9] 0.5398 0.7756 0.5379 0.5017 0.5801 0.7796 0.4329
RotF [13] 0.4682 0.7292 0.4276 0.6075 0.3300 0.8046 23.2335
OblF [11] 0.4488 0.7216 0.5149 0.4915 0.5425 0.7741 0.3956

shop

MRF 0.7448 0.9336 0.6636 0.5572 0.8209 0.8709 7.8874
IVRF 0.7312 0.9301 0.6617 0.5530 0.8241 0.8693 4.2798
SWRF [22] 0.7264 0.9289 0.6608 0.5519 0.8240 0.8689 1.9827
OWRF [27] 0.7264 0.9289 0.6609 0.5520 0.8240 0.8689 1.2350
RF [4] 0.7244 0.9284 0.6607 0.5516 0.8242 0.8688 0.4046
XGB [10] 0.7194 0.9218 0.6136 0.7411 0.5406 0.8982 0.0507
RotF [13] 0.6340 0.8884 0.5725 0.7013 0.4847 0.8881 11.5590
OblF [11] 0.5855 0.8798 0.6620 0.5638 0.8020 0.8731 0.7362
ERT [9] 0.5648 0.8691 0.5087 0.3699 0.8151 0.7559 0.3801

the required training execution times, MRF adds a small overhead that
varies between 1 and 20 s, which indicates the applicability of the
method on real datasets. Due to the repeated application of PCA on
feature partitions, RotF presents significantly higher execution times
compared to other methods. A computational complexity analysis for
the asymptotic behavior of MRF is presented in Section 6.

An additional investigation was conducted regarding the distribu-
tion of tree weights by each method. The findings were consistent
across all experiments, and provide insight regarding the weighting
behavior of MRF. Fig. 1 illustrates the case for the shoppers dataset.

hile the weights of SWRF and OWRF are concentrated near to the
original weights, MRF spreads the tree weights much further. The
weighting behavior of IVRF falls somewhere in between.

We presume that SWRF and OWRF are limited by individual tree
performance estimates that do not vary much. In contrast, the risk
matrix used by MRF provides more information, guiding it to better
etermine the unique contribution of each tree. Furthermore, MRF can
liminate trees that do not contribute to the ensemble, those that are
ot only low-performing but also similar to each other, by setting their
eights to zero. Similarly, high-performing trees that also offer variety
y making different mistakes receive the upper-end of weights.

Table 5 presents the ranking statistics for each model across five
binary classification tasks. MRF achieved the best average rank at 2.6,
7 
Table 5
Model ranking statistics across five binary classification tasks.

Method MRF IVRF XGB [10] SWRF [22] OWRF [27] RF [4] RotF [13] ERT [9] ObF

mean 2.60 3.20 3.20 3.60 4.20 5.40 6.00 8.00 8.80
min 1.00 2.00 1.00 3.00 3.00 5.00 1.00 7.00 8.00
max 7.00 6.00 6.00 4.00 5.00 6.00 8.00 9.00 9.00
std 2.51 1.64 2.59 0.55 0.84 0.55 2.83 0.71 0.45

followed by XGBoost and IVRF at 3.2. However, contrary to IVRF,
GBoost is the best performing for several datasets. Furthermore, MRF

achieves a lower rank standard deviation compared to XGBoost ( 2.51
vs 2.59).

SWRF and OWRF achieve average rankings of 3.6 and 4.2. These
re followed by RF, RotF, ERT and OblF at the worst positions.
otF presents the highest standard deviation in performance (2.83).

Interestingly, MRF is the only tree weighting method that outperforms
XGBoost in terms of average ranking. Similarly, it outperformed forests
that are based on multivariate splits, such RotF and OblF. This evidence
highlights the potential for further research into enhanced RF models
that leverage advanced tree weighting techniques. The interpretation
f the aforementioned results leads to some practical guidelines re-
arding the advantages and limitations of MRF, which are discussed
n Section 7.

5.3. Tree weighting for regression

The test results for the regression tasks are provided in Table 6. As a
first observation, weighted versions of the RF generally outperform the
ther supervised learning methods. This suggests the potential of MRF

to achieve competitive predictive performance in specific domains. As
the following paragraphs will reveal, the performance improvements of
MRF are pronounced in the regression setting.

Specifically, MRF achieves the best MAE score for every dataset, and
the best MAPE in 3 datasets (insurance, news and wine). It is also on
he high-end of RMSE scores, being the best for car and superconduct.
-squared is more depended on the dataset, but seems to favor RF
ariants.

The Nemenyi tests in Table A.2 of Appendix A reveal that MRF offers
a statistically significant performance improvement in MAE against RF
nd XGBoost for most datasets. Furthermore, as was the case for binary
lassification, the training time overhead for MRF in regression tasks
emain minor and should not pose an issue for practical applications.

Table 7 presents the ranking statistics for regression, in which
the benefits of MRF are more pronounced compared to classification.
Specifically, MRF achieves the highest ranking in all problems with an
average rank of 1. It is followed by the remaining weighted versions
of RF, which achieve average rankings between 3 and 3.8. The next
model is OblF and the traditional RF, at average ranks of 5.4. ERT and
XGB are trailing behind with the lowest performance in these tasks.
Once again, these results underscore the potential of RF models when
enhanced by tree weighting schemes, allowing them to surpass even
multivariate-split based forests.

5.4. Multi-class classification experiments

The results for the multi-class experiments are shown in Table 8.
Multi-class predictive models are typically evaluated through 𝐹1_𝑚𝑎𝑐 𝑟𝑜
and 𝐹1_𝑚𝑖𝑐 𝑟𝑜 scores. The former weights each class equally, whereas the
latter weights each example equally. In the context of class imbalance
we emphasize 𝐹1_𝑚𝑎𝑐 𝑟𝑜, as it indicates the model’s ability to achieve
balanced performance across all classes, regardless of their sizes.

In these experiments, RotF achieves the best 𝐹1_𝑚𝑎𝑐 𝑟𝑜 for three
datasets (pen, plates, statlog image), with MRF being the best in the
remaining datasets (room, student). However, whereas RotF shows
high variability in performance (e.g., achieving the 5 position in
𝑡ℎ
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Fig. 1. Distribution of weights in the shoppers classification task.
Table 6
Predictive performance on test set for regression.

Dataset Method MAE RMSE MAPE 𝑟2 Time

car

MRF 13538.9370 201 374.5060 1.763920e+01 0.0749 5.1124
IVRF 13 540.0357 201 427.7928 1.709210e+01 0.0689 4.2450
OblF [11] 13587.0829 201160.0708 1.681560e+01 0.0957 0.0000
SWRF [22] 13 963.6273 201 497.5219 1.807640e+01 0.0641 4.6618
OWRF [27] 13 965.1169 201 499.8911 1.807910e+01 0.0639 6.0294
ERT [9] 13 989.5642 201 648.1633 1.757700e+01 0.0503 0.0000
RF [4] 14 062.3812 201 593.8683 1.822060e+01 0.0549 0.0000
XGB [10] 15 502.6324 202 184.9734 2.061720e+01 −0.0016 0.2997

insur.

MRF 0.1029 0.2306 2.211050e+14 0.0432 1.9240
OblF [11] 0.1068 0.2296 2.414450e+14 0.0511 0.0000
SWRF [22] 0.1069 0.2297 2.419776e+14 0.0506 0.8595
OWRF [27] 0.1070 0.2297 2.424910e+14 0.0506 0.9645
IVRF 0.1070 0.2297 2.425425e+14 0.0506 1.0932
RF [4] 0.1070 0.2297 2.425425e+14 0.0506 0.0000
ERT [9] 0.1076 0.2300 2.433680e+14 0.0480 0.0000
XGB [10] 0.1106 0.2337 2.501693e+14 0.0174 0.0538

news

MRF 3002.4437 11 710.5283 1.858200e+00 0.0243 4.7174
IVRF 3031.9519 11 705.9553 1.888400e+00 0.0250 3.5569
OWRF [27] 3034.4942 11 705.9091 1.891200e+00 0.0250 2.9762
SWRF [22] 3034.4989 11705.8789 1.891200e+00 0.0250 3.2542
RF [4] 3035.4693 11 705.9881 1.892000e+00 0.0250 0.0000
OblF [11] 3057.9386 11729.8550 1.938500e+00 0.0208 0.0000
ERT [9] 3058.8740 11 736.2838 1.951000e+00 0.0196 0.0000
XGB [10] 3155.9293 11 827.7871 2.016000e+00 0.0031 0.1126

supercond.

MRF 7.1624 11.3945 7.419200e+00 0.8893 2.8350
SWRF [22] 7.1765 11.4113 7.439100e+00 0.8890 2.0192
OWRF [27] 7.1767 11.4115 7.439800e+00 0.8890 2.1513
RF 7.1781 11.4131 7.441500e+00 0.8889 0.0000
IVRF 7.1896 11.4410 7.065300e+00 0.8884 2.2087
XGB [10] 7.5077 11.5672 7.987000e+00 0.8859 0.2474
ERT [9] 8.8304 13.1963 9.060900e+00 0.8515 0.0000
OblF [11] 12.3505 17.0593 1.468720e+01 0.7519 0.0000

wine

MRF 0.5242 0.6710 9.350000e−02 0.4076 0.4569
SWRF [22] 0.5252 0.6703 9.360000e−02 0.4089 0.2819
IVRF 0.5252 0.6702 9.360000e−02 0.4089 0.3755
OWRF [27] 0.5253 0.6703 9.370000e−02 0.4088 0.3256
RF [4] 0.5253 0.6703 9.370000e−02 0.4088 0.0000
OblF [11] 0.5823 0.7365 1.038000e−01 0.2864 0.0000
XGB [10] 0.5537 0.7031 9.850000e−02 0.3496 0.0629
ERT [9] 0.5791 0.7312 1.034000e−01 0.2967 0.0000
8 
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Table 7
Model ranking statistics across the five regression tasks.

Method MRF SWRF [22] IVRF OWRF [27] OblF [11] RF [4] ERT [9] XGB [10]

mean 1.0 3.0 3.4000 3.8000 5.4000 5.4000 6.8000 7.2000
min 1.0 2.0 2.0000 3.0000 2.0000 4.0000 6.0000 6.0000
max 1.0 4.0 5.0000 5.0000 8.0000 7.0000 7.0000 8.0000
std 0.0 1.0 1.5166 0.8367 2.7928 1.1402 0.4472 1.0954

Table 8
Predictive performance on test set for multi-class classification.

Dataset Method 𝐹1_𝑚𝑎𝑐 𝑟𝑜 𝐹1_𝑚𝑖𝑐 𝑟𝑜 Accuracy Elapsed

pen

RotF [13] 0.9927 0.9927 0.9927 4.3560
MRF 0.9823 0.9821 0.9821 5.4343
IVRF 0.9819 0.9817 0.9817 1.3910
RF [4] 0.9819 0.9817 0.9817 0.3130
XGB [10] 0.9809 0.9807 0.9807 0.3618
ERT [9] 0.9732 0.9730 0.9730 0.4247
OblF [11] 0.8276 0.8339 0.8339 0.6581
OWRF [27] 0.1140 0.1964 0.1964 0.5028
SWRF [22] 0.1140 0.1964 0.1964 0.4991

plates

RotF [13] 0.8052 0.7731 0.7731 8.8178
MRF 0.7806 0.7478 0.7478 2.8049
RF [4] 0.7729 0.7366 0.7366 0.2457
IVRF 0.7726 0.7361 0.7361 0.6966
XGB [10] 0.7589 0.7514 0.7514 0.1781
ERT [9] 0.7100 0.6937 0.6937 0.1975
OblF [11] 0.4623 0.4744 0.4744 0.7359
OWRF [27] 0.1586 0.4148 0.4148 0.3440
SWRF [22] 0.1584 0.4145 0.4145 0.3163

room

MRF 0.9890 0.9969 0.9969 2.7024
RotF [13] 0.9889 0.9968 0.9968 5.7058
ERT [9] 0.9876 0.9963 0.9963 0.2216
RF [4] 0.9876 0.9965 0.9965 0.2699
IVRF 0.9874 0.9964 0.9964 0.9756
XGB [10] 0.9831 0.9950 0.9950 0.2239
OblF [11] 0.8538 0.9530 0.9530 0.1468
OWRF [27] 0.4786 0.8575 0.8575 0.4060
SWRF [22] 0.4786 0.8575 0.8575 0.3887

statlog image

RotF [13] 0.9820 0.9820 0.9820 4.1006
MRF 0.9654 0.9655 0.9655 2.6908
IVRF 0.9625 0.9626 0.9626 0.7117
RF [4] 0.9624 0.9624 0.9624 0.2449
XGB [10] 0.9616 0.9615 0.9615 0.2126
ERT [9] 0.9442 0.9444 0.9444 0.1977
OblF [11] 0.8796 0.8826 0.8826 0.7236
OWRF [27] 0.1727 0.2677 0.2677 0.3315
SWRF [22] 0.1727 0.2677 0.2677 0.3093

student

MRF 0.6993 0.7489 0.7489 2.2699
IVRF 0.6988 0.7481 0.7481 0.7894
RF [4] 0.6988 0.7481 0.7481 0.2486
ERT [9] 0.6853 0.7295 0.7295 0.3216
RotF [13] 0.6820 0.7594 0.7594 18.4609
XGB [10] 0.6685 0.7603 0.7603 0.0739
OblF [11] 0.6346 0.7165 0.7165 0.2020
OWRF [27] 0.5093 0.7015 0.7015 0.3602
SWRF [22] 0.5092 0.7014 0.7014 0.3440

the student dataset), MRF presents lower variance in performance by
chieving at least 2𝑛𝑑 position in every dataset. For this reason, it will

be shown later that MRF achieves the best average ranking.
The results are similar for 𝐹1_𝑚𝑖𝑐 𝑟𝑜 and accuracy, although XGBoost

achieves the best in the student dataset. However, XGBoost deteri-
orates significantly the performance of minority classes in order to
achieve an increased performance of the majority classes.

Although MRF consistently achieves high scores in 𝐹1_𝑚𝑎𝑐 𝑟𝑜, more
vidence is required to prove that it can outperform RF, XGBoost and
VRF with statistical significance. However, according to the Nemenyi
esults in Table A.3, it is proven superior to previously proposed tree

weighting methods (SWRF, OWRF) with statistical significance in
every dataset.
9 
As was the case for binary classification and regression, MRF
chieves the highest average ranking (1.6) in the multi-class set-
ing (Table 9). RotF is the next best performing method, with an

average ranking of 2, while traditional RF, ERT and XGB outperform
the previously proposed tree weighting approaches OWRF and SWRF.
Particularly, the tree weighting approaches OWRF and SWRF achieve
the lowest two ranks across all datasets. This evidence suggests that
he effectiveness of previously proposed tree-weighting methods is
ignificantly lower than that of MRF in the multi-class setting. Further-
ore, the fact that MRF can outperform multivariate-split based forests

ike RotF solely through optimal tree weighting within an RF model
ighlights the potential of this research direction.

The analysis reveals significant performance differences between
tree-weighting methods that focus solely on individual tree perfor-
mance and those that incorporate risk estimates based on tree covari-
ance. While OWRF and SWRF fall short of traditional RF and occupy
the lowest rankings, MRF and IVRF consistently rank among the top-
performing methods, providing evidence that tree diversity is crucial
for effective tree weighting in multi-class problems. Whereas standard
tree-weighting methods fail to outperform an equally weighted RF,
the proposed tree-weighting approach not only surpasses RF but also
outperforms advanced multivariate-split based forests like RotF and
OblF, demonstrating its superior potential to enhance RF performance.

6. Computational complexity analysis

The previous Section established that MRF can achieve statistically
ignificant improvements in predictive performance. In this section, we
onsider the additional computational complexity that is required by
he proposed tree weighting method.

MRF is applied on an existing RF, so it inherits the complexity of
RF. For fully grown trees, the time complexity of RF is 𝑇 𝐶(𝑅𝐹 ) =
(𝑇 𝑘𝑚𝑙 𝑜𝑔(𝑚)), where 𝑚 is the number of rows, 𝑘 is the number of
features considered in each split and 𝑇 is the number of estimators.
Note that if a maximum depth 𝑑 is set, the complexity of RF is
𝑇 𝐶(𝑅𝐹 ) = (𝑇 𝑘𝑚𝑑). The next paragraphs will derive the additional
complexity due to tree weight allocation.

MRF initially must compute a covariance matrix of an (𝑛 × 𝑇 )
atrix of probabilities (or residuals), as well as an expected perfor-
ance vector. The correlation matrix computation adds a complexity of
(𝑇 2 𝑚), which overshadows the complexity of computing the expected
erformance vector, that is (𝑇 𝑚). Following this, the mean–variance
lgorithm solves a Quadratic Programming (QP) problem in polynomial
ime, with an additional complexity factor of approximately (𝑇 3) [49].

The combination of the above yields the total time complexity for MRF,
s presented in Eq. (28).

𝑡𝑐(𝑀 𝑅𝐹 ) = 
⎛

⎜

⎜

⎜

⎝

𝑇 𝑘𝑚𝑙 𝑜𝑔(𝑚)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Random Forest

+ 𝑇 2𝑚
⏟⏟⏟

Matrix Estimation

+ 𝑇 3
⏟⏟⏟

MVA

⎞

⎟

⎟

⎟

⎠

(28)

The above complexity is equivalent for the worst, average and best
case analysis. This result indicates that the additional time complexity
epends mostly on the number of trees, and to a lesser extent on the
umber of rows. Considering that the number of trees is often a small
onstant, ranging from 10 to 1000, the complexity reduces to the same
s RF. Therefore, the additional time complexity of MRF should not
ose a significant issue for medium to high term computing systems
hat can train RF models. This is also in alignment with our empirical
omputation time estimations presented in Section 5.

Considering also the multi-class setting, the only difference is that
he estimation of the covariance matrix uses predicted probabilities for

all classes (𝑐). Like the number of trees, the number of classes is also
typically small for many applications.

𝑡𝑐(𝑀 𝑅𝐹 ) = 
⎛

⎜

⎜

⎜

𝑇 𝑘𝑚𝑙 𝑜𝑔(𝑚)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

+ 𝑇 2𝑚𝑐
⏟⏟⏟

+ 𝑇 3
⏟⏟⏟

⎞

⎟

⎟

⎟

(29)
⎝Random Forest Matrix Estimation MVA
⎠



E. Kouloumpris and I. Vlahavas

s

a

𝑛

m
a
t
c
a

h
i

s
r
p

Neurocomputing 620 (2025) 129191 
Table 9
Model ranking statistics across the five multi-class classification task.

Method MRF RotF [13] IVRF RF [4] ERT [9] XGB [10] OblF [11] OWRF [27] SWRF [22]

mean 1.600 2.000 3.40 3.600 5.000 5.400 7.0 8.0 9.0
min 1.000 1.000 2.00 3.000 3.000 5.000 7.0 8.0 9.0
max 2.000 5.000 5.00 4.000 6.000 6.000 7.0 8.0 9.0
std 0.548 1.732 1.14 0.548 1.414 0.548 0.0 0.0 0.0
P
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The other weighting methods also require additional complexity,
as they need to compute scores across all trees and examples. This is
hown in Eq. (30).

𝑡𝑐(𝑆 𝑊 𝑅𝐹 ) = 𝑡𝑐(𝑂 𝑊 𝑅𝐹 ) = 𝑡𝑐(𝐼 𝑉 𝑅𝐹 ) = 
⎛

⎜

⎜

⎜

⎝

𝑇 𝑘𝑚𝑙 𝑜𝑔(𝑚)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Random Forest

+ 𝑇 𝑚
⏟⏟⏟
Scoring

⎞

⎟

⎟

⎟

⎠

(30)

For reference, we briefly overview the time complexities for the
remaining methods, XGBoost, ERT, OblF and RotF. Assuming that there
re no missing values in the data, the time complexity of XGBoost is

presented in Eq. (31), in which 𝑑 denotes the max depth of trees and
the number of features. For ERT, the asymptotic time complexity is

equivalent to that RF Eq. (32).

𝑡𝑐(𝑋 𝐺 𝐵 𝑜𝑜𝑠𝑡) =  (𝑇 𝑑 𝑛𝑚 log(𝑚)) (31)

𝑡𝑐(𝐸 𝑅𝑇 ) =  (𝑇 𝑘𝑚 log(𝑚)) (32)

The algorithm of OblF is similar to RF, but it uses SVM to create
ultivariate splits at each node. The complexity of training an SVM on
 dataset with 𝑚 rows and 𝑘 features is approximately (𝑚2𝑘). Due to
he quadratic complexity, the root node’s split dominates the overall
omplexity in the case of balanced splits. Based on this hypothesis, the
verage-case complexity for OblF is given in Eq. (33).

𝑡𝑐(OblF) = (𝑇 𝑚2𝑘) (33)

Proceeding to the complexity of RotF, we assume that the dataset
is partitioned into 𝑝 equal groups of 𝑚 rows and 𝑓 = 𝑛∕𝑝 features.
PCA is applied to each group, and this process is repeated for every
tree before applying the random forest algorithm. We consider the SVD
implementation of PCA, which for a dataset with 𝑚 rows and 𝑓 features
as a complexity of (min(𝑓 2 𝑚, 𝑓 𝑚2)). The final complexity for RotF
s provided in Eq. (34). As shown, this is the most computationally

intensive method, which aligns with the increased computation times
observed in the experimental section.

𝑡𝑐(RotF) = 
(

𝑇 𝑝min
(

𝑓 2 𝑚, 𝑓 𝑚2) + 𝑇 𝑘𝑚 log(𝑚)
)

(34)

7. Discussion of research findings

By summarizing the findings of Section 5, we recommend gen-
eral guidelines regarding the problem types and conditions for which
MRF can be a potentially high performing model. Regardless of task,
MRF always depends on an underlying RF and aims to improve its
performance. Therefore, the first guideline is to consider MRF when
the standard RF method achieves high performance. Second, datasets
with very few examples may not provide enough rows for an accurate
computation of the risk matrix, so the potential of MRF would be
limited in this case. RotF was proven the best option in the case of a
mall dataset. IVRF may also occasionally outperform MRF for similar
easons, as it does not rely on a risk matrix estimation. The following
aragraphs will elaborate on the task-specific guidelines.

In binary classification, MRF can be potentially useful when it is de-
sirable to achieve a high PRAUC score, particularly in class imbalanced
scenarios. This is achieved through accurate probability predictions
 p

10 
that can discriminate classes at varying decision thresholds. It should
also be considered when recall is more important than precision, in
problems for which False Negatives (FNs) are more costly than False
ositives (FPs).

For instance, there are problems in finance for which FNs are more
expensive, such as fraud detection. Specifically, an undetected fraud
(FN) has more severe effects compared to the costs of misreporting a
transaction as fraudulent (FP). In medical diagnosis as well, undetected
disease (FN) can often be more costly than an incorrect positive diag-
nosis (FP). On the contrary and according to our experiments, XGBoost
is more likely to outperform MRF for problems that precision is more
important. Examples in this category include email spam detection and
classification-based recommender systems.

The regression experiments proved that MRF can offer significantly
mprovements in MAE and MAPE scores, and is very likely to outper-

form other ensemble models. This is relevant for problems in which
all errors should be weighted equally, regardless of their magnitude. If
high errors should be more penalized, different tree-weighting variants
hould be tested for optimal MSE score.

The previously proposed tree weighting methods SWRF and OWRF
did not perform well on multi-class problems, indicating that this area
should receive more attention. In this direction, MRF was proven signif-
icantly better in multi-class problems, particularly when it is important
to achieve balanced predictive performance across all classes. RotF
hould be considered in the multi-class setting as it was highly effective,

provided that the increased computational cost is not a limiting factor.

8. Conclusion

Initially, the traditional RF algorithm was designed to assign equal
eights to the decision trees that constitute the ensemble. Previous
orks have attempted to improve upon this by assigning non-equal
eights, based on the predictive performance of each independent

ree. However, to the best of our knowledge, previous works have
not considered the opportunity to promote tree variety through their
weighting schemes, which is essential for the success of RF.

In this paper we propose MRF, an improved tree-weighted version
of RF that relies on a novel weighting method. Along with individual
tree performance, MRF also considers a regularization factor that pro-
motes tree variety. Through a tree covariance matrix, it discourages
he allocation of weight to trees that make similar mistakes, which
acilitates the participation of diversified trees in the ensemble. Our
ethod is based on MVA, a method from financial mathematics which

ims to maximize portfolio return, while at the same time to minimize
ortfolio variance. Therefore, this also makes MRF a finance-inspired
L method.

Our experimental results on 15 public datasets provide evidence
that our proposed method can provide notable improvements against
he traditional RF algorithm and previously proposed tree weighting

methods. This is achieved in the context of three supervised learning
tasks: binary classification, regression and multi-class classification.
Specifically, MRF provides significant improvements in PRAUC, 𝑀 𝐴𝐸,
𝐹1_𝑚𝑎𝑐 𝑟𝑜. Additionally, Friedman and Nemenyi statistical tests revealed
that MRF can outperform other weighted variants of RF, as well as
XGBoost, ERT, OblF and RotF across several learning tasks and datasets
with statistical signficance.

We plan several directions for future work. First, to investigate
he application of tree weight optimization on RF variants that ap-
ly multivariate splits, such as double oblique and double rotation



E. Kouloumpris and I. Vlahavas

t
s
t
o
t
f

I

c
i

Neurocomputing 620 (2025) 129191 
Table A.1
Nemenyi post-hoc tests for binary classification.

Data ERT IVRF MRF OWRF ObF RF RotF SWRF XGB

aids

ERT 1.0 0.001 0.001 0.0014 0.9 0.107 0.9 0.0014 0.001
IVRF 0.001 1.0 0.9 0.6646 0.001 0.0566 0.001 0.6646 0.9
MRF 0.001 0.9 1.0 0.5245 0.001 0.0278 0.001 0.5245 0.9
OWRF 0.0014 0.6646 0.5245 1.0 0.001 0.9 0.0477 0.9 0.3737
ObF 0.9 0.001 0.001 0.001 1.0 0.0014 0.3737 0.001 0.001
RF 0.107 0.0566 0.0278 0.9 0.0014 1.0 0.6296 0.9 0.0128
RotF 0.9 0.001 0.001 0.0477 0.3737 0.6296 1.0 0.0477 0.001
SWRF 0.0014 0.6646 0.5245 0.9 0.001 0.9 0.0477 1.0 0.3737
XGB 0.001 0.9 0.9 0.3737 0.001 0.0128 0.001 0.3737 1.0

bands

ERT 1.0 0.6646 0.8223 0.1641 0.0789 0.2549 0.3364 0.4512 0.5245
IVRF 0.6646 1.0 0.9 0.9 0.001 0.9 0.9 0.9 0.9
MRF 0.8223 0.9 1.0 0.9 0.001 0.9 0.9 0.9 0.9
OWRF 0.1641 0.9 0.9 1.0 0.001 0.9 0.9 0.9 0.9
ObF 0.0789 0.001 0.001 0.001 1.0 0.001 0.001 0.001 0.001
RF 0.2549 0.9 0.9 0.9 0.001 1.0 0.9 0.9 0.9
RotF 0.3364 0.9 0.9 0.9 0.001 0.9 1.0 0.9 0.9
SWRF 0.4512 0.9 0.9 0.9 0.001 0.9 0.9 1.0 0.9
XGB 0.5245 0.9 0.9 0.9 0.001 0.9 0.9 0.9 1.0

bank

ERT 1.0 0.001 0.001 0.0022 0.9 0.3024 0.9 0.001 0.001
IVRF 0.001 1.0 0.9 0.6296 0.001 0.0156 0.001 0.7697 0.3737
MRF 0.001 0.9 1.0 0.0566 0.001 0.001 0.001 0.107 0.9
OWRF 0.0022 0.6296 0.0566 1.0 0.001 0.7697 0.0916 0.9 0.0014
ObF 0.9 0.001 0.001 0.001 1.0 0.0278 0.5245 0.001 0.001
RF 0.3024 0.0156 0.001 0.7697 0.0278 1.0 0.9 0.6296 0.001
RotF 0.9 0.001 0.001 0.0916 0.5245 0.9 1.0 0.0477 0.001
SWRF 0.001 0.7697 0.107 0.9 0.001 0.6296 0.0477 1.0 0.0035
XGB 0.001 0.3737 0.9 0.0014 0.001 0.001 0.001 0.0035 1.0

defaults

ERT 1.0 0.001 0.001 0.0055 0.2126 0.2126 0.6996 0.0068 0.9
IVRF 0.001 1.0 0.9 0.9 0.001 0.2401 0.001 0.9 0.001
MRF 0.001 0.9 1.0 0.5595 0.001 0.0401 0.001 0.5245 0.001
OWRF 0.0055 0.9 0.5595 1.0 0.001 0.9 0.001 0.9 0.0566
ObF 0.2126 0.001 0.001 0.001 1.0 0.001 0.9 0.001 0.0335
RF 0.2126 0.2401 0.0401 0.9 0.001 1.0 0.001 0.9 0.6296
RotF 0.6996 0.001 0.001 0.001 0.9 0.001 1.0 0.001 0.2703
SWRF 0.0068 0.9 0.5245 0.9 0.001 0.9 0.001 1.0 0.067
XGB 0.9 0.001 0.001 0.0566 0.0335 0.6296 0.2703 0.067 1.0

shoppers

ERT 1.0 0.001 0.001 0.001 0.9 0.0044 0.6646 0.001 0.001
IVRF 0.001 1.0 0.9 0.6646 0.001 0.0104 0.001 0.5945 0.0566
MRF 0.001 0.9 1.0 0.0477 0.001 0.001 0.001 0.0335 0.001
OWRF 0.001 0.6646 0.0477 1.0 0.001 0.6646 0.0044 0.9 0.9
ObF 0.9 0.001 0.001 0.001 1.0 0.0128 0.8398 0.001 0.0017
RF 0.0044 0.0104 0.001 0.6646 0.0128 1.0 0.5245 0.7347 0.9
RotF 0.6646 0.001 0.001 0.0044 0.8398 0.5245 1.0 0.0068 0.2126
SWRF 0.001 0.5945 0.0335 0.9 0.001 0.7347 0.0068 1.0 0.9
XGB 0.001 0.0566 0.001 0.9 0.0017 0.9 0.2126 0.9 1.0
RF [50,51]. Second, to apply similar weight optimization techniques
on deep learning ensembles, including ensemble random vector func-
ional link neural networks (edRVFL) [52]. Fourth, to modify the
tatic MRF weighting mechanism towards a dynamic weighting scheme
hat depends on the observation. Third, to compare the potential of
ther portfolio management methods for tree weight allocation. Finally,
o investigate other ideas in financial mathematics that can lead to
inance-inspired ML methods.
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Table A.2
Nemenyi post-hoc tests for regression task.

Data ERT IVRF MRF OWRF OblF RF SWRF XGB

insur.

ERT 1.0 0.6568 0.001 0.0092 0.0016 0.7725 0.001 0.5603
IVRF 0.6568 1.0 0.001 0.5796 0.2983 0.9 0.0161 0.0082
MRF 0.001 0.001 1.0 0.0073 0.0336 0.001 0.4402 0.001
OWRF 0.0092 0.5796 0.0073 1.0 0.9 0.4613 0.7532 0.001
OblF 0.0016 0.2983 0.0336 0.9 1.0 0.2015 0.9 0.001
RF 0.7725 0.9 0.001 0.4613 0.2015 1.0 0.0082 0.0161
SWRF 0.001 0.0161 0.4402 0.7532 0.9 0.0082 1.0 0.001
XGB 0.5603 0.0082 0.001 0.001 0.001 0.0161 0.001 1.0

car

ERT 1.0 0.018 0.0599 0.9 0.0599 0.0336 0.9 0.001
IVRF 0.018 1.0 0.9 0.001 0.9 0.001 0.001 0.001
MRF 0.0599 0.9 1.0 0.0016 0.9 0.001 0.0016 0.001
OWRF 0.9 0.001 0.0016 1.0 0.0016 0.3975 0.9 0.0092
OblF 0.0599 0.9 0.9 0.0016 1.0 0.001 0.0016 0.001
RF 0.0336 0.001 0.001 0.3975 0.001 1.0 0.3975 0.8304
SWRF 0.9 0.001 0.0016 0.9 0.0016 0.3975 1.0 0.0092
XGB 0.001 0.001 0.001 0.0092 0.001 0.8304 0.0092 1.0

wine

ERT 1.0 0.001 0.001 0.001 0.9 0.0274 0.001 0.6761
IVRF 0.001 1.0 0.9 0.6375 0.001 0.0496 0.9 0.001
MRF 0.001 0.9 1.0 0.1625 0.001 0.0027 0.9 0.001
OWRF 0.001 0.6375 0.1625 1.0 0.001 0.9 0.3975 0.0856
OblF 0.9 0.001 0.001 0.001 1.0 0.0045 0.001 0.3556
RF 0.0274 0.0496 0.0027 0.9 0.0045 1.0 0.0144 0.7532
SWRF 0.001 0.9 0.9 0.3975 0.001 0.0144 1.0 0.001
XGB 0.6761 0.001 0.001 0.0856 0.3556 0.7532 0.001 1.0

s. cond.

ERT 1.0 0.001 0.001 0.001 0.9 0.018 0.001 0.9
IVRF 0.001 1.0 0.1195 0.9 0.001 0.9 0.5217 0.0599
MRF 0.001 0.1195 1.0 0.5217 0.001 0.0073 0.9 0.001
OWRF 0.001 0.9 0.5217 1.0 0.001 0.6761 0.9 0.0045
OblF 0.9 0.001 0.001 0.001 1.0 0.001 0.001 0.1625
RF 0.018 0.9 0.0073 0.6761 0.001 1.0 0.0856 0.4402
SWRF 0.001 0.5217 0.9 0.9 0.001 0.0856 1.0 0.001
XGB 0.9 0.0599 0.001 0.0045 0.1625 0.4402 0.001 1.0

news

ERT 1.0 0.001 0.001 0.0016 0.9 0.5217 0.0045 0.5603
IVRF 0.001 1.0 0.9 0.5603 0.001 0.0021 0.3975 0.001
MRF 0.001 0.9 1.0 0.0336 0.001 0.001 0.0144 0.001
OWRF 0.0016 0.5603 0.0336 1.0 0.0057 0.4402 0.9 0.001
OblF 0.9 0.001 0.001 0.0057 1.0 0.7147 0.0144 0.3556
RF 0.5217 0.0021 0.001 0.4402 0.7147 1.0 0.5989 0.0035
SWRF 0.0045 0.3975 0.0144 0.9 0.0144 0.5989 1.0 0.001
XGB 0.5603 0.001 0.001 0.001 0.3556 0.0035 0.001 1.0
Algorithm 1 Markowitz Random Forest(𝑛,𝜆) for classification
function meanVarianceAnalysis(𝑟, 𝐾, 𝜆)

Objective: Solve quadratic optimization to maximize 𝑤⊤𝑟 − 𝜆𝑤⊤𝐾 𝑤 with constraints
𝑤⊤1 = 1 and 𝑤 ≥ 0
Return optimal weights 𝑤

rf ← Train standard random forest with 𝑛 trees
⊳ Replace F1-macro with PRAUC for binary classification tasks
for 𝑗 = 1,… , 𝑛 do

treeScores[𝑗] ← Estimate out-of-bag F1-macro of the jth tree
⊳ Estimate a performance score for each example-tree pair
for 𝑖 = 1,… , 𝑚 do

for 𝑗 = 1,… , 𝑛 do
exampleScores[𝑖, 𝑗] ← Predicted probability for correct class of ith example by the
jth tree

⊳ Estimate the risk for every class 𝑐 and every pair of trees (𝑎, 𝑏)
⊳ Note that for binary classification this will estimate the average of FP and FN risk.
for 𝑎 = 1,… , 𝑛 do

for 𝑏 = 1,… , 𝑛 do
for 𝑐 = 1,… , 𝐶 do

F(𝑐 , 𝑎, 𝑏) ← Set of examples that are falsely classified in class 𝑐 by either tree 𝑎
or 𝑏
RiskF(𝑐 , 𝑎, 𝑏) ← Correlation between exampleScores[i,a] and exampleScores[i,b],
𝑖 ∈ F(𝑐 , 𝑎, 𝑏)

riskMatrix[𝑎,𝑏] ← E𝑐[RiskF(𝑐 , 𝑎, 𝑏)]
⊳ Solve the quadratic optimization problem: maximize 𝑤⊤𝑟 − 𝜆𝑤⊤𝑆 𝑤
treeWeights ← meanVarianceAnalysis(treeScores, riskMatrix, 𝜆)
Output rf, treeWeights
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Algorithm 2 Markowitz Random Forest(𝑛,𝜆) for regression
function meanVarianceAnalysis(𝑟, 𝐾, 𝜆)

Objective: Solve quadratic optimization to maximize 𝑤⊤𝑟 − 𝜆𝑤⊤𝐾 𝑤 with constraints
𝑤⊤1 = 1 and 𝑤 ≥ 0
Return optimal weights 𝑤

rf ← Train standard random forest with 𝑛 trees
⊳ Estimate a performance score for each tree that ranges between 0 and 1
for 𝑗 = 1,… , 𝑛 do

error[𝑗] ← Mean Absolute Percentage Error (MAPE) of jth tree
treeScores[𝑗] ← exp( - error[𝑗])

⊳ Estimate a performance score for each example-tree pair
for 𝑖 = 1,… , 𝑚 do

for 𝑗 = 1,… , 𝑛 do
exampleResidual[𝑖, 𝑗] ← (actual target of ith example) - (prediction of jth tree on
ith example)

⊳ Estimate the nxn tree covariance matrix
riskMatrix ← Covariance(exampleResidual)
⊳ Solve the quadratic optimization problem: maximize 𝑤⊤𝑟 − 𝜆𝑤⊤𝑆 𝑤
treeWeights ← meanVarianceAnalysis(treeScores, riskMatrix, 𝜆)
Output rf, treeWeights

Data availability

All datasets used in this work are publicly available.
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Table A.3
Nemenyi post-hoc test results for multi-class classification task.

Data ERT IVRF MRF OWRF ObF RF RotF SWRF XGB

student

ERT 1.0 0.3024 0.3364 0.001 0.0477 0.2401 0.9 0.001 0.7347
IVRF 0.3024 1.0 0.9 0.001 0.001 0.9 0.3364 0.001 0.0017
MRF 0.3364 0.9 1.0 0.001 0.001 0.9 0.3737 0.001 0.0022
OWRF 0.001 0.001 0.001 1.0 0.7347 0.001 0.001 0.9 0.0477
ObF 0.0477 0.001 0.001 0.7347 1.0 0.001 0.0401 0.6646 0.8748
RF 0.2401 0.9 0.9 0.001 0.001 1.0 0.2703 0.001 0.0011
RotF 0.9 0.3364 0.3737 0.001 0.0401 0.2703 1.0 0.001 0.6996
SWRF 0.001 0.001 0.001 0.9 0.6646 0.001 0.001 1.0 0.0335
XGB 0.7347 0.0017 0.0022 0.0477 0.8748 0.0011 0.6996 0.0335 1.0

pen

ERT 1.0 0.0566 0.023 0.0916 0.9 0.107 0.001 0.0916 0.3364
IVRF 0.0566 1.0 0.9 0.001 0.001 0.9 0.1426 0.001 0.9
MRF 0.023 0.9 1.0 0.001 0.001 0.9 0.2703 0.001 0.9
OWRF 0.0916 0.001 0.001 1.0 0.6996 0.001 0.001 0.9 0.001
ObF 0.9 0.001 0.001 0.6996 1.0 0.0022 0.001 0.6996 0.0156
RF 0.107 0.9 0.9 0.001 0.0022 1.0 0.0789 0.001 0.9
RotF 0.001 0.1426 0.2703 0.001 0.001 0.0789 1.0 0.001 0.0156
SWRF 0.0916 0.001 0.001 0.9 0.6996 0.001 0.001 1.0 0.001
XGB 0.3364 0.9 0.9 0.001 0.0156 0.9 0.0156 0.001 1.0

room

ERT 1.0 0.9 0.9 0.001 0.001 0.9 0.9 0.001 0.1155
IVRF 0.9 1.0 0.7172 0.001 0.0039 0.9 0.9 0.001 0.3189
MRF 0.9 0.7172 1.0 0.001 0.001 0.8398 0.9 0.001 0.0017
OWRF 0.001 0.001 0.001 1.0 0.6996 0.001 0.001 0.9 0.0335
ObF 0.001 0.0039 0.001 0.6996 1.0 0.0017 0.001 0.6996 0.8398
RF 0.9 0.9 0.8398 0.001 0.0017 1.0 0.9 0.001 0.2126
RotF 0.9 0.9 0.9 0.001 0.001 0.9 1.0 0.001 0.0128
SWRF 0.001 0.001 0.001 0.9 0.6996 0.001 0.001 1.0 0.0335
XGB 0.1155 0.3189 0.0017 0.0335 0.8398 0.2126 0.0128 0.0335 1.0

plates

ERT 1.0 0.0916 0.0068 0.107 0.9 0.0401 0.001 0.0789 0.5245
IVRF 0.0916 1.0 0.9 0.001 0.0017 0.9 0.1641 0.001 0.9
MRF 0.0068 0.9 1.0 0.001 0.001 0.9 0.6296 0.001 0.7347
OWRF 0.107 0.001 0.001 1.0 0.7347 0.001 0.001 0.9 0.001
ObF 0.9 0.0017 0.001 0.7347 1.0 0.001 0.001 0.6646 0.0401
RF 0.0401 0.9 0.9 0.001 0.001 1.0 0.3024 0.001 0.9
RotF 0.001 0.1641 0.6296 0.001 0.001 0.3024 1.0 0.001 0.0128
SWRF 0.0789 0.001 0.001 0.9 0.6646 0.001 0.001 1.0 0.001
XGB 0.5245 0.9 0.7347 0.001 0.0401 0.9 0.0128 0.001 1.0

statlog image

ERT 1.0 0.3024 0.0055 0.067 0.9 0.3364 0.001 0.067 0.2126
IVRF 0.3024 1.0 0.9 0.001 0.0084 0.9 0.0278 0.001 0.9
MRF 0.0055 0.9 1.0 0.001 0.001 0.8748 0.5945 0.001 0.9
OWRF 0.067 0.001 0.001 1.0 0.6996 0.001 0.001 0.9 0.001
ObF 0.9 0.0084 0.001 0.6996 1.0 0.0104 0.001 0.6996 0.0044
RF 0.3364 0.9 0.8748 0.001 0.0104 1.0 0.023 0.001 0.9
RotF 0.001 0.0278 0.5945 0.001 0.001 0.023 1.0 0.001 0.0477
SWRF 0.067 0.001 0.001 0.9 0.6996 0.001 0.001 1.0 0.001
XGB 0.2126 0.9 0.9 0.001 0.0044 0.9 0.0477 0.001 1.0
13 
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Table B.4
Hyperparameter Search Spaces.

Model Parameter Search space

RF, ERT, OblF, RotF

n_estimators {10, 20,… , 200}
max_depth {None, {2, 3,… , 10}}
min_samples_split {2, 3,… , 20} ∪ [0.01, 0.5]
min_samples_leaf {1, 2,… , 20} ∪ [0.01, 0.2]
max_features {sqrt, log2,None}
criterion (clf) {gini, entropy}
criterion (reg) {squared_error}

Oblique RF (OblF)

min_weight_fraction_leaf [0.0, 0.5]
max_leaf_nodes {None, {10, 20,… , 100}}
min_impurity_decrease [0.0, 0.2]
max_samples {None, {10, 20,… , 100}} ∪ [0.1, 1.0]

Rotation Forest (RotF) remove_proportion [0.5, 0.9]
min_max_group {10, 100}

XGBoost

objective (multi clf) {multi:softmax}
objective (binary clf) {reg:squarederror}
objective (multi) {reg:squarederror}
learning_rate 𝑒𝑈 (−5,0)

gamma 𝑈 (0, 5)
max_depth {1, 2,… , 7}
min_child_weight 𝑈 (1, 10)
subsample 𝑈 (0.5, 1)
colsample_bytree 𝑈 (0.3, 1)
lambda 𝑈 (1, 5)
alpha 𝑈 (0, 1)
max_bin {64, 128, 192,… , 768}
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