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ABSTRACT
The use of Unmanned Aerial Vehicles (UAVs) to monitor airborne
emissions from ships has become quite widespread, especially in
maritime areas where stricter restrictions have been imposed to
minimize air pollution caused by ships. This paper focuses on this
application of drones and specifically aims to schedule the trips
that will be made by a set of drones in order to monitor as many
ships as possible given a set of spatial and temporal constraints.
The general drone scheduling problem is broken down into two
sub-problems: In the first sub-problem, the number of ships and the
set of requests for ship surveillance, (i.e., the positions and times
that require surveillance) are known in advance. This problem is
modeled as an Integer Linear Programming (ILP) one and is solved
offline and optimally. In the second sub-problem, similarly to the
first, the number of ships is known in advance; however, the set of
requests is not, thereby requiring that, during the period the drones
are either on their trips or idle, new monitoring requests may be
generated. To solve this sub-problem, an online heuristic algorithm
was developed. Both optimal solution and heuristic algorithm are
evaluated on various sets of realistic data, and their efficiency is
verified, with the main conclusion being that the optimal solution
always ends up monitoring more ships than the heuristic, while
the heuristic algorithm is significantly faster than the optimal and
scales to larger problems.
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1 INTRODUCTION
The brothers Jacques and Louis Bréguet, who worked for Charles
Richet, a controversial Nobel Prize winner, were the first inventors
to create a quadcopter in 1907, the first design to resemble a modern
drone.1 An unmanned aerial vehicle (UAV), unmanned aerial system
(UAS), remotely piloted aircraft system (RPAS), or simply a drone, is
any type of flying vehicle that does not have a pilot in the fuselage,
but flies either autonomously or by remote control.

The development of drones in recent years has been rapid, and as
a result their use has become diverse. Amongst others, drones have
emerged as one of the most versatile and powerful tools for moni-
toring environmental and ecological change [2, 10]. From tracking
wildlife populations to assessing the impact of deforestation, al-
lowing researchers to easily monitor forests, wetlands and other
ecosystems that were previously difficult to access, drones have
been proven invaluable. In the case of wildfires, drones equipped
with thermal imaging can pinpoint hotspots and guide firefighting
efforts, and in coastal regions, drones can monitor coral reefs, which
are sensitive indicators of ocean health. Another major application
of drones in this domain is the monitoring of air pollution [8]. The
monitoring can cover wide areas such as a city neighbourhood, or
specific infrastructures, or vehicles such as a factory, or a ship.

In this paper, we focus on the use of drones in monitoring air
pollutant emissions from ships. Specifically, we aim to solve the
problem of scheduling drones to monitor ships given a set of tem-
poral and spatial constraints, a problem that can be traced back to
the Drone Scheduling Problem (DSP) [6]. We simulate a sea area
with a graph whose nodes are either points that ships will pass
through at some points in time, or the stations of the drones. The
aim is to maximize the number of ships that are monitored given a
time span. To solve it, we develop two approaches: The first is an
optimal one based on Integer Linear Programming (ILP) techniques,
and concerns the scenario where we know in advance the position
and the time that each ship will need to be monitored. The second
is a heuristic algorithm, which concerns the scenario in which the
monitoring requests are produced dynamically over time.

2 RELATEDWORK
The problem that we solve in this paper shares similarities with
a number of problem categories such as the Multiple Travelling
Salesman Problem (MTSP) [1], the Electric Vehicle Routing Problem
(EVRP) [4], and more importantly the Drone Scheduling Problem
(DSP) [6]. TheDrone Scheduling Problem (DSP) is a generic problem
category and several research approaches can be classified under it,
many of them being related to the use of drones to monitor emis-
sions. For example, in [14] the authors treat the DSP problem of

1https://www.internationaldroneassociation.com/general-6
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scheduling drones tomonitor vessels’ emissions as an NP-hard prob-
lem, aiming to inspect as many ships as possible, also considering
the possibility of prioritizing the inspection of ships. In contrast,
[12] and [3] propose an ant colony-based algorithm for solving
the problem of scheduling drones for ships’ emissions monitoring,
which according to experimental results outperforms others both in
terms of solution quality and solution speed. However, in [11] the
authors approach the same problem taking also into account the
variations in the speed of ships and drones due to weather condi-
tions, and deal with the dynamic dispatch of drones for surveillance
of a ship based using Reinforcement Learning (RL). Moreover, the
authors in [9], use a cooperative multi-UAV unmanned aerial vehi-
cle (UAV) algorithm that incorporates a tabu matrix into particle
swarm optimization (PSO) to schedule drones for ships’ monitor-
ing in ports. In a different domain, [13] focus on the DSP problem
which is addressed using a Fast Path Planning with Rules (FPPWP)
algorithm, where a basic framework for aerial data collection is
designed, which includes the following five elements: network de-
ployment, node placement, anchor point search, fast drone path
planning, and network data collection. Finally, an interesting ap-
proach from a different domain, to solving a problem very similar
to the one studied in this paper, is that of [5] where the authors sim-
ply aim to collect data on the energy consumption of a company’s
customers, using an ant colony optimisation system.

This work has been inspired by these works and the problems
that they solved, and is stepping upon the work by Rigas et al.
[7] where they propose algorithms to schedule the monitoring of
locations by drones. In contrast to [7], here we consider drones
with a limited range which is renewed by replacing the battery with
a fully charged one at the drones’ stations, and we also propose an
online algorithm to solve the problem in hand. In contrast to the rest
of the state of the art, we propose a holistic approach where drones
powered by an electric motor are scheduled to monitor the gas
emissions of ships given specific spatial and temporal constraints.
In doing so, we solve the problem both offline and to optimality
assuming full knowledge of the demand in advance and online
where the demand appears dynamically over time. In the first case
we use an exact solution (i.e., MILP), while in the second one an
approximate solution (i.e., heuristic search). In all cases, we schedule
the charging of the drones’ batteries in order to maximize their
availability.

3 PROBLEM DEFINITION
The purpose of this work is to schedule the flying and the charging
of a fleet of drones 𝑑 ∈ 𝐷 ⊆ N aiming to monitor the emissions
of a set of ships 𝑣 ∈ 𝑉 ⊆ N. Please note that terms ship and
vessel are used interchangeably reffering to the same entity. We
model the area of interest as an undirected graph 𝐺 (𝑁, 𝐸) where
the nodes 𝑛 ∈ 𝑁 ⊆ N are either stations for the drones where
they can park and charge 𝑐 ∈ 𝐶 ⊆ 𝑁 , or locations in the sea
where ships must be monitored and the edges 𝑒 ∈ 𝐸 ⊆ N are the
straight-line links between the nodes. Time is divided into a set
of discrete points 𝑡 ∈ 𝑇 ⊆ N and is the same for both drones and
ships. Between two nodes, a distance 𝑑𝑖𝑠𝑡𝑛,𝑛′ ∈ 𝑇 in terms of points
in time a drone needs to fly across the two locations exists. In this
context, monitoring requests 𝑑𝑒𝑚𝑎𝑛𝑑𝑣,𝑛,𝑡 ∈ {0, 1} exist, where the

monitoring for a ship 𝑣 should take place at a particular node 𝑛, a
particular point in time (or time slot) 𝑡 . Each drone has a current
𝑏𝑑𝑡 ∈ N and a maximum 𝑏𝑑𝑚𝑎𝑥 battery level and drones can recharge
their batteries in any of the stations 𝑐𝑛 .

Each ship traverses a set of nodes in the sea area at different
points in time, forming a route. A scheduling algorithm selects for
each drone the nodes it will visit and determines the times to mon-
itor the ships it has chosen for inspection. Furthermore, a single
drone can monitor multiple ships, provided that the monitoring
occurs at different times. The drone stations are nodes from which
drones launch to begin their inspection routes and where they land
to recharge their batteries. It should be noted that from this prob-
lem, we have identified two possible scenarios: The first scenario
involves a situation where the problem data is known in advance,
and we solve it optimally using ILP. The second scenario arises
when the problem data is dynamically updated during the execu-
tion of the scenario, and we have developed a heuristic algorithm
to address it.

The problem data are summarized as follows:

• The number of vessels to be inspected.
• The nodes through which each ship will pass, and the time
point this passing will happen.

• The number of drones.
• The number of nodes-stations, nodes that are the initial and
final position of the drones and where they can charge their
battery.

• Number of points in time, i.e., the time interval for which
the optimal paths of the drones have to be calculated,

• The autonomy of drones, i.e., how many points in time they
can fly until they need recharging.

• A set of coordinates that constitute the nodes through which
ships pass, as well as the station nodes.

4 OPTIMAL OFFLINE SOLUTION
When solving the aforementioned problem offline and to optimality,
we assume full knowledge of all problem data as mentioned in the
previous section. This problem is modeled as a system of linear
equations, a set of constraints, and an objective function, which is
given to IBM ILOG CPLEX library to calculate the optimal solution.
CPLEX is considered the state of the art is solving large scale and
hard optimization problems.

Four sets of decision variables are used to compile the constraints
and objective function, which relate to drones, time slots, and ship
control. Specifically, the variable 𝑥𝑛,𝑡 ∈ {0, 1}
is a two-dimensional matrix of nodes by time slots, with each cell
being a decision variable indicating whether at least one drone
is at a node in a time slot. The variable 𝑦𝑑,𝑛,𝑡 ∈ {0, 1} is a three-
dimensional matrix of drones by nodes by time slots, with each cell
being a decision variable indicating whether a drone is at a node
in a time slot. The variable 𝑘𝑑,𝑡,𝑛,𝑛1 ∈ {0, 1} is a four-dimensional
matrix of drones by time slots by nodes by nodes, with each cell
being a decision variable indicating whether a drone is traveling
from one node to another node in a time slot. Finally, the variable
𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1 ∈ {0, 1} is a four-dimensional matrix of drones by time
slots by nodes by nodes by nodes, with each cell being a decision
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variable indicating whether a drone starts traveling from one node
to another node in a time slot.

The objective function (1) has two parts. Our goal is to maximise
the first part, which is the number of ships monitored, while we
want to minimise the second part, where the second part is the
number of time slots that the drones travel (i.e., avoiding unnec-
essary traveling), to ensure that we find the best route between
the nodes that the drones travel through. The second part of the
objective function is multiplied by a very small number 𝜇 in order
to ensure that it will never become larger than the first one and,
thus executing monitoring tasks is not affected.

Objective function:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑉∑︁
𝑣=0

𝑁∑︁
𝑛=0

𝑇∑︁
𝑡=0

(𝑑𝑒𝑚𝑎𝑛𝑑𝑣,𝑛,𝑡 × 𝑥𝑛,𝑡 )−

𝜇×
𝐷∑︁
𝑑=0

𝑁∑︁
𝑛=0

𝑁∑︁
𝑛1=0

𝑇−1∑︁
𝑡=0

|𝑘𝑑,𝑡+1,𝑛,𝑛1 − 𝑘𝑑,𝑡,𝑛,𝑛1 |

(1)

Temporal, spatial, and routing constraints:

∀𝑑,
𝐶∑︁
𝑐=0

𝑦𝑑,𝑐,0 = 1 (2)

∀𝑑,
𝐶∑︁
𝑐=0

𝑦𝑑,𝑐,𝑇−1 = 1 (3)

∀𝑛∀𝑡,
𝐷∑︁
𝑑=0

𝑦𝑑,𝑛,𝑡 ≥ 𝑥𝑛,𝑡 (4)

∀𝑑∀𝑡,
𝑁∑︁
𝑛=0

𝑦𝑑,𝑛,𝑡 ≤ 1 (5)

∀𝑑∀𝑡,
𝑁∑︁
𝑛=0

𝑁∑︁
𝑛1=0

𝑘𝑑,𝑡,𝑛,𝑛1 ≤ 1 (6)

∀𝑑∀𝑡,
𝑁∑︁
𝑛=0

𝑁∑︁
𝑛1=0

𝑘𝑑,𝑡,𝑛,𝑛1 ≤ 1 (7)

∀𝑑∀𝑡,
𝑁∑︁
𝑛=0

𝑦𝑑,𝑛,𝑡 +
𝑁∑︁
𝑛=0

𝑁∑︁
𝑛1=0

𝑘𝑑,𝑡,𝑛,𝑛1 = 1 (8)

∀𝑑∀𝑡,
𝑁∑︁
𝑛=0

𝑦𝑑,𝑛,𝑡 +
𝑁∑︁
𝑛=0

𝑁∑︁
𝑛1=0

𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1 ≤ 1 (9)

∀𝑑∀𝑡∀𝑛∀𝑛1
(
𝑡 + 𝑑𝑖𝑠𝑡𝑛,𝑛1 ≥ 𝑇

)
, 𝑘𝑑,𝑡,𝑛,𝑛1 = 0 (10)

∀𝑑∀𝑡∀𝑛∀𝑛1
(
𝑡 + 𝑑𝑖𝑠𝑡𝑛,𝑛1 ≥ 𝑇

)
, 𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1 = 0 (11)

The symbols of the optimal solution

demand It represents the node and the time
at which each ship requiring monitoring

x Decision variable indicating whether a
drone is present at a node at a given time

𝜇 A very small number, namely 0.001

k
Decision variable indicating for each drone
whether at some point in time it goes from
one node to another

y Decision variable indicating which
node each drone is in at any given time

start
Decision variable indicating for each
drone whether at some point in time
it starts going from one node to another

V Representing all vessels
N Represents the set of nodes
T It represents the set of moments in time

dist Variable representing the distance
between two nodes

Table 1: The symbols of the optimal solution

∀𝑑∀𝑡∀𝑛∀𝑛1 𝑡 + 𝑑𝑖𝑠𝑡𝑛,𝑛1 ≥ 𝑇 ∈
(
𝑡, 𝑡 + 𝑑𝑖𝑠𝑡𝑛,𝑛1

)
,

𝑘𝑑,𝑡,𝑛,𝑛1 ≥ 𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1
(12)

∀𝑑∀𝑡∀𝑛∀𝑛1
(
𝑡 + 𝑑𝑖𝑠𝑡𝑛,𝑛1 + 1 ≥ 𝑇

)
, 𝑦𝑑,𝑛,𝑡−1 ≥ 𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1 (13)

∀𝑑∀𝑡∀𝑛∀𝑛1
(
𝑡 + 𝑑𝑖𝑠𝑡𝑛,𝑛1 + 1 ≥ 𝑇

)
, 𝑦𝑑,𝑛,𝑡+𝑑𝑖𝑠𝑡𝑛,𝑛1 ≥ 𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1

(14)

∀𝑑∀𝑡 : 𝑡 + 𝑏𝑑𝑡 < 𝑡𝑖𝑚𝑒𝑆𝑙𝑜𝑡𝑠,

𝐶∑︁
𝑐=0

𝑁∑︁
𝑛1=0

𝑡+𝑏𝑑𝑡∑︁
𝑡1=𝑡

𝑦𝑑,𝑐,𝑡1 ≥

𝐶∑︁
𝑐=0

𝑁∑︁
𝑛1=0

𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1

(15)

𝑇∑︁
𝑡=0

𝑁∑︁
𝑛=0

𝐷∑︁
𝑑=0

𝑁∑︁
𝑛1=0

𝑘𝑑,𝑡,𝑛,𝑛1 =

𝑇∑︁
𝑡=0

𝑁∑︁
𝑛=0

𝐷∑︁
𝑑=0

𝑁∑︁
𝑛1=0

(
𝑑𝑖𝑠𝑡𝑛,𝑛1 × 𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1

) (16)

𝑇∑︁
𝑡=0

𝑁∑︁
𝑛=0

𝐷∑︁
𝑑=0

��𝑦𝑑,𝑛,𝑡+1 − 𝑦𝑑,𝑛,𝑡,
�� =

𝑇∑︁
𝑡=0

𝑁∑︁
𝑛=0

𝐷∑︁
𝑑=0

𝑁∑︁
𝑛1=0

𝑠𝑡𝑎𝑟𝑡𝑑,𝑡,𝑛,𝑛1

(17)

In order to achieve the goal of the objective function, we impose
some constraints both on the correct behavior of the drones and
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on the correct cooperation between the decision variables. First,
we describe the constraints that belong to the first category: Each
drone must be at a node station both at the beginning (Eq. 2) and
at the end (Eq. 3) of the period in which the scenario is examined,
and each drone can be at a maximum of one node at any given time
(Eq. 5). Furthermore, each drone can only fly from one node to one
other node at any given time (Eq. 6), but can also only initiate one
transition from one node to another at any given time (Eq. 7) Also,
before a drone can start a trip, some conditions have to be met: (a)
a trip should not take place (Eq. 10) or be started (Eq. 11) if there
is not enough time left to complete the trip, (b) to start a trip the
drone has to be in the correct node at the previous point in time (Eq.
13), and (c) for each trip the drone has to be in the correct node after
the transition (Eq. 14). Of course, each drone should fly as long as
its battery autonomy allows and should have returned to a station
to recharge (Eq. 15). As for the second class of constraints, one
had to be defined in such a way that the decision variables x and y
communicate correctly, i.e., if there is at least one drone at a node
at a given time, then the sum of y at that node and at that time for
all available drones should be greater than 1 (Eq. 4). Furthermore,
it must be checked that the two decision variables (y and k) cannot
be 1 at the same time, i.e., a drone cannot be at a node (y[i][j][l]=1)
and at the same time fly from one node to another (k[i][j][l][m]=1)
(Eq. 8), but neither the decision variables start and y are 1 at the
same time, i.e., a drone cannot be at a node and start a trip at the
same time (Eq. 9). Also, the variable k must have a value greater
than or equal to the value of start (Eq. 12), and this is because in the
case start = 1, the drone has started a trip, so k must be 1. Finally,
the total time a drone flies must be equal to the number of starts
times the relative distance of the executed trips (Eq. 16), but the
number of times y changes value should be twice the number of
times a trip is started (this is because y changes value when it starts
and when it ends - so 2 times) (Eq. 17).

5 GREEDY ONLINE ALGORITHM
As far as the second variation of the problem is concerned, an online
heuristic algorithm is developed. This algorithm takes as input
the set of nodes, drones and ships but the monitoring requests are
generated dynamically. Thus, although the aim remains maximizing
the number of ships being monitored, the approach differs to cope
with the dynamic nature of the problem.

In this algorithm (see Algorithm 1), the way in which the set of
requests is generated has a peculiarity. In particular, each request
is characterised by three variables, the request time variable, which
refers to the time at which the program will accept the given re-
quest, the node variable, which refers to the node where the ship
requesting the inspection will be located, and the timeSlot variable,
which refers to the point time at which the inspection is required.
This algorithm is based on four checks shall be carried out at each
time point of the given time period:

(1) The first check concerns the creation of the set of requests.
For each time point, it is verified whether one or more re-
quests have been generated. If so, the set of requests is up-
dated accordingly.

(2) The second check involves supervising the drones when they
need to return to the nearest station. This could be due to a

low battery requiring recharging, or to reach a station before
the end of the time period.

(3) The third control concerns the assignment of a request to
a drone. It involves checking and finding the first available
drone (a drone is considered available when no request is
assigned to it) and assigning it the closest request in time
under the following three conditions:

(a) The drone has enough battery to fly to the request node,
inspect the ship, and return to the closest station from the
node where the inspection was made.

(b) There must be enough time for the drone to fly to the
demand node, inspect the ship, and return to the nearest
station from the node where the inspection was made
before the time expires.

(c) There must be enough time for the drone to reach the de-
mand node before the time period in which the inspection
must be made.

(4) The fourth and final check concerns the renewal of each
drone’s battery. Specifically, for each time point a drone is
outside a node station, the battery will be reduced by one
unit. While a drone is in a station node, the battery variable
will be set to the maximum value (i.e., the battery is assumed
to be replaced with a fully charged one).

Algorithm 1 Greedy online algorithm

1: for Each time slot do
2: for Each vessel do
3: if Demand time of the vessel matches the current time

slot then
4: Assign the demand to the table with pre-supervised

demands
5: for Each drone do
6: if Remaining battery + remaining time equals duration

then
7: Send the drone to the nearest station
8: for Each drone 𝑑 do
9: if 𝑑 is not flying then
10: for Each node 𝑛 do
11: for Each time 𝑡 do
12: if There is demand at node 𝑛 at time 𝑡 and

there is enough time for 𝑑 to satisfy it then
13: if Remaining battery and time are suffi-

cient for 𝑑 to reach and return from node 𝑛 then
14: Send 𝑑 to node 𝑛 to satisfy the de-

mand
15: Update the table with satisfied de-

mands
16: for Each drone 𝑑 do
17: if 𝑑’s current position is not a station or 𝑑 is flying then
18: Reduce 𝑑’s battery by one unit
19: else
20: Recharge 𝑑’s battery to maximum capacity



Monitoring Ships’ Emissions Using Unmanned Aerial Vehicles SETN 2024, September 11–13, 2024, Piraeus, Greece

Execution time (Secs)
Optimal Greedy

Number of drones
1 2.189 0.00739896
2 92.818 0.01819772
3 2412.301 0.02489308

Table 2: Execution time Optimal vs Greedy.

Efficiency (% completed requests)
Optimal Greedy

Number of drones
1 21% 8%
2 28% 17%
3 29% 19%

Table 3: Percentage of completed requests Optimal vs Greedy.

6 EXPERIMENTAL EVALUATION
Due to the difficulty in finding real data, synthetic realistic data is
used in the examples. It would also be good to clarify that, for the
sake of this experimental evaluation, we will assume that all drones
have the same characteristics .In particular, the sets of nodes used
consisted of nodes of the form (1,1), (2,2), etc. The requests were
the result of a random generator, assuming that every ship has a
request. In order to ensure the comparability of the solutions, code
was also developed to store and read the demands from files. In this
section we will examine the effect that the number of drones has
on the set of requests that are satisfied. To do this, 10 different sets
of requests were created and fed to each solution. So each solution
was run for 10 different sets of requests, with each set being tested
to see if it could be met for 1, 2 and 3 drones. The reason for using 10
different sets is to have transparency in the results of this test, and
so by averaging the results for each value of the number of drones,
the desired transparency is achieved. Apart from the number of
drones that was variable, 5 nodes, 15 time points, 2 stations, 10 time
points autonomy and 20 vessels existed.

It is easy to see (Table 3 and Figure 2) that the optimal solution
gives better results on the same data with the same parameters.
However, the heuristic is considerably faster (Table 2 and Figure 1)
than the optimal, especially when using 2 and 3 drones. Note that
the heuristic has the disadvantage that, although it could satisfy
some requirements if they were known in advance, this is very
unlikely to happen as there is a possibility that these requirements
will be generated and become known to the heuristic algorithm at
a time when it has just enough time to start a trip towards them.

Overall, the optimal solution calculated an optimal solution for
the problem in hand, but its highly combinatorial nature makes
this solution hard to find and, thus, time consuming. Therefore,
this solution is usable for small to medium sized problems and for
benchmarking purposes. At the same time, although the greedy on-
line algorithm has a performance deficite compared to the optimal,
it scales very well and can be considered usable for a wider range
if problem sizes.

It is also interesting to examine the influence that the number of
drones, combined with the total number of nodes, has on the total
number of requests served by the heuristic algorithm. To achieve
this, 10 different sets of requests were created and given to the
algorithm. So the algorithm was run for 10 sets of requirements,

Figure 1: Execution time (Optimal vs Greedy) in seconds.

Figure 2: Percentage of completed requests (Optimal vs
Greedy).

where each set was tested for each of the combinations concerning
the number of drones, with values 2, 4, 6, 8, and the total number
of nodes, with values 5, 10, 15, 20. The reason for using 10 different
sets is to have transparency in the results of this test, and so by
averaging the results for each combination of the values of the
number of drones and the values of the number of nodes, the de-
sired transparency is achieved. To get better results, the number
of stations is also varied according to the number of nodes. Apart
from the number of drones and nodes that were variable, 40 time
points, 2 stations, 10 time points autonomy and 20 vessels existed.
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Efficiency (% completed requests)
Number of nodes
5 10 15 20

Number of drones

2 50.5% 31% 25.5% 21.5%
4 63% 43% 32% 28.5%
6 64.5% 46% 33.5% 28.9%
8 64.5% 46.5% 33.5% 28.9%

Table 4: Percentage of executed tasks Greedy - number of
nodes and number of drones.

Figure 3: Percentage of completed requests related to the
number of nodes and the number of drones - Greedy

From Table 4 and Figure 3, we can see that the fewer nodes
the algorithm deals with, the better the results it returns. This is
perfectly normal, as too many nodes mean long distances and this
results in many requests not being satisfied because there is no time
to travel to the nodes requesting surveillance. On the contrary, as
the number of drones increases, regardless of the number of nodes,
there is a proportional change in the satisfied set of requests.

7 CONCLUSIONS AND FUTUREWORK
The aim of this work was to schedule a number of drones to monitor
as many ships as possible in order to reduce air pollutant emissions
to the desired level and to find the optimal routes for the drones,
taking into account the limited autonomy of the drone battery and
the limited time frame. To achieve these objectives, two different
approaches were implemented. The first approach concerns the
scenario in which the demand set (i.e., the set of nodes and times
at which each ship requires surveillance by a drone) is known in
advance. This approach uses the CPLEX library to solve the linear
model representing the problem and can provide an optimal solu-
tion. The second approach deals with the scenario where certain
data, such as the battery autonomy of the drones, the time period,
the set of nodes through which the ships pass, and the set of drones,
are known, but the set of requirements is not known in advance.
In this case, each demand becomes known dynamically as it ar-
rives. In conclusion, judging from the information derived from
the previous paragraph, the best option to achieve the objectives

set at the beginning is to know the demands in advance and to use
an optimization algorithm, as in the first approach. However, this
scenario may not always be realistic since it is quite normal for
the set of requirements to be unknown in advance and for other
requests to arrive dynamically.

In terms of future work, we are interested in evaluating the
proposed solution in a set of real data both in terms of monitor-
ing requests and locations and in terms of using different types
of drones with different characteristics in terms of speed, altitude,
range and capacity. This would clarify whether the proposed ap-
proaches are still capable in calculating correct and high quality
solutions, or whether adaptations would be needed. Also, currently
we assume that the battery of each drone is replaced with a fully
charged one when it is at a node station, which may not always
be feasible. Thus, battery charging should also be studied. Finally,
regarding the online algorithm, the selection of the demand to be
satisfied at each point in time is based purely on the order in which
the demands arrive. Instead of this approach, other criteria could
be developed to decide which demand to satisfy at a given time.
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